FROM 1/0 PORTS TO PROCESS MANAGEMENT

7%

Understanding the

\S\.
(o

O’REILLY" . DANIEL P. BOVET & MARCO CESATI

Understanding the

LINUX
KERNEL

SECOND EDITION

Daniel P. Bovet and Marco Cesati

O'REILLY"

Beijing - Cambridge - Farnham - Koln - Paris - Sebastopol - Taipei - Tokyo

CHAPTER 17

The Ext2 and Ext3
Filesystems

In this chapter, we finish our extensive discussion of I/O and filesystems by taking a
look at the details the kernel has to take care of when interacting with a particular
filesystem. Since the Second Extended Filesystem (Ext2) is native to Linux and is
used on virtually every Linux system, it is a natural choice for this discussion. Fur-
thermore, Ext2 illustrates a lot of good practices in its support for modern filesystem
features with fast performance. To be sure, other filesystems will embody new and
interesting requirements because they are designed for other operating systems, but
we cannot examine the oddities of various filesystems and platforms in this book.

After introducing Ext2 in the section “General Characteristics of Ext2,” we describe
the data structures needed, just as in other chapters. Since we are looking at a partic-
ular way to store data on a disk, we have to consider two versions of data structures.
The section “Ext2 Disk Data Structures” shows the data structures stored by Ext2 on
the disk, while “Ext2 Memory Data Structures” shows how they are duplicated in
memory.

Then we get to the operations performed on the filesystem. In the section “Creating
the Ext2 Filesystem,” we discuss how Ext2 is created in a disk partition. The next
sections describe the kernel activities performed whenever the disk is used. Most of
these are relatively low-level activities dealing with the allocation of disk space to
inodes and data blocks.

In the last section, we give a short description of the Ext3 filesystem, which is the
next step in the evolution of the Ext2 filesystem.

General Characteristics of Ext2

Unix-like operating systems use several filesystems. Although the files of all such file-
systems have a common subset of attributes required by a few POSIX APIs like stat(
), each filesystem is implemented in a different way.

The first versions of Linux were based on the Minix filesystem. As Linux matured,
the Extended Filesystem (Ext FS) was introduced; it included several significant

574

extensions, but offered unsatisfactory performance. The Second Extended Filesystem
(Ext2) was introduced in 1994; besides including several new features, it is quite effi-
cient and robust and has become the most widely used Linux filesystem.

The following features contribute to the efficiency of Ext2:

When creating an Ext2 filesystem, the system administrator may choose the
optimal block size (from 1,024 to 4,096 bytes), depending on the expected aver-
age file length. For instance, a 1,024-block size is preferable when the average file
length is smaller than a few thousand bytes because this leads to less internal
fragmentation—that is, less of a mismatch between the file length and the por-
tion of the disk that stores it (see the section “Memory Area Management” in
Chapter 7, where internal fragmentation for dynamic memory was discussed).
On the other hand, larger block sizes are usually preferable for files greater than
a few thousand bytes because this leads to fewer disk transfers, thus reducing
system overhead.

When creating an Ext2 filesystem, the system administrator may choose how
many inodes to allow for a partition of a given size, depending on the expected
number of files to be stored on it. This maximizes the effectively usable disk
space.

The filesystem partitions disk blocks into groups. Each group includes data
blocks and inodes stored in adjacent tracks. Thanks to this structure, files stored
in a single block group can be accessed with a lower average disk seek time.

The filesystem preallocates disk data blocks to regular files before they are actu-
ally used. Thus, when the file increases in size, several blocks are already
reserved at physically adjacent positions, reducing file fragmentation.

Fast symbolic links are supported. If the pathname of the symbolic link (see the
section “Hard and Soft Links” in Chapter 1) has 60 bytes or less, it is stored in
the inode and can thus be translated without reading a data block.

Moreover, the Second Extended File System includes other features that make it both
robust and flexible:

A careful implementation of the file-updating strategy that minimizes the impact
of system crashes. For instance, when creating a new hard link for a file, the
counter of hard links in the disk inode is incremented first, and the new name is
added into the proper directory next. In this way, if a hardware failure occurs
after the inode update but before the directory can be changed, the directory is
consistent, even if the inode’s hard link counter is wrong. Deleting the file does
not lead to catastrophic results, although the file’s data blocks cannot be auto-
matically reclaimed. If the reverse were done (changing the directory before
updating the inode), the same hardware failure would produce a dangerous
inconsistency: deleting the original hard link would remove its data blocks from
disk, yet the new directory entry would refer to an inode that no longer exists. If
that inode number were used later for another file, writing into the stale direc-
tory entry would corrupt the new file.

General Characteristics of Ext2 | 575

* Support for automatic consistency checks on the filesystem status at boot time.
The checks are performed by the e2fsck external program, which may be acti-
vated not only after a system crash, but also after a predefined number of filesys-
tem mountings (a counter is incremented after each mount operation) or after a
predefined amount of time has elapsed since the most recent check.

* Support for immutable files (they cannot be modified, deleted, or renamed) and
for append-only files (data can be added only to the end of them).

* Compatibility with both the Unix System V Release 4 and the BSD semantics of
the Group ID for a new file. In SVR4, the new file assumes the Group ID of the
process that creates it; in BSD, the new file inherits the Group ID of the direc-
tory containing it. Ext2 includes a mount option that specifies which semantic is
used.

The Ext2 filesystem is a mature, stable program, and it has not evolved significantly
in recent years. Several additional features, however, have been considered for inclu-
sion. Some of them have already been coded and are available as external patches.
Others are just planned, but in some cases, fields have already been introduced in the
Ext2 inode for them. The most significant features being considered are:

Block fragmentation
System administrators usually choose large block sizes for accessing disks
because computer applications often deal with large files. As a result, small files
stored in large blocks waste a lot of disk space. This problem can be solved by
allowing several files to be stored in different fragments of the same block.

Access Control Lists (ACL)
Instead of classifying the users of a file under three classes—owner, group, and
others—this list is associated with each file to specify the access rights for any
specific users or combinations of users.

Handling of transparently compressed and encrypted files
These new options, which must be specified when creating a file, allow users to
transparently store compressed and/or encrypted versions of their files on disk.

Logical deletion
An undelete option allows users to easily recover, if needed, the contents of a
previously removed file.

Journaling
Journaling avoids the time-consuming check that is automatically performed on
a filesystem when it is abruptly unmounted—for instance, as a consequence of a
system crash.

In practice, none of these features has been officially included in the Ext2 filesystem.
One might say that Ext2 is victim of its success; it is still the preferred filesystem
adopted by most Linux distribution companies, and the millions of users who use it
every day would look suspiciously at any attempt to replace Ext2 with some other
filesystem that has not been so heavily tested and used.

576 | Chapter17: The Ext2 and Ext3 Filesystems

A self-evident example of this phenomenon is journaling, which is the most compel-
ling feature required by high-availability servers. Journaling has not been introduced
in the Ext2 filesystem; rather, as we shall discuss in the later section “The Ext3 File-
system,” a new filesystem that is fully compatible with Ext2 has been created, which
also offers journaling. Users who do not really require journaling may continue to use
the good old Ext2 filesystem, while the others will likely adopt the new filesystem.

Ext2 Disk Data Structures

The first block in any Ext2 partition is never managed by the Ext2 filesystem, since it
is reserved for the partition boot sector (see Appendix A). The rest of the Ext2 parti-
tion is split into block groups, each of which has the layout shown in Figure 17-1. As
you will notice from the figure, some data structures must fit in exactly one block,
while others may require more than one block. All the block groups in the filesystem
have the same size and are stored sequentially, thus the kernel can derive the loca-
tion of a block group in a disk simply from its integer index.

ll lI
Boot
Block Block group 0 Block group n
/ L
R
Super Group Datablock | inode | inode Data block
Block | Descriptors Bitmap | Bitmap | Table ata blocks
1 block n block 1 block Tblock nblocks n blocks

Figure 17-1. Layouts of an Ext2 partition and of an Ext2 block group

Block groups reduce file fragmentation, since the kernel tries to keep the data blocks
belonging to a file in the same block group, if possible. Each block in a block group
contains one of the following pieces of information:

* A copy of the filesystem’s superblock

* A copy of the group of block group descriptors

* A data block bitmap

* A group of inodes

* An inode bitmap

* A chunk of data that belongs to a file; i.e., a data block

If a block does not contain any meaningful information, it is said to be free.

As can be seen from Figure 17-1, both the superblock and the group descriptors are
duplicated in each block group. Only the superblock and the group descriptors

Ext2 Disk Data Structures | 577

included in block group 0 are used by the kernel, while the remaining superblocks
and group descriptors are left unchanged; in fact, the kernel doesn’t even look at
them. When the e2fsck program executes a consistency check on the filesystem sta-
tus, it refers to the superblock and the group descriptors stored in block group 0, and
then copies them into all other block groups. If data corruption occurs and the main
superblock or the main group descriptors in block group 0 becomes invalid, the sys-
tem administrator can instruct e2fsck to refer to the old copies of the superblock and
the group descriptors stored in a block groups other than the first. Usually, the
redundant copies store enough information to allow e2fsck to bring the Ext2 parti-
tion back to a consistent state.

How many block groups are there? Well, that depends both on the partition size and
the block size. The main constraint is that the block bitmap, which is used to iden-
tify the blocks that are used and free inside a group, must be stored in a single block.
Therefore, in each block group, there can be at most 8xb blocks, where b is the block
size in bytes. Thus, the total number of block groups is roughly s/(8xb), where s is
the partition size in blocks.

For example, let’s consider an 8 GB Ext2 partition with a 4-KB block size. In this
case, each 4-KB block bitmap describes 32K data blocks—that is, 128 MB. There-
fore, at most 64 block groups are needed. Clearly, the smaller the block size, the
larger the number of block groups.

Superblock

An Ext2 disk superblock is stored in an ext2_super block structure, whose fields are
listed in Table 17-1. The __u8, _u16, and __u32 data types denote unsigned num-
bers of length 8, 16, and 32 bits respectively, while the __s8, s16, s32 data types
denote signed numbers of length 8, 16, and 32 bits.

Table 17-1. The fields of the Ext2 superblock

Type Field Description

_u32 s_inodes_count Total number of inodes
_u32 s_blocks_count Filesystem size in blocks
_u32 s 1 _blocks count Number of reserved blocks
_u32 s _free blocks count Free blocks counter

_u32 s_free inodes_count Free inodes counter

_u32 s_first data_block Number of first useful block (always 1)
_u32 s _log block size Block size

_ 832 s _log frag size Fragment size

_u32 s_blocks per_ group Number of blocks per group
_u32 s_frags per group Number of fragments per group
_u32 s_inodes_per_group Number of inodes per group
578 | Chapter17: The Ext2 and Ext3 Filesystems

Table 17-1. The fields of the Ext2 superblock (continued)

Type Field Description

_u32 s _mtime Time of last mount operation
_u32 s _wtime Time of last write operation

__u16 s_mnt_count Mount operations counter

__u16 s_max_mnt_count Number of mount operations before check
__u16 s_magic Magic signature

__u16 s state Status flag

__u16 S_errors Behavior when detecting errors
_u16 s _minor rev level Minor revision level

_u32 s_lastcheck Time of last check

_u32 s_checkinterval Time between checks

_u32 s_creator os 0S where filesystem was created
_u32 s rev_level Revision level

__u16 s_def_resuid Default UID for reserved blocks
_u16 s_def_resgid Default GID for reserved blocks
_u32 s first ino Number of first nonreserved inode
__u16 s_inode size Size of on-disk inode structure
__u16 s_block_group_nr Block group number of this superblock
_u32 s_feature_compat Compatible features bitmap

_u32 s_feature_incompat Incompatible features bitmap
_u32 s _feature ro compat Read-only compatible features bitmap
__u8 [16] s_uuid 128-bit filesystem identifier

char [16] s_volume_name Volume name

char [64] s_last mounted Pathname of last mount point
_u32 s_algorithm usage bitmap Used for compression

_u8 s_prealloc_blocks Number of blocks to preallocate
_u8 s_prealloc dir blocks Number of blocks to preallocate for directories
__u16 s_padding1 Alignment to word

__u32 [204] s_reserved Nulls to pad out 1,024 bytes

The s_inodes_count field stores the number of inodes, while the s_blocks count field
stores the number of blocks in the Ext2 filesystem.

The s_log block size field expresses the block size as a power of 2, using 1,024
bytes as the unit. Thus, 0 denotes 1,024-byte blocks, 1 denotes 2,048-byte blocks,
and so on. The s _log frag size field is currently equal to s log block size, since
block fragmentation is not yet implemented.

The s_blocks_per group, s frags per group, and s_inodes per group fields store the
number of blocks, fragments, and inodes in each block group, respectively.

Ext2 Disk Data Structures | 579

Some disk blocks are reserved to the superuser (or to some other user or group of
users selected by the s_def resuid and s_def resgid fields). These blocks allow the
system administrator to continue to use the filesystem even when no more free
blocks are available for normal users.

The s_mnt_count, s _max_mnt_count, s lastcheck, and s_checkinterval fields set up
the Ext2 filesystem to be checked automatically at boot time. These fields cause
e2fsck to run after a predefined number of mount operations has been performed, or
when a predefined amount of time has elapsed since the last consistency check.
(Both kinds of checks can be used together.) The consistency check is also enforced
at boot time if the filesystem has not been cleanly unmounted (for instance, after a
system crash) or when the kernel discovers some errors in it. The s_state field stores
the value 0 if the filesystem is mounted or was not cleanly unmounted, 1 if it was
cleanly unmounted, and 2 if it contains errors.

Group Descriptor and Bitmap

Each block group has its own group descriptor, an ext2_group_desc structure whose
fields are illustrated in Table 17-2.

Table 17-2. The fields of the Ext2 group descriptor

Type Field Description

_u32 bg block bitmap Block number of block bitmap
_u32 bg_inode bitmap Block number of inode bitmap
_u32 bg_inode_table Block number of first inode table block
__u16 bg_free_blocks_count Number of free blocks in the group
__u16 bg free inodes_count Number of free inodes in the group
__u16 bg used dirs_count Number of directories in the group
__u16 bg_pad Alignment to word

_u32 [3] bg reserved Nulls to pad out 24 bytes

The bg free blocks count, bg free inodes count, and bg used dirs count fields are
used when allocating new inodes and data blocks. These fields determine the most
suitable block in which to allocate each data structure. The bitmaps are sequences of
bits, where the value 0 specifies that the corresponding inode or data block is free
and the value 1 specifies that it is used. Since each bitmap must be stored inside a
single block and since the block size can be 1,024, 2,048, or 4,096 bytes, a single bit-
map describes the state of 8,192, 16,384, or 32,768 blocks.

Inode Table

The inode table consists of a series of consecutive blocks, each of which contains a
predefined number of inodes. The block number of the first block of the inode table
is stored in the bg_inode_table field of the group descriptor.

580 | Chapter17: TheExt2 and Ext3 Filesystems

All inodes have the same size: 128 bytes. A 1,024-byte block contains 8 inodes, while
a 4,096-byte block contains 32 inodes. To figure out how many blocks are occupied
by the inode table, divide the total number of inodes in a group (stored in the s_
inodes_per group field of the superblock) by the number of inodes per block.

Each Ext2 inode is an ext2_inode structure whose fields are illustrated in Table 17-3.

Table 17-3. The fields of an Ext2 disk inode

Type Field Description

_u16 i mode File type and access rights

__u16 i uid Owner identifier

_u32 i size File length in bytes

_u32 i atime Time of last file access

_u32 i ctime Time that inode last changed

_u32 i mtime Time that file contents last changed

_u32 i dtime Time of file deletion

__u16 i gid Group identifier

_u16 i links _count Hard links counter

_u32 i blocks Number of data blocks of the file

_u32 i flags File flags

union osd1 Specific operating system information

__u32 [EXT2_N_BLOCKS] i block Pointers to data blocks

_u32 i generation File version (used when the file is accessed by a network
filesystem)

_u32 i file acl File access control list

_u32 i dir acl Directory access control list

_u32 i faddr Fragment address

union osd2 Specific operating system information

Many fields related to POSIX specifications are similar to the corresponding fields of
the VFS’s inode object and have already been discussed in the section “Inode
Objects” in Chapter 12. The remaining ones refer to the Ext2-specific implementa-
tion and deal mostly with block allocation.

In particular, the i_size field stores the effective length of the file in bytes, while the
i blocks field stores the number of data blocks (in units of 512 bytes) that have been
allocated to the file.

The values of i _size and i blocks are not necessarily related. Since a file is always
stored in an integer number of blocks, a nonempty file receives at least one data block
(since fragmentation is not yet implemented) and i_size may be smaller than 512xi_
blocks. On the other hand, as we shall see in the section “File Holes” later in this chap-
ter, a file may contain holes. In that case, i_size may be greater than 512xi_blocks.

Ext2 Disk Data Structures | 581

The i _block field is an array of EXT2_N_BLOCKS (usually 15) pointers to blocks used to
identify the data blocks allocated to the file (see the section “Data Blocks Address-
ing” later in this chapter).

The 32 bits reserved for the i size field limit the file size to 4 GB. Actually, the
highest-order bit of the i_size field is not used, so the maximum file size is limited to
2 GB. However, the Ext2 filesystem includes a “dirty trick” that allows larger files on
64-bit architectures like Hewlett-Packard’s Alpha. Essentially, the i _dir acl field of
the inode, which is not used for regular files, represents a 32-bit extension of the i_
size field. Therefore, the file size is stored in the inode as a 64-bit integer. The 64-bit
version of the Ext2 filesystem is somewhat compatible with the 32-bit version
because an Ext2 filesystem created on a 64-bit architecture may be mounted on a 32-
bit architecture, and vice versa. On a 32-bit architecture, a large file cannot be
accessed, unless opening the file with the 0 _LARGEFILE flag set (see the section “The
open() System Call” in Chapter 12).

Recall that the VFS model requires each file to have a different inode number. In
Ext2, there is no need to store on disk a mapping between an inode number and the
corresponding block number because the latter value can be derived from the block
group number and the relative position inside the inode table. For example, suppose
that each block group contains 4,096 inodes and that we want to know the address
on disk of inode 13,021. In this case, the inode belongs to the third block group and
its disk address is stored in the 733rd entry of the corresponding inode table. As you
can see, the inode number is just a key used by the Ext2 routines to retrieve the
proper inode descriptor on disk quickly.

How Various File Types Use Disk Blocks

The different types of files recognized by Ext2 (regular files, pipes, etc.) use data
blocks in different ways. Some files store no data and therefore need no data blocks
at all. This section discusses the storage requirements for each type, which are listed
in Table 17-4.

Table 17-4. Ext2 file types

File_type Description
0 Unknown

1 Regular file

2 Directory

3 Character device
4 Block device

5 Named pipe

6 Socket

7 Symbolic link

582 | Chapter17: The Ext2 and Ext3 Filesystems

Regular file

Regular files are the most common case and receive almost all the attention in this
chapter. But a regular file needs data blocks only when it starts to have data. When
first created, a regular file is empty and needs no data blocks; it can also be emptied
by the truncate() or open() system calls. Both situations are common; for instance,
when you issue a shell command that includes the string >filename, the shell creates
an empty file or truncates an existing one.

Directory

Ext2 implements directories as a special kind of file whose data blocks store file-
names together with the corresponding inode numbers. In particular, such data
blocks contain structures of type ext2_dir entry 2. The fields of that structure are
shown in Table 17-5. The structure has a variable length, since the last name field is a
variable length array of up to EXT2_NAME_LEN characters (usually 255). Moreover, for
reasons of efficiency, the length of a directory entry is always a multiple of 4 and,
therefore, null characters (\0) are added for padding at the end of the filename, if
necessary. The name_len field stores the actual file name length (see Figure 17-2).

Table 17-5. The fields of an Ext2 directory entry

Type Field Description
_u32 inode Inode number
_u16 rec_len Directory entry length
_u8 name_len Filename length
__u8 file_type File type

char [EXT2_NAME_LEN] name Filename

The file_type field stores a value that specifies the file type (see Table 17-4). The
rec_len field may be interpreted as a pointer to the next valid directory entry: it is the
offset to be added to the starting address of the directory entry to get the starting
address of the next valid directory entry. To delete a directory entry, it is sufficient to
set its inode field to 0 and suitably increment the value of the rec_len field of the pre-
vious valid entry. Read the rec_len field of Figure 17-2 carefully; you’ll see that the
oldfile entry was deleted because the rec_len field of usr is set to 12+16 (the lengths
of the usr and oldfile entries).

Symbolic link

As stated before, if the pathname of the symbolic link has up to 60 characters, it is
stored in the i_block field of the inode, which consists of an array of 15 4-byte inte-
gers; no data block is therefore required. If the pathname is longer than 60 charac-
ters, however, a single data block is required.

Ext2 Disk Data Structures | 583

file type
name_len
inode rec_len —‘ name
0 21 12 1' 2 - |\No [\o |\o
12 22 12 22|+ |\0o|\O
24 53 16 512|h|lo mje|1 \o|\o \o|
40 67 % [3]2]uls o]
52 0 6 |71 [0l alf]i1]e]0]
68 34 n {42 fs]oi]n]

Figure 17-2. An example of the EXT2 directory

Device file, pipe, and socket

No data blocks are required for these kinds of files. All the necessary information is
stored in the inode.

Ext2 Memory Data Structures

For the sake of efficiency, most information stored in the disk data structures of an
Ext2 partition are copied into RAM when the filesystem is mounted, thus allowing
the kernel to avoid many subsequent disk read operations. To get an idea of how
often some data structures change, consider some fundamental operations:

* When a new file is created, the values of the s free inodes count field in the
Ext2 superblock and of the bg free inodes count field in the proper group
descriptor must be decremented.

* If the kernel appends some data to an existing file so that the number of data
blocks allocated for it increases, the values of the s free blocks count field in
the Ext2 superblock and of the bg free blocks count field in the group descrip-
tor must be modified.

* Even just rewriting a portion of an existing file involves an update of the s_wtime
field of the Ext2 superblock.

Since all Ext2 disk data structures are stored in blocks of the Ext2 partition, the ker-
nel uses the buffer cache and the page cache to keep them up to date (see the section
“Writing Dirty Buffers to Disk” in Chapter 14).

Table 17-6 specifies, for each type of data related to Ext2 filesystems and files, the
data structure used on the disk to represent its data, the data structure used by the
kernel in memory, and a rule of thumb used to determine how much caching is used.
Data that is updated very frequently is always cached; that is, the data is permanently

584 | Chapter17: The Ext2 and Ext3 Filesystems

stored in memory and included in the buffer cache or in the page cache until the cor-
responding Ext2 partition is unmounted. The kernel gets this result by keeping the
buffer’s usage counter greater than 0 at all times.

Table 17-6. VFS images of Ext2 data structures

Type Disk data structure Memory data structure Caching mode
Superblock ext2_super block ext2_sb_info Always cached
Group descriptor ext2_group_desc ext2_group desc Always cached
Block bitmap Bitarray in block Bit array in buffer Fixed limit
Inode bitmap Bit array in block Bit array in buffer Fixed limit
Inode ext2_inode ext2_inode_info Dynamic

Data block Unspecified Buffer page Dynamic

Free inode ext2_inode None Never

Free block Unspecified None Never

The never-cached data is not kept in any cache since it does not represent meaning-
ful information.

In between these extremes lie two other modes: fixed-limit and dynamic. In the fixed-
limit mode, a specific number of data structures can be kept in the buffer cache;
older ones are flushed to disk when the number is exceeded. In the dynamic mode,
the data is kept in a cache as long as the associated object (an inode or data block) is
in use; when the file is closed or the data block is deleted, the shrink mmap() func-
tion may remove the associated data from the cache and write it back to disk.

The ext2_sb_info and ext2_inode_info Structures

When an Ext2 filesystem is mounted, the u field of the VFS superblock, which con-
tains filesystem-specific data, is loaded with a structure of type ext2_sb_info so that
the kernel can find out things related to the filesystem as a whole. This structure
includes the following information:

* Most of the disk superblock fields

* The block bitmap cache, tracked by the s block bitmap and s _block bitmap_
number arrays (see the next section)

* The inode bitmap cache, tracked by the s_inode bitmap and s_inode_bitmap_
number arrays (see the next section)

* Ans_sbh pointer to the buffer head of the buffer containing the disk superblock
* Ans_es pointer to the buffer containing the disk superblock

* The number of group descriptors, s_desc_per_block, that can be packed in a
block

Ext2 Memory Data Structures | 585

* An s _group desc pointer to an array of buffer heads of buffers containing the
group descriptors (usually, a single entry is sufficient)

* Other data related to mount state, mount options, and so on

Similarly, when an inode object pertaining to an Ext2 file is initialized, the u field is
loaded with a structure of type ext2_inode_info, which includes this information:

* Most of the fields found in the disk’s inode structure that are not kept in the
generic VFES inode object (see Table 12-3 in Chapter 12)

* The fragment size and the fragment number (not yet used)

* The block _group block group index at which the inode belongs (see the section
“Ext2 Disk Data Structures” earlier in this chapter)

* Thei prealloc_block and i_prealloc_count fields, which are used for data block
preallocation (see the section “Allocating a Data Block” later in this chapter)

* The i_osync field, which is a flag specifying whether the disk inode should be
synchronously updated

Bitmap Caches

When the kernel mounts an Ext2 filesystem, it allocates a buffer for the Ext2 disk
superblock and reads its contents from disk. The buffer is released only when the
Ext2 filesystem is unmounted. When the kernel must modify a field in the Ext2
superblock, it simply writes the new value in the proper position of the correspond-
ing buffer and then marks the buffer as dirty.

Unfortunately, this approach cannot be adopted for all Ext2 disk data structures.
The tenfold increase in disk capacity reached in recent years has induced a tenfold
increase in the size of inode and data block bitmaps, so we have reached the point at
which it is no longer convenient to keep all the bitmaps in RAM at the same time.

For instance, consider a 4-GB disk with a 1-KB block size. Since each bitmap fills all
the bits of a single block, each of them describes the status of 8,192 blocks—that is,
of 8 MB of disk storage. The number of block groups is 4,096 MB/8 MB=512. Since
each block group requires both an inode bitmap and a data block bitmap, 1 MB of
RAM would be required to store all 1,024 bitmaps in memory.

The solution adopted to limit the memory requirements of the Ext2 descriptors is to
use, for any mounted Ext2 filesystem, two caches of size EXT2 MAX_GROUP_LOADED
(usually 8). One cache stores the most recently accessed inode bitmaps, while the
other cache stores the most recently accessed block bitmaps. Buffers that contain bit-
maps included in a cache have a usage counter greater than 0, therefore they are
never freed by shrink mmap() (see the section “Reclaiming Page Frame” in
Chapter 16). Conversely, buffers that contain bitmaps not included in a bitmap
cache have a null usage counter, so they can be freed if free memory becomes scarce.

586 | Chapter17: The Ext2 and Ext3 Filesystems

Each cache is implemented by means of two arrays of EXT2_MAX_GROUP_LOADED ele-
ments. One array contains the indexes of the block groups whose bitmaps are cur-
rently in the cache, while the other array contains pointers to the buffer heads that
refer to those bitmaps.

The ext2_sb_info structure stores the arrays pertaining to the inode bitmap cache;
indexes of block groups are found in the s_inode_bitmap field and pointers to buffer
heads are found in the s_inode_bitmap_number field. The corresponding arrays for the
block bitmap cache are stored in the s block bitmap and s_block bitmapnumber

fields.

The load_inode_bitmap() function loads the inode bitmap of a specified block group
and returns the cache position in which the bitmap can be found.

If the bitmap is not already in the bitmap cache, load_inode bitmap() invokes read
inode_bitmap(). The latter function gets the number of the block containing the bit-
map from the bg_inode_bitmap field of the group descriptor, and then invokes bread(
) to allocate a new buffer and read the block from disk if it is not already included in
the buffer cache.

If the number of block groups in the Ext2 partition is less than or equal to EXT2_MAX_
GROUP_LOADED, the index of the cache array position in which the bitmap is inserted
always matches the block group index passed as the parameter to the load inode_
bitmap() function.

Otherwise, if there are more block groups than cache positions, a bitmap is removed
from the cache, if necessary, by using a Least Recently Used (LRU) policy, and the
requested bitmap is inserted in the first cache position. Figure 17-3 illustrates the
three possible cases in which the bitmap in block group 5 is referenced: where the
requested bitmap is already in cache, where the bitmap is not in cache but there is a
free position, and where the bitmap is not in cache and there is no free position.

(a) Bitmap already in cache

3(1 (1741856 (20 5013 (1|17[4|8]6]20

(b) Bitmap added to the cache

3(1(171418 50131111748

() Bitmap added to the cache, last bitmap thrown out

3(1(17|14(8|6](20(7 5013 (1|17[4|8]6]20

Figure 17-3. Adding a bitmap to the cache

Ext2 Memory Data Structures | 587

The load block bitmap() and read block bitmap() functions are very similar to
load_inode bitmap() and read inode bitmap(), but they refer to the block bitmap
cache of an Ext2 partition.

Figure 17-4 illustrates the memory data structures of a mounted Ext2 filesystem. In
our example, there are three block groups whose descriptors are stored in three
blocks on disk; therefore, the s group desc field of the ext2 sb_info points to an
array of three buffer heads. We have shown just one inode bitmap having index 2
and one block bitmap having index 4, although the kernel may keep 2xEXT2_MAX_
GROUP_LOADED bitmaps in the bitmap caches, and even more may be stored in the
buffer cache.

Ext2 partition
Super Group Group Group Block Inode
Block Descriptor | Descriptor | Descriptor Bitmap Bitmap
A 4 4 A A A
VES's Buffer Buffer Buffer Buffer Buffer Buffer
super_block

A

s_group_desc

b_data \ x f
s_es -
ext2 _sb_info
—| b.h. ' b.h. ' ' b.h. ' ' b.h. ' : b.h. b.h.
Z |s_sbh

s_block_bitmap[2]

s_inode_bitmap[4]

Figure 17-4. Ext2 memory data structures

Creating the Ext2 Filesystem

There are generally two stages to creating a filesystem on a disk. The first step is to
format it so that the disk driver can read and write blocks on it. Modern hard disks
come preformatted from the factory and need not be reformatted; floppy disks may
be formatted on Linux using the superformat utility program. The second step
involves creating a filesystem, which means setting up the structures described in
detail earlier in this chapter.

Ext2 filesystems are created by the mke2fs utility program; it assumes the following
default options, which may be modified by the user with flags on the command line:

* Block size: 1,024 bytes

* Fragment size: block size (block fragmentation is not implemented)

588 | Chapter17: The Ext2 and Ext3 Filesystems

* Number of allocated inodes: one for each group of 4,096 bytes

* Percentage of reserved blocks: 5 percent
The program performs the following actions:

1. Initializes the superblock and the group descriptors.

2. Optionally, checks whether the partition contains defective blocks; if so, it cre-
ates a list of defective blocks.

3. For each block group, reserves all the disk blocks needed to store the super-
block, the group descriptors, the inode table, and the two bitmaps.

. Initializes the inode bitmap and the data map bitmap of each block group to 0.
. Initializes the inode table of each block group.

. Creates the /root directory.

~N O v A~

. Creates the lost+found directory, which is used by e2fsck to link the lost and
found defective blocks.

8. Updates the inode bitmap and the data block bitmap of the block group in
which the two previous directories have been created.
9. Groups the defective blocks (if any) in the lost+found directory.

Let’s consider how an Ext2 1.4 MB floppy disk is initialized by mke2fs with the
default options.

Once mounted, it appears to the VFS as a volume consisting of 1,390 blocks; each
one is 1,024 bytes in length. To examine the disk’s contents, we can execute the
Unix command:

$ dd if=/dev/fdo bs=1k count=1440 | od -tx1 -Ax > /tmp/dump_hex
to get a file containing the hexadecimal dump of the floppy disk contents in the /tmp
directory.”

By looking at that file, we can see that, due to the limited capacity of the disk, a sin-
gle group descriptor is sufficient. We also notice that the number of reserved blocks
is set to 72 (5 percent of 1,440) and, according to the default option, the inode table
must include 1 inode for each 4,096 bytes—that is, 360 inodes stored in 45 blocks.

Table 17-7 summarizes how the Ext2 filesystem is created on a floppy disk when the
default options are selected.

Table 17-7. Ext2 block allocation for a floppy disk

Block Content
0 Boot block
1 Superblock

* Some information on an Ext2 filesystem could also be obtained by using the dumpe2fs and debugfs utility
programs.

Creating the Ext2 Filesystem | 589

Table 17-7. Ext2 block allocation for a floppy disk (continued)

Block Content

2 Block containing a single block group descriptor

3 Data block bitmap

4 Inode bitmap

5-49 Inode table: inodes up to 10: reserved; inode 11: Jost-+found; inodes 12—360: free
50 Root directory (includes ., . ., and lost+found)

51 lost+found directory (includes . and . .)

52-62 Reserved blocks preallocated for lost-+found directory

63-1439 Free blocks

Ext2 Methods

Many of the VFS methods described in Chapter 12 have a corresponding Ext2 imple-
mentation. Since it would take a whole book to describe all of them, we limit our-
selves to briefly reviewing the methods implemented in Ext2. Once the disk and the
memory data structures are clearly understood, the reader should be able to follow
the code of the Ext2 functions that implement them.

Ext2 Superblock Operations

Many VFS superblock operations have a specific implementation in Ext2, namely
read inode, write inode, put inode, delete inode, put super, write super, statfs,
and remount_fs. The addresses of the superblock methods are stored into the ext2_
sops array of pointers.

Ext2 Inode Operations

Some of the VFS inode operations have a specific implementation in Ext2, which
depends on the type of the file to which the inode refers.

If the inode refers to a regular file, all inode operations listed in the ext2 file inode_
operations table have a NULL pointer, except for the truncate operation that is imple-
mented by the ext2 truncate() function. Recall that the VFS uses its own generic
functions when the corresponding Ext2 method is undefined (a NULL pointer).

If the inode refers to a directory, most inode operations listed in the ext2_dir inode_
operations table are implemented by specific Ext2 functions (see Table 17-8).

Table 17-8. Ext2 inode operations for directory files

VES inode operation Ext2 directory inode method

create ext2_create()
lookup ext2_lookup()
link ext2_link()

590 | Chapter17: TheExt2 and Ext3 Filesystems

Table 17-8. Ext2 inode operations for directory files (continued)

VFS inode operation Ext2 directory inode method

unlink ext2_unlink()
symlink ext2_symlink()
mkdir ext2_mkdir()
rmdir ext2_rmdir()
mknod ext2_mknod()
rename ext2_rename()

If the inode refers to a symbolic link that can be fully stored inside the inode itself, all
inode methods are NULL except for readlink and follow link, which are imple-
mented by ext2 readlink() and ext2 follow link(), respectively. The addresses of
those methods are stored in the ext2 fast_symlink inode operations table. On the
other hand, if the inode refers to a long symbolic link that has to be stored inside a
data block, the readlink and follow link methods are implemented by the generic
page readlink() and page follow link() functions, whose addresses are stored in
the page_symlink inode_ operations table.

If the inode refers to a character device file, to a block device file, or to a named pipe
(see “FIFOs” in Chapter 19), the inode operations do not depend on the filesystem.
They are specified in the chrdev_inode operations, blkdev_inode operations, and
fifo_inode_operations tables, respectively.

Ext2 File Operations

The file operations specific to the Ext2 filesystem are listed in Table 17-9. As you can
see, several VFS methods are implemented by generic functions that are common to
many filesystems. The addresses of these methods are stored in the ext2 file_
operations table.

Table 17-9. Ext2 file operations

VFS file operation Ext2 method

11seek generic_file 1lseek()
read generic_file read()
write generic_file write()
ioctl ext2_ioctl()

mmap generic_file mmap()
open generic_file open()
release ext2_release file()
fsync ext2_sync_file()

Ext2 Methods | 591

Notice that the Ext2’s read and write methods are implemented by the generic_
file read() and generic_file write() functions, respectively. These are described
in the sections “Reading from a File” and “Writing to a File” in Chapter 15.

Managing Ext2 Disk Space

The storage of a file on disk differs from the view the programmer has of the file in
two ways: blocks can be scattered around the disk (although the filesystem tries hard
to keep blocks sequential to improve access time), and files may appear to a pro-
grammer to be bigger than they really are because a program can introduce holes
into them (through the 1seek() system call).

In this section, we explain how the Ext2 filesystem manages the disk space—how it
allocates and deallocates inodes and data blocks. Two main problems must be

addressed:

* Space management must make every effort to avoid file fragmentation—the
physical storage of a file in several, small pieces located in nonadjacent disk
blocks. File fragmentation increases the average time of sequential read opera-
tions on the files, since the disk heads must be frequently repositioned during
the read operation.” This problem is similar to the external fragmentation of
RAM discussed in the section “The Buddy System Algorithm” in Chapter 7.

* Space management must be time-efficient; that is, the kernel should be able to
quickly derive from a file offset the corresponding logical block number in the
Ext2 partition. In doing so, the kernel should limit as much as possible the num-
ber of accesses to addressing tables stored on disk, since each such intermediate
access considerably increases the average file access time.

Creating Inodes

The ext2_new_inode(') function creates an Ext2 disk inode, returning the address of
the corresponding inode object (or NULL, in case of failure). It acts on two parame-
ters: the address dir of the inode object that refers to the directory into which the
new inode must be inserted and a mode that indicates the type of inode being cre-
ated. The latter argument also includes an MS_SYNCHRONOUS flag that requires the cur-
rent process to be suspended until the inode is allocated. The function performs the
following actions:

1. Invokes new_inode() to allocate a new inode object and initializes its i_sb field to
the superblock address stored in dir->i sb.

2. Invokes down() on the s_lock semaphore included in the parent superblock. As we
know, the kernel suspends the current process if the semaphore is already busy.

* Please note that fragmenting a file across block groups (A Bad Thing) is quite different from the not-yet-
implemented fragmentation of blocks to store many files in one block (A Good Thing).

592 | Chapter17: The Ext2 and Ext3 Filesystems

10.

11.
12.

. If the new inode is a directory, tries to place it so that directories are evenly scat-

tered through partially filled block groups. In particular, allocates the new direc-
tory in the block group that has the maximum number of free blocks among all
block groups that have a greater than average number of free inodes. (The aver-
age is the total number of free inodes divided by the number of block groups).

. If the new inode is not a directory, allocates it in a block group having a free

inode. The function selects the group by starting from the one that contains the
parent directory and moving farther away from it; to be precise:

a. Performs a quick logarithmic search starting from the block group that
includes the parent directory dir. The algorithm searches log(n) block
groups, where 7 is the total number of block groups. The algorithm jumps
further ahead until it finds an available block group—for example, if we call
the number of the starting block group i, the algorithm considers block
groups i mod (n), i+1 mod (n), i+1+2 mod (n), i+1+2+4 mod (n), etc.

b. If the logarithmic search failed in finding a block group with a free inode,
the function performs an exhaustive linear search starting from the block
group that includes the parent directory dir.

. Invokes load_inode_bitmap() to get the inode bitmap of the selected block group

and searches for the first null bit into it, thus obtaining the number of the first
free disk inode.

. Allocates the disk inode: sets the corresponding bit in the inode bitmap and

marks the buffer containing the bitmap as dirty. Moreover, if the filesystem has
been mounted specifying the MS_SYNCHRONOUS flag, invokes 11 rw block() and
waits until the write operation terminates (see the section “Mounting a Generic
Filesystem” in Chapter 12).

. Decrements the bg_free inodes count field of the group descriptor. If the new

inode is a directory, increments the bg_used dirs count field. Marks the buffer
containing the group descriptor as dirty.

. Decrements the s_free inodes count field of the disk superblock and marks the

buffer containing it as dirty. Sets the s_dirt field of the VFS’s superblock object
to 1.

. Initializes the fields of the inode object. In particular, sets the inode number i_no

and copies the value of xtime.tv_sec into i_atime, i mtime, and i ctime. Also
loads the i_block group field in the ext2 inode_info structure with the block
group index. Refer to Table 17-3 for the meaning of these fields.

Inserts the new inode object into the hash table inode hashtable and invokes
mark_inode dirty() to move the inode object into the superblock’s dirty inode
list (see the section “Inode Objects” in Chapter 12).

Invokes up() on the s lock semaphore included in the parent superblock.

Returns the address of the new inode object.

Managing Ext2 Disk Space | 593

Deleting Inodes

The ext2_free_inode() function deletes a disk inode, which is identified by an inode
object whose address is passed as the parameter. The kernel should invoke the func-
tion after a series of cleanup operations involving internal data structures and the
data in the file itself. It should come after the inode object has been removed from
the inode hash table, after the last hard link referring to that inode has been deleted
from the proper directory and after the file is truncated to 0 length to reclaim all its
data blocks (see the section “Releasing a Data Block” later in this chapter). It per-
forms the following actions:

1. Invokes down() on the s_lock semaphore included in the parent superblock to
get exclusive access to the superblock object.

2. Invokes clear_inode() to perform the following operations:
a. Invokes invalidate_inode buffers() to remove the dirty buffers that belong

to the inode from its i_dirty buffers and i dirty data buffers lists (see the
section “Buffer Head Data Structures” in Chapter 14).

b. If the I_LOCK flag of the inode is set, some of the inode’s buffers are involved in
/O data transfers; the function suspends the current process until these I/O
data transfers terminate.

c. Invokes the clear_inode method of the superblock object, if defined; the
Ext2 filesystem does not define it.

d. Sets the state of the inode to I _CLEAR (the inode object contents are no
longer meaningful).

[S¥]

. Computes the index of the block group containing the disk inode from the inode
number and the number of inodes in each block group.

N

. Invokes load_inode_bitmap() to get the inode bitmap.

9

. Increments the bg_free_inodes count field of the group descriptor. If the deleted
inode is a directory, decrements the bg_used dirs_count field. Marks the buffer
that contains the group descriptor as dirty.

6. Increments the s _free inodes count field of the disk superblock and marks the
buffer that contains it as dirty. Also sets the s_dirt field of the superblock object
to 1.

7. Clears the bit corresponding to the disk inode in the inode bitmap and marks the
buffer that contains the bitmap as dirty. Moreover, if the filesystem has been
mounted with the MS_SYNCHRONIZE flag, invokes 11 rw block() and waits until
the write operation on the bitmap’s buffer terminates.

0e]

. Invokes up(') on the s_lock semaphore included in the parent superblock object.

594 | Chapter17: The Ext2 and Ext3 Filesystems

Data Blocks Addressing

Each nonempty regular file consists of a group of data blocks. Such blocks may be
referred to either by their relative position inside the file (their file block number) or
by their position inside the disk partition (their logical block number, explained in
the section “Buffer Heads” in Chapter 13).

Deriving the logical block number of the corresponding data block from an offset f
inside a file is a two-step process:

1. Derive from the offset f the file block number—the index of the block that con-
tains the character at offset f.

2. Translate the file block number to the corresponding logical block number.

Since Unix files do not include any control characters, it is quite easy to derive the
file block number containing the fth character of a file: simply take the quotient of f
and the filesystem’s block size and round down to the nearest integer.

For instance, let’s assume a block size of 4 KB. If f is smaller than 4,096, the charac-
ter is contained in the first data block of the file, which has file block number 0. If f is
equal to or greater than 4,096 and less than 8,192, the character is contained in the
data block that has file block number 1, and so on.

This is fine as far as file block numbers are concerned. However, translating a file
block number into the corresponding logical block number is not nearly as straight-
forward, since the data blocks of an Ext2 file are not necessarily adjacent on disk.

The Ext2 filesystem must therefore provide a method to store the connection
between each file block number and the corresponding logical block number on
disk. This mapping, which goes back to early versions of Unix from AT&T, is imple-
mented partly inside the inode. It also involves some specialized blocks that contain
extra pointers, which are an inode extension used to handle large files.

The i_block field in the disk inode is an array of EXT2_N_BLOCKS components that con-
tain logical block numbers. In the following discussion, we assume that EXT2_N_
BLOCKS has the default value, namely 15. The array represents the initial part of a
larger data structure, which is illustrated in Figure 17-5. As can be seen in the figure,
the 15 components of the array are of 4 different types:

* The first 12 components yield the logical block numbers corresponding to the
first 12 blocks of the file—to the blocks that have file block numbers from 0 to
11.

* The component at index 12 contains the logical block number of a block that
represents a second-order array of logical block numbers. They correspond to
the file block numbers ranging from 12 to b/4+11, where b is the filesystem’s
block size (each logical block number is stored in 4 bytes, so we divide by 4 in
the formula). Therefore, the kernel must look in this component for a pointer to
a block, and then look in that block for another pointer to the ultimate block
that contains the file contents.

Managing Ext2 Disk Space | 595

* The component at index 13 contains the logical block number of a block con-
taining a second-order array of logical block numbers; in turn, the entries of this
second-order array point to third-order arrays, which store the logical block
numbers that correspond to the file block numbers ranging from b/4+12 to (b/
4)2+(b/4)+11.

* Finally, the component at index 14 uses triple indirection: the fourth-order
arrays store the logical block numbers corresponding to the file block numbers
ranging from (b/4)2+(b/4)+12 to (b/4)3+(b/4)2+(b/4)+11 upward.

l l L

(b/4)? + (b/4)*+
2b/4)+11 (b/4)+12 bié+12 I ‘
i
1 6
f {

N A

I

i_block ‘

|01234567891011|121314

T
Direct Addressing

Figure 17-5. Data structures used to address the file’s data blocks

In Figure 17-5, the number inside a block represents the corresponding file block
number. The arrows, which represent logical block numbers stored in array compo-
nents, show how the kernel finds its way to reach the block that contains the actual
contents of the file.

Notice how this mechanism favors small files. If the file does not require more than
12 data blocks, any data can be retrieved in two disk accesses: one to read a compo-
nent in the i_block array of the disk inode and the other to read the requested data
block. For larger files, however, three or even four consecutive disk accesses may be
needed to access the required block. In practice, this is a worst-case estimate, since
dentry, buffer, and page caches contribute significantly to reduce the number of real
disk accesses.

Notice also how the block size of the filesystem affects the addressing mechanism,
since a larger block size allows the Ext2 to store more logical block numbers inside a
single block. Table 17-10 shows the upper limit placed on a file’s size for each block
size and each addressing mode. For instance, if the block size is 1,024 bytes and the

596 | Chapter17: The Ext2 and Ext3 Filesystems

file contains up to 268 kilobytes of data, the first 12 KB of a file can be accessed
through direct mapping and the remaining 13-268 KB can be addressed through
simple indirection. Files larger than 2 GB must be opened on 32-bit architectures by
specifying the 0 LARGEFILE opening flag. In any case, the Ext2 filesystem puts an
upper limit on the file size equal to 2 TB minus 4,096 bytes.

Table 17-10. File size upper limits for data block addressing

Block Size Direct 1-Indirect 2-Indirect 3-Indirect
1,024 12KB 268 KB 64.26 MB 16.06 GB
2,048 24KB 1.02MB 513.02MB 256.5GB
4,096 48 KB 4.04 MB 4GB ~2TB

File Holes

A file hole is a portion of a regular file that contains null characters and is not stored
in any data block on disk. Holes are a long-standing feature of Unix files. For
instance, the following Unix command creates a file in which the first bytes are a

hole:
$ echo -n "X" | dd of=/tmp/hole bs=1024 seek=6

Now /tmp/hole has 6,145 characters (6,144 null characters plus an X character), yet
the file occupies just one data block on disk.

File holes were introduced to avoid wasting disk space. They are used extensively by
database applications and, more generally, by all applications that perform hashing
on files.

The Ext2 implementation of file holes is based on dynamic data block allocation: a
block is actually assigned to a file only when the process needs to write data into it.
The i _size field of each inode defines the size of the file as seen by the program,
including the hole, while the i_blocks field stores the number of data blocks effec-
tively assigned to the file (in units of 512 bytes).

In our earlier example of the dd command, suppose the /tmp/hole file was created on
an Ext2 partition that has blocks of size 4,096. The i_size field of the corresponding
disk inode stores the number 6,145, while the i _blocks field stores the number 8
(because each 4,096-byte block includes eight 512-byte blocks). The second element
of the i block array (corresponding to the block having file block number 1) stores
the logical block number of the allocated block, while all other elements in the array
are null (see Figure 17-6).

Allocating a Data Block

When the kernel has to locate a block holding data for an Ext2 regular file, it invokes
the ext2_get block() function. If the block does not exist, the function automati-
cally allocates the block to the file. Remember that this function is invoked every

Managing Ext2 Disk Space | 597

6144 |
409 |

File
/tmp/hole \o| \of\o|--+[\Oo| \Of---| \O| X

Data block \0 ... \0o| X
i block 0 00
0 1 2 3

Figure 17-6. A file with an initial hole

time the kernel issues a read or write operation on a Ext2 regular file (see the sec-
tions “Reading from a File” and “Writing to a File” in Chapter 15).

The ext2_get block() function handles the data structures already described in the
section “Data Blocks Addressing,” and when necessary, invokes the ext2_alloc_
block() function to actually search for a free block in the Ext2 partition.

To reduce file fragmentation, the Ext2 filesystem tries to get a new block for a file
near the last block already allocated for the file. Failing that, the filesystem searches
for a new block in the block group that includes the file’s inode. As a last resort, the
free block is taken from one of the other block groups.

The Ext2 filesystem uses preallocation of data blocks. The file does not get just the
requested block, but rather a group of up to eight adjacent blocks. The i_prealloc_
count field in the ext2_inode_info structure stores the number of data blocks preallo-
cated to a file that are still unused, and the i_prealloc_block field stores the logical
block number of the next preallocated block to be used. Any preallocated blocks that
remain unused are freed when the file is closed, when it is truncated, or when a write
operation is not sequential with respect to the write operation that triggered the
block preallocation.

The ext2_alloc_block() function receives as parameters a pointer to an inode object
and a goal. The goal is a logical block number that represents the preferred position
of the new block. The ext2 getblk() function sets the goal parameter according to
the following heuristic:

1. If the block that is being allocated and the previously allocated block have con-
secutive file block numbers, the goal is the logical block number of the previous
block plus 1; it makes sense that consecutive blocks as seen by a program should
be adjacent on disk.

2. If the first rule does not apply and at least one block has been previously allo-
cated to the file, the goal is one of these blocks’ logical block numbers. More
precisely, it is the logical block number of the already allocated block that pre-
cedes the block to be allocated in the file.

598 | Chapter17: The Ext2 and Ext3 Filesystems

3. If the preceding rules do not apply, the goal is the logical block number of the
first block (not necessarily free) in the block group that contains the file’s inode.

The ext2_alloc_block() function checks whether the goal refers to one of the preal-
located blocks of the file. If so, it allocates the corresponding block and returns its
logical block number; otherwise, the function discards all remaining preallocated
blocks and invokes ext2 _new block().

This latter function searches for a free block inside the Ext2 partition with the fol-
lowing strategy:

1. If the preferred block passed to ext2 _alloc_block(), the goal, is free, and the
function allocates the block.

2. If the goal is busy, the function checks whether one of the next 64 blocks after
the preferred block is free.

3. If no free block is found in the near vicinity of the preferred block, the function
considers all block groups, starting from the one including the goal. For each
block group, the function does the following:

a. Looks for a group of at least eight adjacent free blocks.

b. If no such group is found, looks for a single free block.

The search ends as soon as a free block is found. Before terminating, the ext2 new_
block() function also tries to preallocate up to eight free blocks adjacent to the free
block found and sets the i_prealloc _block and i prealloc_count fields of the disk
inode to the proper block location and number of blocks.

Releasing a Data Block

When a process deletes a file or truncates it to 0 length, all its data blocks must be
reclaimed. This is done by ext2_truncate(), which receives the address of the file’s
inode object as its parameter. The function essentially scans the disk inode’s i_block
array to locate all data blocks and all blocks used for the indirect addressing. These
blocks are then released by repeatedly invoking ext2_free blocks().

The ext2_free blocks() function releases a group of one or more adjacent data
blocks. Besides its use by ext2_truncate(), the function is invoked mainly when dis-
carding the preallocated blocks of a file (see the earlier section “Allocating a Data
Block”). Its parameters are:

inode

The address of the inode object that describes the file
block

The logical block number of the first block to be released

count
The number of adjacent blocks to be released

Managing Ext2 Disk Space | 599

The function invokes down() on the s_lock superblock’s semaphore to get exclusive
access to the filesystem’s superblock, and then performs the following actions for
each block to be released:

1. Gets the block bitmap of the block group, including the block to be released

2. Clears the bit in the block bitmap that corresponds to the block to be released
and marks the buffer that contains the bitmap as dirty

3. Increments the bg free blocks count field in the block group descriptor and
marks the corresponding buffer as dirty

4. Increments the s_free blocks_count field of the disk superblock, marks the cor-
responding buffer as dirty, and sets the s_dirt flag of the superblock object

5. 1f the filesystem has been mounted with the MS_SYNCHRONOUS flag set, invokes 11
rw_block() and waits until the write operation on the bitmap’s buffer terminates

Finally, the function invokes up() to release the superblock’s s_lock semaphore.

The Ext3 Filesystem

In this section we’ll briefly describe the enhanced filesystem that has evolved from
Ext2, named Ext3. The new filesystem has been designed with two simple concepts
in mind:

* To be a journaling filesystem (see the next section)

* To be, as much as possible, compatible with the old Ext2 filesystem

Ext3 achieves both the goals very well. In particular, it is largely based on Ext2, so its
data structures on disk are essentially identical to those of an Ext2 filesystem. As a
matter of fact, if an Ext3 filesystem has been cleanly unmounted, it can be
remounted as an Ext2 filesystem; conversely, creating a journal of an Ext2 filesystem
and remounting it as an Ext3 filesystem is a simple, fast operation.

Thanks to the compatibility between Ext3 and Ext2, most descriptions in the previ-
ous sections of this chapter apply to Ext3 as well. Therefore, in this section, we focus
on the new feature offered by Ext3— “the journal.”

Journaling Filesystems

As disks became larger, one design choice of traditional Unix filesystems (like Ext2)
turns out to be inappropriate. As we know from Chapter 14, updates to filesystem
blocks might be kept in dynamic memory for long period of time before being
flushed to disk. A dramatic event like a power-down failure or a system crash might
thus leave the filesystem in an inconsistent state. To overcome this problem, each
traditional Unix filesystem is checked before being mounted; if it has not been prop-
erly unmounted, then a specific program executes an exhaustive, time-consuming
check and fixes all filesystem’s data structures on disk.

600 | Chapter17: The Ext2 and Ext3 Filesystems

For instance, the Ext2 filesystem status is stored in the s mount_state field of the
superblock on disk. The e2fsck utility program is invoked by the boot script to check
the value stored in this field; if it is not equal to EXT2_VALID FS, the filesystem was not
properly unmounted, and therefore e2fsck starts checking all disk data structures of
the filesystem.

Clearly, the time spent checking the consistency of a filesystem depends mainly on
the number of files and directories to be examined; therefore, it also depends on the
disk size. Nowadays, with filesystems reaching hundreds of gigabytes, a single con-
sistency check may take hours. The involved downtime is unacceptable for any pro-
duction environment or high-availability server.

The goal of a journaling filesystem is to avoid running time-consuming consistency
checks on the whole filesystem by looking instead in a special disk area that contains
the most recent disk write operations named journal. Remounting a journaling file-
system after a system failure is a matter of few seconds.

The Ext3 Journaling Filesystem

The idea behind Ext3 journaling is to perform any high-level change to the filesys-
tem in two steps. First, a copy of the blocks to be written is stored in the journal;
then, when the I/O data transfer to the journal is completed (in short, data is com-
mitted to the journal), the blocks are written in the filesystem. When the I/O data
transfer to the filesystem terminates (data is committed to the filesystem), the copies
of the blocks in the journal are discarded.

While recovering after a system failure, the e2fsck program distinguishes the follow-
ing two cases:

The system failure occurred before a commit to the journal. Either the copies of the
blocks relative to the high-level change are missing from the journal or they are
incomplete; in both cases, e2fsck ignores them.

The system failure occurred after a commit to the journal. The copies of the blocks
are valid and e2fsck writes them into the filesystem.

In the first case, the high-level change to the filesystem is lost, but the filesystem state
is still consistent. In the second case, e2fsck applies the whole high-level change, thus
fixing any inconsistency due to unfinished I/O data transfers into the filesystem.

Don’t expect too much from a journaling filesystem; it ensures consistency only at
the system call level. For instance, a system failure that occurs while you are copying
a large file by issuing several write() system calls will interrupt the copy operation,
thus the duplicated file will be shorter than the original one.

Furthermore, journaling filesystems do not usually copy all blocks into the journal.
In fact, each filesystem consists of two kinds of blocks: those containing the so-called
metadata and those containing regular data. In the case of Ext2 and Ext3, there are

The Ext3 Filesystem | 601

six kinds of metadata: superblocks, group block descriptors, inodes, blocks used for
indirect addressing (indirection blocks), data bitmap blocks, and inode bitmap
blocks. Other filesystems may use different metadata.

Most journaling filesystems, like ReiserFS, SGI's XFS, and IBM’s JFS, limit them-
selves to log the operations affecting metadata. In fact, metadata’s log records are
sufficient to restore the consistency of the on-disk filesystem data structures. How-
ever, since operations on blocks of file data are not logged, nothing prevents a sys-
tem failure from corrupting the contents of the files.

The Ext3 filesystem, however, can be configured to log the operations affecting both
the filesystem metadata and the data blocks of the files. Since logging every kind of
write operation leads to a significant performance penalty, Ext3 lets the system
administrator decide what has to be logged; in particular, it offers three different
journaling modes:

Journal
All filesystem data and metadata changes are logged into the journal. This mode
minimizes the chance of losing the updates made to each file, but it requires
many additional disk accesses. For example, when a new file is created, all its
data blocks must be duplicated as log records. This is the safest and slowest Ext3
journaling mode.

Ordered
Only changes to filesystem metadata are logged into the journal. However, the
Ext3 filesystem groups metadata and relative data blocks so that data blocks are
written to disk before the metadata. This way, the chance to have data corrup-
tion inside the files is reduced; for instance, any write access that enlarges a file is
guaranteed to be fully protected by the journal. This is the default Ext3 journal-
ing mode.

Writeback
Only changes to filesystem metadata are logged,; this is the method found on the
other journaling filesystems and is the fastest mode.

The journaling mode of the Ext3 filesystem is specified by an option of the mount
system command. For instance, to mount an Ext3 filesystem stored in the /dev/sda2
partition on the /jdisk mount point with the “writeback” mode, the system adminis-
trator can type the command:

mount -t ext3 -o data=writeback /dev/sda2 /jdisk

The Journaling Block Device Layer

The Ext3 journal is usually stored in a hidden file named .journal located in the root
directory of the filesystem.

The Ext3 filesystem does not handle the journal on its own; rather, it uses a general
kernel layer named Journaling Block Device, or JBD. Right now, only Ext3 uses the
JBD layer, but other filesystems might use it in the future.

602 | Chapter17: The Ext2 and Ext3 Filesystems

The JBD layer is a rather complex piece of software. The Ext3 filesystem invokes the
JBD routines to ensure that its subsequent operations don’t corrupt the disk data
structures in case of system failure. However, JBD typically uses the same disk to log
the changes performed by the Ext3 filesystem, and it is therefore vulnerable to sys-
tem failures as much as Ext3. In other words, JBD must also protect itself from any
system failure that could corrupt the journal.

Therefore, the interaction between Ext3 and JBD is essentially based on three funda-
mental units:

Log record
Describes a single update of a disk block of the journaling filesystem.

Atomic operation handle
Includes log records relative to a single high-level change of the filesystem; typi-
cally, each system call modifying the filesystem gives rise to a single atomic oper-
ation handle.

Transaction
Includes several atomic operation handles whose log records are marked valid
for e2fsck at the same time.

Log records

A log record is essentially the description of a low-level operation that is going to be
issued by the filesystem. In some journaling filesystems, the log record consists of
exactly the span of bytes modified by the operation, together with the starting posi-
tion of the bytes inside the filesystem. The JBD layer, however, uses log records con-
sisting of the whole buffer modified by the low-level operation. This approach may
waste a lot of journal space (for instance, when the low-level operation just changes
the value of a bit in a bitmap), but it is also much faster because the JBD layer can
work directly with buffers and their buffer heads.

Log records are thus represented inside the journal as normal blocks of data (or
metadata). Each such block, however, is associated with a small tag of type journal
block_tag t, which stores the logical block number of the block inside the filesystem
and a few status flags.

Later, whenever a buffer is being considered by the JBD, either because it belongs to
a log record or because it is a data block that should be flushed to disk before the
corresponding metadata block (in the “ordered” journaling mode), the kernel
attaches a journal head data structure to the buffer head. In this case, the b_private
field of the buffer head stores the address of the journal head data structure and the
BH_JBD flag is set (see the section “Buffer Heads” in Chapter 13).

Atomic operation handles

Any system call modifying the filesystem is usually split into a series of low-level
operations that manipulate disk data structures.

The Ext3 Filesystem | 603

For instance, suppose that Ext3 must satisfy a user request to append a block of data
to a regular file. The filesystem layer must determine the last block of the file, locate
a free block in the filesystem, update the data block bitmap inside the proper block
group, store the logical number of the new block either in the file’s inode or in an
indirect addressing block, write the contents of the new block, and finally, update
several fields of the inode. As you see, the append operation translates into many
lower-level operations on the data and metadata blocks of the filesystem.

Now, just imagine what could happen if a system failure occurred in the middle of
an append operation, when some of the lower-level manipulations have already been
executed while others have not. Of course, the scenario could be even worse, with
high-level operations affecting two or more files (for example, moving a file from one
directory to another).

To prevent data corruption, the Ext3 filesystem must ensure that each system call is
handled in an atomic way. An atomic operation handle is a set of low-level opera-
tions on the disk data structures that correspond to a single high-level operation.
When recovering from a system failure, the filesystem ensures that either the whole
high-level operation is applied or none of its low-level operations is.

Any atomic operation handle is represented by a descriptor of type handle t. To start
an atomic operation, the Ext3 filesystem invokes the journal start() JBD function,
which allocates, if necessary, a new atomic operation handle and inserts it into the
current transactions (see the next section). Since any low-level operation on the disk
might suspend the process, the address of the active handle is stored in the journal
info field of the process descriptor. To notify that an atomic operation is completed,
the Ext3 filesystem invokes the journal stop() function.

Transactions

For reasons of efficiency, the JBD layer manages the journal by grouping the log
records that belong to several atomic operation handles into a single transaction. Fur-
thermore, all log records relative to a handle must be included in the same transac-
tion.

All log records of a transaction are stored in consecutive blocks of the journal. The
JBD layer handles each transaction as a whole. For instance, it reclaims the blocks
used by a transaction only after all data included in its log records is committed to
the filesystem.

As soon as it is created, a transaction may accept log records of new handles. The
transaction stops accepting new handles when either of the following occurs:

* A fixed amount of time has elapsed, typically 5 seconds.

* There are no free blocks in the journal left for a new handle

A transaction is represented by a descriptor of type transaction_t. The most impor-
tant field is t_state, which describes the current status of the transaction.

604 | Chapter17: The Ext2 and Ext3 Filesystems

Essentially, a transaction can be:

Complete
All log records included in the transaction have been physically written onto the
journal. When recovering from a system failure, e2fsck considers every complete
transaction of the journal and writes the corresponding blocks into the filesys-
tem. In this case, the i_state field stores the value T_FINISHED.

Incomplete
At least one log record included in the transaction has not yet been physically
written to the journal, or new log records are still being added to the transac-
tion. In case of system failure, the image of the transaction stored in the journal
is likely not up to date. Therefore, when recovering from a system failure, e2fsck
does not trust the incomplete transactions in the journal and skips them. In this
case, the i_state field stores one of the following values:

T_RUNNING
Still accepting new atomic operation handles.

T _LOCKED
Not accepting new atomic operation handles, but some of them are still
unfinished.

T _FLUSH
All atomic operation handles have finished, but some log records are still
being written to the journal.

T_COMMIT
All log records of the atomic operation handles have been written to disk,
and the transaction is marked as completed on the journal.

At any given instance, the journal may include several transactions. Just one of them
is in the T_RUNNING state—it is the active transaction that is accepting the new atomic
operation handle requests issued by the Ext3 filesystem.

Several transactions in the journal might be incomplete because the buffers contain-
ing the relative log records have not yet been written to the journal.

A complete transaction is deleted from the journal only when the JBD layer verifies
that all buffers described by the log records have been successfully written onto the
Ext3 filesystem. Therefore, the journal can include at most one incomplete transac-
tion and several complete transactions. The log records of a complete transaction
have been written to the journal but some of the corresponding buffers have yet to be
written onto the filesystem.

How Journaling Works

Let’s try to explain how journaling works with an example: the Ext3 filesystem layer
receives a request to write some data blocks of a regular file.

The Ext3 Filesystem | 605

As you might easily guess, we are not going to describe in detail every single opera-
tion of the Ext3 filesystem layer and of the JBD layer. There would be far too many
issues to be covered! However, we describe the essential actions:

1.

The service routine of the write() system call triggers the write method of the
file object associated with the Ext3 regular file. For Ext3, this method is imple-
mented by the generic_file write() function, already described in the section
“Writing to a File” in Chapter 15.

. The generic_file write() function invokes the prepare write method of the

address_space object several times, once for every page of data involved by the
write operation. For Ext3, this method is implemented by the ext3 prepare
write() function.

. The ext3_prepare write() function starts a new atomic operation by invoking

the journal start() JBD function. The handle is added to the active transac-
tion. Actually, the atomic operation handle is created only when executing the
first invocation of the journal start() function. Following invocations verify
that the journal info field of the process descriptor is already set and use the ref-
erenced handle.

. The ext3_prepare write() function invokes the block prepare write() function

already described in Chapter 15, passing to it the address of the ext3_get block()
function. Remember that block_prepare write() takes care of preparing the buff-
ers and the buffer heads of the file’s page.

. When the kernel must determine the logical number of a block of the Ext3 file-

system, it executes the ext3_get block() function. This function is actually simi-
lar to ext2_get block(), which is described in the earlier section “Allocating a
Data Block.” A crucial difference, however, is that the Ext3 filesystem invokes
functions of the JBD layer to ensure that the low-level operations are logged:

* Before issuing a low-level write operation on a metadata block of the filesys-
tem, the function invokes journal get write access(). Basically, this latter
function adds the metadata buffer to a list of the active transaction. How-
ever, it must also check whether the metadata is included in an older incom-
plete transaction of the journal; in this case, it duplicates the buffer to make
sure that the older transactions are committed with the old content.

* After updating the buffer containing the metadata block, the Ext3 filesystem
invokes journal dirty metadata() to move the metadata buffer to the
proper dirty list of the active transaction and to log the operation in the
journal.

Notice that metadata buffers handled by the JBD layer are not usually included
in the dirty lists of buffers of the inode, so they are not written to disk by the
normal disk cache flushing mechanisms described in Chapter 14.

. If the Ext3 filesystem has been mounted in “journal” mode, the ext3 prepare

write() function also invokes journal get write access() on every buffer
touched by the write operation.

606

| Chapter17: The Ext2 and Ext3 Filesystems

10.

11.

12.

13.

14.

15.

. Control returns to the generic_file write() function, which updates the page

with the data stored in the User Mode address space and then invokes the
commit_write method of the address space object. For Ext3, this method is
implemented by the ext3_commit write() function.

. If the Ext3 filesystem has been mounted in “journal” mode, the ext3_commit_

write() function invokes journal dirty metadata() on every buffer of data (not
metadata) in the page. This way, the buffer is included in the proper dirty list of
the active transaction and not in the dirty list of the owner inode; moreover, the
corresponding log records are written to the journal.

. If the Ext3 filesystem has been mounted in “ordered” mode, the ext3_commit_

write() function invokes the journal dirty data() function on every buffer of
data in the page to insert the buffer in a proper list of the active transactions. The
JBD layer ensures that all buffers in this list are written to disk before the meta-
data buffers of the transaction. No log record is written onto the journal.

If the Ext3 filesystem has been mounted in “ordered” or “writeback” mode, the
ext3_commit write() function executes the normal generic_commit write()
function described in Chapter 15, which inserts the data buffers in the list of the
dirty buffers of the owner inode.

Finally, ext3 commit write() invokes journal stop() to notify the JBD layer that
the atomic operation handle is closed.

The service routine of the write() system call terminates here. However, the JBD
layer has not finished its work. Eventually, our transaction becomes complete
when all its log records have been physically written to the journal. Then
journal commit_transaction() is executed.

If the Ext3 filesystem has been mounted in “ordered” mode, the journal commit_
transaction() function activates the I/O data transfers for all data buffers
included in the list of the transaction and waits until all data transfers terminate.

The journal commit transaction() function activates the I/O data transfers for
all metadata buffers included in the transaction (and also for all data buffers, if
Ext3 was mounted in “journal” mode).

Periodically, the kernel activates a checkpoint activity for every complete transac-
tion in the journal. The checkpoint basically involves verifying whether the I/O
data transfers triggered by journal commit_transaction() have successfully termi-
nated. If so, the transaction can be deleted from the journal.

Of course, the log records in the journal never play an active role until a system fail-
ure occurs. Only in this case, in fact, does the e2fsck utility program scan the journal
stored in the filesystem and reschedule all write operations described by the log
records of the complete transactions.

The Ext3 Filesystem | 607

	General Characteristics of Ext2
	Ext2 Disk Data Structures
	Superblock
	Group Descriptor and Bitmap
	Inode Table
	How Various File Types Use Disk Blocks

	Ext2 Memory Data Structures
	The ext2_sb_info and ext2_inode_info Structures
	Bitmap Caches

	Creating the Ext2 Filesystem
	Ext2 Methods
	Ext2 Superblock Operations
	Ext2 Inode Operations
	Ext2 File Operations

	Managing Ext2 Disk Space
	Creating Inodes
	Deleting Inodes
	Data Blocks Addressing
	File Holes
	Allocating a Data Block
	Releasing a Data Block

	The Ext3 Filesystem
	Journaling Filesystems
	The Ext3 Journaling Filesystem
	The Journaling Block Device Layer
	How Journaling Works

