
Design of the Munin Distributed Shared Memory System

John B� Carter

Department of Computer Science
University of Utah

Salt Lake City� UT �����

This research was supported in part by the National Science Foundation under Grants CDA���������

CCR��	�	�
�� CCR��������� by the IBM Corporation under Research Agreement No� 	��		��� by the

Texas Advanced Technology Program under Grants 		��	�	�� and 		��	�	�� and by a NASA Graduate

Fellowship�

Design of the Munin Distributed Shared Memory System

Proposed running head� Design of the Munin Distributed Shared Memory System

Contact author� John B� Carter

Department of Computer Science
University of Utah
Salt Lake City� UT �����

Abstract

Software distributed shared memory �DSM	 is a software abstraction of shared
memory on a distributed memory machine
 The key problem in building an
e�cient DSM system is to reduce the amount of communication needed to keep
the distributed memories consistent
 The Munin DSM system incorporates a
number of novel techniques for doing so� including the use of multiple consistency
protocols and support for multiple concurrent writer protocols
 Due to these�
and other� features� Munin is able to achieve high performance on a variety of
numerical applications This paper contains a detailed description of the design
and implementation of the Munin prototype� with special emphasis given to its
novel write shared protocol
 Furthermore� it describes a number of lessons that we
learned from our experience with the prototype implementation that are relevant
to the implementation of future DSMs

List of Symbols

Boldface� italics� and typewriter font are used often

Special symbols used� A number of mathematical symbols are used� including� slash ��	�
leftarrow ��	� left brace �f	� right brace �g	� and ellipsis �

	

� Introduction

A software distributed shared memory �DSM	 system provides the abstraction of a shared

address space spanning the processors of a distributed memorymultiprocessor
 This abstrac

tion simpli�es the programming of distributed memory multiprocessors and allows parallel

programs written for shared memory machines to be ported easily
 The basic idea behind

software DSM� which we will refer to as simply �DSM� throughout the rest of this paper� is

to treat the local memory of a processor as if it were a coherent cache in a shared memory

multiprocessor
 DSM systems combine the best features of shared memory and distributed

memory multiprocessors
 They support the relatively simple and portable programming

model of shared memory on physically distributed memory hardware� which is more scalable

and less expensive to build than shared memory hardware
 DSM would thus seem to be

an ideal vehicle for making parallel processing widely available
 However� although many

DSM systems have been proposed and implemented ���� ��� ��� �� ��� ��� ��� �� ��� �� �� ����

DSM is not widely used
 The reason for this is that it has proven di�cult to achieve accept

able performance using DSM without requiring programmers to carefully restructure their

sharedmemory parallel programs to re�ect the way that the DSM operates
 For example�

it is often necessary to decompose the shared data into small pagealigned pieces or to in

troduce new variables to reduce the amount of sharing
 This restructuring can be as tedious

and di�cult as using messagepassing directly or more so

The challenge in building a DSM system is to achieve good performance over a wide

range of programs without requiring programmers to restructure their shared memory par

allel programs
 The overhead of maintaining consistency in software and the high latency

of sending messages make this di�cult
 The primary source of DSM overhead is the large

amount of communication that is required to maintain consistency
 Since DSMs use general

purpose networks �e
g
� Ethernet	 and operating systems to communicate� the latency of

each message between nodes is high
 Given this high cost of interprocessor communication�

the performance challenge for DSM is to reduce the amount of communication performed

during the execution of a DSM program� ideally to the same level as the amount of commu

nication performed during the execution of an equivalent message passing program
 DSM

has not gained wide acceptance because previous DSM systems did not achieve this level of

communication

�

The Munin DSM system incorporates several techniques make DSM a more viable so

lution for distributed processing by substantially reducing the amount of communication

required to maintain consistency compared to previous DSM systems
 The innovative

communicationreducing features supported by Munin include the use of multiple consis�

tency protocols� which keep each shared variable consistent with a protocol well suited to its

expected or observed access pattern� and support for multiple concurrent writers� which ad

dresses the problem of false sharing by reducing the amount of unnecessary communication

performed keeping falsely shared data consistent

To determine the value of Munin�s novel features� we evaluated the performance of a

suite of seven scienti�c applications implemented using message passing� Munin DSM� and

a conventional Ivy����like DSM system
 Munin�s performance is within �� of message

passing for four out of the seven applications studied� and within ��� to ��� for the other

three
 Furthermore� for the �ve applications in which there was a moderate to high degree

of sharing� the programs run under Munin achieved from ��� to over ���� higher speedups

than their conventional DSM counterparts

Munin�s performance on a variety of application programs is evaluated elsewhere ��� �� ��

� this paper concentrates on the design of Munin� especially its major data structures and

the protocols used to maintain memory consistency
 Also included are a number of lessons

that we garnered from our experience with the prototype implementation that are relevant

to the implementation of future DSMs

The remainder of this paper is organized as follows
 Section � presents an overview of

Munin�s runtime system
 Section � describes Munin�s multiple consistency protocols and the

algorithms used to implement them
 We summarize Munin�s performance in Section �� and

draw conclusions in Section �

� Overview of the Munin Runtime System

The core of the Munin system is the runtime library that contains the fault handling� thread

support� synchronization� and other runtime mechanisms
 It consists of approximately ����

lines of C source code that create an ���kilobyte library �le that is linked into each Munin

program
 Each node of an executing Munin program consists of a collection of Munin run

time threads that handle consistency and synchronization operations� and one or more user

�

threads performing the parallel computation
 Munin programmers write parallel programs

using threads� as they would on a uniprocessor or shared memory multiprocessor

Figure � illustrates the organization of a Munin program during runtime
 The Munin

prototype was implemented on a collection of sixteen SUN ���� workstations running the

V operating system ����
 On each participating node� the Munin runtime is linked into the

same address space as the user program and thus can access user data directly
 The two

major data structures used by the Munin runtime are an object directory that maintains

the state of the shared data being used by local user threads and the delayed update queue

�DUQ	� which manages Munin�s software implementation of release consistency����
 Munin

installs itself as the default page fault handler for the Munin program so that the underlying

V kernel will forward all memory exceptions to it for handling

Each Munin node interacts with the V kernel to communicatewith the other Munin nodes

over the Ethernet and to manipulate the virtual memory system as part of maintaining the

consistency of shared memory
 Although the Munin prototype was implemented on the V

system� it could be made to run on any operating system that allowed user programs to�

manipulate its own virtual memory mappings� handle page faults at user level� create and

destroy processes on remote nodes� exchange messages with remote processes� and access

uniprocessor synchronization support �P�� and V��	
 All of these requirements are present

in current operating systems such as Mach� Chorus� and Unix

Object

Directory

Munin

Runtime

DUQ

User

Code

and

Data

SUN 3/60s

Network (10 Mbps Ethernet)

...
V Kernel

Figure � Munin Runtime Organization

�

Munin�s object directory is structured as a hash table that maps a virtual address to an

entry that describes the data located at that address
 In Munin� all variables on the same

page are treated as a single �object� with the same consistency protocol
 Programmers

can guide placement of variables on to pages� but by default variables are placed on pages

by themselves
 The memory overhead of this solution is negligible for the applications

studied as there were few distinct variables
 When a Munin runtime thread cannot �nd an

object directory entry in the local hash table� it requests a copy from the node where the

computation started� the socalled the �root node�� which contains all of the shared data at

the start of the program
 The �elds of an entry in the directory include� a lock that provides

exclusive access to the entry for a handler thread� a start address and size that act as keys

for looking up a shared data item�s directory entry� a protocol that speci�es how the fault

handler should service access faults on the data item� various state bits that characterize the

dynamic state of the data� such as whether it is present locally and whether it is writable� a

copyset that represents a �best guess� of the set of processors with copies of the data� and a

probable owner that represents a �best guess� of the owner of the data

The variable�s copyset is the set of all nodes that the local node believes have a copy of

the data
 Nodes are added to a variable�s copyset in several ways
 If a remote node has

a copy of the variable when the local node �rst accesses it� the reply message containing

the data includes the remote node in the original copyset
 Similarly� a node is added to

the copyset when the local node handles a request from that node or the local node has

been informed that the other node is caching the data as a side e�ect of some operation
 It

is possible for the copyset to include nodes no longer caching the data� because they have

�ushed their copy without informing the local node� and it is also possible that nodes that

are caching copies of the data are not in the copyset� because another node satis�ed their

load request
 If a copy of the data resides locally� the transitive closure of the copysets �the

local copyset plus the copyset of the nodes in the local copyset plus

	 is guaranteed to be

a superset of the set of nodes that have a copy of the data� because an entry in a copyset is

only removed when that node informs the other nodes that it is no longer caching the data

The probable owner is used to determine the identity of the Munin node that currently

owns the data ����
 The owner node is used by the conventional and migratory protocols

to arbitrate the decision of which node has write access to the data
 For the writeshared

protocol� the owner node represents the copy of last resort that cannot be unilaterally purged

�

from memory �e
g
� as part of the update timeout mechanism	� without �nding another node

willing to become the owner of last resort
 This approach is analogous to the copy of last

resort used in cacheonly multiprocessors ����

� Multiple Consistency Protocols

Previous DSM systems have employed a single protocol to maintain the consistency of all

shared data
 The speci�c protocol varied from system to system� e
g
� Ivy ���� supported a

pagebased emulation of a conventional hardware protocol while Emerald ���� used object

oriented language support to handle shared object invocations� but each system treated all

shared data identically
 This led to a situation where some programs could be handled ef

fectively by a given DSM system� while others could not� depending on the way in which

shared data was accessed by the program
 To understand how shared memory programs

characteristically access shared data� we studied the access behavior of a suite of shared

memory parallel programs
 The results of this study ��� and others ���� ��� �� ��� ��� sup

port the notion that using the �exibility of a software implementation to support multiple

consistency protocols can improve the performance of DSM
 They also suggest the types of

access patterns that should be supported
 The results of those studies most relevant to the

design of e�cient DSM are summarized as follows�

�
 A single mechanism cannot optimally support all data access patterns� and the most

important distinction between the observed data access patterns is between those best

handled via some form of invalidate protocol and those best handled via some form of

update protocol ���� ��� �� ��� �� ���

�
 The number of characteristic sharing patterns is small and most shared data can be

characterized as being accessed in one of these ways ���� ��

�
 Synchronization variables are accessed in an inherently di�erent way than data vari

ables� and are more sensitive to increased access latency ���� ��

�
 The characteristic access pattern of individual variables does not change frequently

during execution ��� ���� so a static protocol selection policy su�ces in most cases

The �rst three results strongly suggest that a DSM system that supports a small number

of consistency protocols will outperform conventional DSM systems that support a single

�

static protocol
 A small number of data access patterns characterize most accesses to shared

data
 Thus� it is feasible to support su�cient consistency protocols so that most individual

shared variables can be kept consistent with a protocol that is well suited to the way that

they are characteristically accessed� without the DSM system becoming overly complicated

Furthermore� the results indicate that at the very least three protocols should be supported�

one invalidationbased� one updatebased� and one for synchronization

Munin supports four consistency protocols �conventional� read�only� migratory� and write�

shared	 plus a suite of synchronization protocols for locks� barriers� and condition variables

In addition to the consistency protocols provided� we provide a capability for users to install

their own fault handlers and use Munin�s facilities to create consistency protocols of their

own
 When writing a Munin program� the programmer annotates the declaration of shared

variables with a sharing pattern to specify what protocol to use to keep it consistent� e
g
�

�shared fwrite�sharedg �C type� �variable name��
 If a variable is not annotated� the

conventional protocol is used
 Incorrect annotations may result in ine�cient performance or

in runtime errors that are detected by the Munin runtime system� but not in incorrect be

havior if there is su�cient synchronization to satisfy the requirements of release consistency

The consistency protocols all have roughly the same structure
 Consistency operations

generally are initiated when a user thread attempts to access data that is either not present

or that has been protected by the runtime system so that accesses to it generates exceptions

The fault handler examines the exception message to determine the location and nature

of the exception� which it uses to look up the data item in the object directory
 It then

performs the consistency operations appropriate to the data�s protocol
 After performing

the consistency operations required to satisfy the fault� the fault handler resumes the user

thread and waits to receive its next exception or remote request message
 The remainder of

this section describes the implementation of Munin�s consistency mechanisms
 More detailed

descriptions� including pseudocode of the algorithms� can be found elsewhere ���

��� Conventional

Conventional shared variables are replicated on demand and are kept consistent using an

invalidationbased protocol that requires a writer to be the sole owner before it can modify

the data
 When a thread attempts to write to replicated data� a message is transmitted

to invalidate all other copies of the data
 The thread that generated the miss blocks until

�

all invalidation messages are acknowledged
 We based Munin�s conventional protocol on

Ivy�s distributed dynamic manager protocol ����
 This protocol is typical of what existing

DSM systems provide ���� ��� ���� and is the conventional DSM protocol evaluated in our

performance study

We incorporated a simpli�ed version of the freezing mechanism from Mirage ���� so that

after a node acquires ownership of a conventional data item� it does not reply to requests

from other nodes for a period of time ���� msecs	
 This mechanism guarantees that the node

performing the write makes progress even in the face of heavy sharing
 The performance of

the conventional DSM was largely una�ected by the choice of the freeze time as long as it

is above �� msecs
 Without the timeout mechanism� we observed several phenomena that

severely hurt the performance of conventional data when there was a high degree of sharing

When two �or more	 threads concurrently modify a single page� a frequent occurrence� the

data ping pongs between the writers� with little progress made between faults
 The freezing

mechanism partially alleviates this problem by ensuring that progress is made no matter how

much sharing is occurring
 There were even problems when there was only a single writer�

but multiple readers� of a single data item
 When there were a large number of readers� it

was often the case that by the time the writer �nished invalidating all the replicas� one of

the �rst nodes to be invalidated would have requested a new copy of the data to satisfy a

read miss
 Munin runtime threads have a higher scheduling priority than user threads to

ensure that remote data requests do not starve� so the reload request was satis�ed before the

writer was resumed
 This choice of priorities resulted in the data being read protected on

the original node before the writer was able to complete the write that caused the original

write fault� which caused the writer to fault anew
 This result convinced us that a freezing

mechanism akin to that found in Mirage should be incorporated into future software DSMs

that support ownershipbased invalidate protocols

��� Read Only

Readonly data is writable only during initialization� which allows it to be initialized along

with the rest of the program
 The consistency protocol simply consists of replication on

demand
 A runtime error is generated and the system debugger is invoked if a thread

attempts to write to readonly data
 As noted earlier� if the programmer does not specify

that a particular variable is shared� it is replicated when the worker nodes are created

�

Thus� readonly objects could simply be not marked as shared
 There are two reasons that

programmers might wish to distinguish readonly shared data from nonshared data� �i	 for

debugging purposes� to detect unexpected writes to input data� and �ii	 to conserve memory

by loading on demand only the portion of the readonly data that a given node requires

��� Migratory

For migratory data� a single thread performs multiple accesses to the data� including one or

more writes� before another thread accesses the data ���� ��
 This access pattern is typical

of shared data that is accessed only inside a critical section or via a work queue
 For this

type of data� it is generally best to migrate the data to a processor as soon as it accesses

it the �rst time� regardless of whether the �rst access is a read or a write
 The consistency

protocol for migratory data propagates the data to the next thread that accesses the data�

provides the thread with read and write access �even if the �rst access is a read	� and in

validates the original copy
 This protocol avoids a write miss� and a message to invalidate

the old copy when the new thread �rst modi�es the data
 In addition� the Munin program

mer can specify the logical connections between shared variables and the synchronization

variables that protect them
 This information is conveyed to the runtime system using the

AssociateDataAndSynch�� call� which suggests that Munin include a copy of the speci�ed

shared variable in the message that passes ownership of the speci�ed synchronization vari

able
 This pragma is particularly useful for associating migratory data accessed within a

critical section with the lock controlling the critical section
 It reduces the number of faults

and messages needed to migrate the data� as in Clouds ����

��� Write Shared

Write�shared variables are frequently written by multiple threads concurrently� without in

tervening synchronization to order the accesses� because the programmer knows that each

thread reads from and writes to independent portions of the data
 Because of the way that

the data is laid out in memory� writeshared data often exhibits a high degree of sharing at

a coarse granularity �e
g
� a cache line or page	� but no sharing at a word granularity � a

phenomenon known as false sharing
 One example of false sharing is when two independent

shared variables reside on the same page of memory� each being modi�ed by a di�erent pro

�

cessor
 Another example is when a shared array is laid out contiguously in a single page

of memory and di�erent processors are modifying disjoint parts of the array
 An intelligent

compiler or careful user can alleviate the false sharing in the �rst case by allocating unre

lated variables on distinct pages� at the expense of using extra memory
 However� the false

sharing in the second case is unavoidable because the falsely shared data is part of a single

contiguous array
 We have observed that writeshared data is very common� and that its

presence results in very poor DSM performance if it is handled by a conventional consistency

protocol that communicates whenever a shared page is modi�ed
 False sharing is a particu

larly serious problem for DSM systems for two reasons� �i	 the consistency units are large� so

false sharing is very common� and �ii	 the latencies associated with detecting modi�cations

and communicating are large� so unnecessary faults and messages are particularly expensive

Any DSM system that expects to achieve acceptable performance must address the problem

of false sharing

The writeshared protocol is designed speci�cally to mitigate the e�ect of false sharing
 It

does so by supporting concurrent writers� by bu�ering writes until synchronization requires

their propagation� by using an updatebased consistency protocol� and by timing out and

invalidating data that is not being used frequently
 Unlike existing update protocols� the

writeshared protocol bu�ers and combines update messages� as shown in Figure �
 The

reason that Munin can bu�er updates� rather than send them as soon as they are generated�

is that it supports the release consistency memory model����
 A detailed description of the

release consistency model is beyond the scope of this paper� but� roughly� a shared memory

implementation based upon release consistency can delay the point at which memory must

be consistent until a processor performs a �release� operation �e
g
� releases a lock or arrives

at a barrier	
 In the case of Munin� this means that updates to shared data can be bu�ered

and combined between release points
 A single processor often performs a series of writes

to a shared block within a critical section ���
 When this occurs� the writeshared protocol

transmits a single update message containing all of the changes performed within the critical

section to each node caching a copy of the data� rather than sending a stream of updates

as each write occurs
 This can lead to order of magnitude reductions in the number of

messages required to maintain consistency compared to a conventional pipelined invalidate

protocol
 For DSM� where messages are expensive but where large messages are not much

more expensive than small messages� combining updates is important

�

P1
w(x) w(y) w(z)

P2

release stalled

yx z

Single update message ack for (x,y,z)

Figure � Bu�ering updates in Munin

The mechanism used to bu�er and combine update messages� the delayed update queue

�DUQ	� is illustrated in Figure �
 The initial copyset of a writeshared data item is empty

on all nodes� including on the root node
 Before a writeshared variable �X	 is modi�ed� the

page on which it resides is mapped so that the �rst write will cause a page fault� symbolized

via the dashed box

Read faults are handled as follows
 If the data is present but has been read protected�

such as the �rst time it is accessed after the node has received an update and the timeout

mechanism has read protected it �see below	� it simply remaps the page to be readable and

marks the data as accessed as part of the update timeout mechanism
 When a writeshared

variable is �rst loaded on a node� it is made readonly so any attempts to modify it are

detected
 The one exception to this is if it is the only copy of the data in the system� in

which case it can be mapped readwrite until another node requests a copy� at which time

the original copy is made readonly

Write faults are handled similarly except when the data is being actively shared
 In this

case� the writeshared protocol invokes the DUQ mechanism� as illustrated in Figure �a

After determining that the accessed variable �call it X	 is writeshared� the write fault

handler makes a copy of X �Xtwin	� and puts the data item�s directory entry on the DUQ
 It

then maps the original copy of X to be readwrite and resumes the faulted thread
 Since the

original copy of X is no longer write protected� all subsequent writes to X proceed with no

consistency overhead
 The key feature of the write fault handler is that it only communicates

with other nodes if the data is not present
 If the data is already present� but mapped read

only or supervisoronly� the handler only performs local operations
 The handler does not

need to get exclusive write access nor does it need to immediately propagate the modi�cation

to the other cached copies
 This feature allows multiple nodes to concurrently modify a single

��

data item without communicating for each write

The server routine that handles remote requests for writeshared data is straightforward

It is irrelevant whether or not the requesting node faulted on a read or a write
 Any node

can respond to a request and not just the owner
 If the node that satis�es a data request

has a writable copy but not a twin of the data� the dirty copy of the data is sent to the

requester and then remapped to be readonly so subsequent changes to the data are detected

and eventually purged

The trickiest part of the write shared protocol occurs when a local thread performs

a release operation �releases a lock� arrives at a barrier� signals a condition variable� or

terminates	
 At this time� all delayed modi�cations to writeshared data must be propagated

to their remote copies before the local thread may proceed
 These changes are propagated

in phases� where each phase is responsible for propagating changes to a particular set of

nodes
 First� the DSM runtime determines if any updates have been bu�ered on the DUQ

If there are� the server walks down the DUQ and creates a di�erential encoding of every

enqueued data item
 In the example illustrated in Figure �� it determines that X has been

modi�ed
 It encodes the modi�cations by performing a wordbyword comparison of the

data item �X	 and its original contents �Xtwin	�
 As it �nds di�erences� it copies them to

(a) (b)

X

"Diff"

Compare &
Encode

X
twin

X

Write protect
(if replicated)

Update

Replicas

XX

X
twin

Write(X)

Make original
writable

Copy on write

Delayed Update
Queue

Figure � Delayed Update Queue Operation

�By detecting changes at the word level and not the byte level� we risk the possibility that two threads will

modify di�erent bytes of the same word� and the update mechanism will either signal a data race or overwrite

one of the modi�cations� The applications that we examined had no byte�grained shared data� but if the

��

a bu�er� prepending each sequence of updated words with their starting address and the

run length
 Because the �twin� is not needed after the modi�cations have been propagated�

Munin uses the bu�er that contained the twin to contain the encoding
 By using eight bytes

of scratch space in the message header and the portions of the twin array that have already

been scanned� the encoding algorithm has the property that the �di�� is never larger than

the twin� and it never overwrites parts of the twin that have not yet been examined as part

of the encoding process
 Thus� reuse of the twin bu�er is safe

After encoding all of the data items enqueued on the DUQ� the server transmits a de

scriptor message containing a list of the encoded data items to the remote nodes sharing any

of the encoded data
 Each of these recipients determines if it needs to receive updates to any

of the data described in the descriptors� requests the encoded data that it is still caching�

and replies with an indication of �i	 whether it is still caching each data item and �ii	 its

copyset for each data item
 The updating node continues to transmit update messages to

any node thought to be caching a copy of any of the encoded data until it has sent updates

to all such nodes
 This process is guaranteed to terminate whenever either no new nodes

are added to the copyset during a phase or all nodes have been updated
 When a NACK is

received� the node that sent the NACK is removed from the local copyset for the data items

speci�ed
 After all the updates for a data item have been performed� X is writeprotected

if it is still replicated to ensure that subsequent writes are detected

To incorporate updates� the receiving Munin worker thread examines the update message

and determines if it is still caching any of the data speci�ed
 It is possible that the node

has invalidated data that it once cached as a result of the update timeout mechanism �see

below	
 If it still has a copy of any of the data described in the update message� it requests

the corresponding encodings and sends a reply message to the updating node
 The reply

message includes an indication of which of the encoded data items the node is still caching

and its copyset for each encoded item� whether it is still being cached or not
 The receiving

node then decodes the updates to extract the individual words that the sending node has

modi�ed
 If the node is not caching any of the data described in the update message� it

sends a reply message with NACKs and copysets for all of the data

Incorporating an update normally entails simply traversing the encoding and copying the

user anticipates a problem� a runtime switch can change the granularity of comparison to the byte level� at

the expense of increased encoding and decoding time�

��

modi�ed sequences into the local copy of the data
 However� the user can specify that the

runtime system detect dynamic data races� which is useful for debugging complex parallel

programs with synchronization bugs
 If a node receives an update for a variable that it has

modi�ed� a clean copy of the variable will be present
 The system can detect data races by

performing a threeway comparison of the received update� the dirty version� and the clean

version as it decodes the encoded updates
 If� while performing the threeway comparison�

it �nds that all three copies of a particular word di�er� it has detected a data race on that

word and it generates an error message detailing what it has found

This process is complicated somewhat by an update timeout mechanism
 The goal of

the timeout mechanism is to invalidate data that has grown stale so as to avoid unnecessary

future updates
 The timeout mechanism ensures that updates to an object are only accepted

for a limited period of time after it was last accessed
 When an update is incorporated� the

data is temporarily mapped to be supervisoronly so that any access to it �read or write	

by a local user thread will be detected
 A timestamp is set in the data item�s directory

entry at this time
 If the data is accessed before another update arrives� the subsequent

fault simply remaps the data and resets a �ag
 However� if an update to the data is received

and the node has not used the data since the last update� su�cient time has elapsed since

the last update� and the data is not dirty� the update server invalidates the local copy
 A

copy of last resort for each writeshared variable is used to prevent all copies of the variable

from being invalidated via the update timeout mechanism when several nodes send updates

simultaneously
 This copy cannot be invalidated unless the node is �rst able to �nd another

node to take over this responsibility
 The prob owner chain is used to �nd this copy of last

resort the �owner� in the writeshared protocol is this copy

A technique similar to the delayed update queue was used by the Myrias SPS multipro

cessor ����
 It performed the copy�on�write and di� in hardware� but required a restricted

form of parallelism to ensure correctness
 Speci�cally� only one processor could modify a

cache line at a time� and the only form of parallelism that could exploit this mechanism was

a form of Fortran doall statement

We considered implementing write detection by having the compiler add code to log

writes to replicated data as part of the write� as is done in Emerald ���� and Midway ���

However� although recent results indicate that compilerbased write detection can outperform

VMbased detection ����� we chose not to explore this approach in the prototype because we

��

did not want to modify the compiler and we are concerned with the portability constraints

imposed by the requirement that DSM programmers use a special compiler
 It is an attractive

alternative for systems that do not support fast page fault handling� such as the iPSCi���

hypercube
 However� if the number of writes to a particular data item between DUQ �ushes

is high� as is often the case ���� this approach will perform relatively poorly because each

write to a shared variable is slower

� Performance Summary

We present a summary of Munin�s performance here to illustrate the value of Munin�s design

More detailed evaluations appear elsewhere ��� �� ��

Seven application programs were used in the evaluation of Munin� Matrix Multiply

�MULT	� Finite Di�erencing �DIFF	� Traveling Salesman Problem �both �negrained� TSP

F� and coarsegrained� TSPC	� Quicksort �QSORT	� Fast Fourier Transform �FFT	� and

Gaussian Elimination with Partial Pivoting �GAUSS	
 Three di�erent versions of each ap

plication were written� a Munin DSM version� a conventional DSM version that used Munin�s

conventional protocol to implement a sequentially consistent memory �and thus measured

the performance of a conventional DSM system such as Ivy	� and a message passing version

The message passing programs represent best case implementations of the parallel programs

The DSM runtime system used the same general purpose message passing facilities provided

by the operating system that the message passing programs used directly
 Great care was

taken to ensure that the inner loops of each computation� the problem decomposition� and

the major data structures for each version were identical

To evaluate the impact of Munin�s design� two basic comparisons were performed
 In

the �rst comparison� the performance of the Munin versions of the programs was compared

to the performance of equivalent message passing programs
 This comparison measures the

extent to which programs written using the shared memory model and run under Munin

can achieve performance comparable to programs written using explicit message passing

Table � presents the speedup achieved by each version of the program and the percentage

of the message passing speedup achieved by the Munin DSM version of the program for

sixteen processors
 For four of the applications �MULT� DIFF� TSPC� and FFT	� the Munin

versions achieve over ��� of the speedup of their handcoded messagepassing equivalents�

��

despite the fact that no signi�cant restructuring of the original sharedmemory programs was

performed while porting them to run under Munin
 For the other three applications �TSPF�

QSORT and GAUSS	� the performance of the Munin variants is between ��� and ��� of

their messagepassing equivalents
 Support for explicit RPC improves the performance of

these applications to within ��� of their message passing equivalents ��� ��

Message Munin How

Passing Speedup Close�

Speedup

MULT ��
� ��
� ����

DIFF ��
� ��
� ���

TSPC ��
� ��
� ���

TSPF �
� �
� ���

QSORT ��
� �
� ���

FFT �
� �
� ���

GAUSS ��
� �
� ���

Table � Munin vs Message Passing

Munin Conven How

Speedup tional Close�

Speedup

MULT ��
� ��
� ���

DIFF ��
� �
� ���

TSPC ��
� ��
� ���

TSPF �
� �
� ���

QSORT �
� �
� ���

FFT �
� �
�� � ����

GAUSS �
� �
� ���

Table � Conventional DSM vs Munin DSM

In the second comparison� the performance of the Munin versions of the programs was

compared to the performance of the conventional DSM versions
 This comparison iden

ti�es the types of programs that stand to bene�t the most from Munin�s novel features

and the types of programs that are adequately supported with a conventional pagebased

invalidationstyle DSM
 Table � presents the speedup achieved by each version of the pro

gram and the percentage of the Munin DSM speedup achieved by the conventional DSM

version of the program for sixteen processors
 For the programs with large grained shar

ing �MULT and TSPC	� the conventional versions achieved performance within ��� of the

speedup of their Munin counterparts
 For DIFF� TSPF� and GAUSS� the performance of

the conventional versions was reduced to ����� of Munin
 For QSORT� conventional per

formance was under ��� of Munin performance� while for FFT conventional performance

was orders of magnitude worse

These results are very promising and argue that Munin represents a signi�cant step

��

towards making DSM useful on a much wider spectrum of programs and programming styles

Speci�cally� conventional DSM performs well on programs with relatively little sharing or

when the sharing is at a large granularity
 However� its performance drops o� quickly when

there is much �negrained sharing and becomes unacceptable when there is much concurrent

write sharing or false sharing

� Conclusions

This paper contains a detailed description of the design and implementation of the Munin

prototype with special emphasis given to its write shared protocol
 Munin contains a number

of mechanisms and implementation strategies designed to improve the performance of DSM�

including support for concurrent writers� the use of distributed ownership protocols� and the

provision of a specialized library of synchronization operations
 Many of these features are

also relevant to the design of future scalable shared memory hardware

We learned a number of lessons from our experience with the prototype implementation

that designers of future DSM systems should consider� including�

�
 DSM can be made e�cient without the use of unconventional programming languages�

compilers� or operating system support

�
 Organizing the DSM runtime as a library package works well
 In particular� this

organization improves performance by reducing the number of context switches and

the amount of crossdomain memory copying required to maintain consistency

�
 The implementation of delayed updates is subtle
 The key to handling writeshared

data e�ciently is to minimize the amount of time spent purging the DUQ� so it is

important to perform updates in parallel using multiple threads or multicast

�
 While it is easy to add consistency protocols if the server software is well designed�

a small number of protocols is enough to handle the way that most shared data is

accessed

Munin�s performance could be improved signi�cantly by a number of factors� �a	 lower

latency OS operations �message passing� exception handling� and VM remapping	� �b	 a

high bandwidth multicast network� and �c	 �negrained write detection hardware
 In the

��

prototype� OS overhead was a major source of overhead
 In addition� while we carefully

avoided the use of Ethernet�s multicast capability to better model how Munin would work on

a scalable network technology� the presence of multicast would greatly reduce the time needed

to perform updates in the infrequent� but very expensive� situations where a large number of

nodes are write sharing data� as in FFT
 Finally� �negrained write detection hardware����

could eliminate the largest component of software overhead� di� creation
 These issues are

subjects of ongoing research at the University of Utah

References

��� A� Agarwal and A� Gupta� Memory�reference characteristics of multiprocessor applications
under MACH� In Proceedings of the ��th Annual International Symposium on Computer

Architecture� pages ���	���� June �
���

��� M� Ahamad� P�W� Hutto� and R� John� Implementing and programming causal distributed
shared memory� In Proceedings of the ��th International Conference on Distributed Com�

puting Systems� pages ��	���� May �

��

��� H�E� Bal and A�S� Tanenbaum� Distributed programming with shared data� In Proceedings of

the ���� International Conference on Computer Languages� pages ��	
�� October �
���

�� J�K� Bennett� J�B� Carter� and W� Zwaenepoel� Adaptive software cache management for
distributed shared memory architectures� In Proceedings of the ��th Annual International

Symposium on Computer Architecture� pages ���	��� May �

��

��� B�N� Bershad� M�J� Zekauskas� and W�A� Sawdon� The Midway distributed shared memory
system� In COMPCON ��	� pages ���	���� February �

��

��� R� Bisiani and M� Ravishankar� PLUS� A distributed shared�memory system� In Proceedings

of the ��th Annual International Symposium on Computer Architecture� pages ���	���
May �

��

��� J�B� Carter� E
cient Distributed Shared Memory Based On Multi�Protocol Release Consis�

tency� PhD thesis� Rice University� August �

��

��� J�B� Carter� J�K� Bennett� and W� Zwaenepoel� Techniques for reducing consistency�related
communication in distributed shared memory systems� ACM Transactions on Computer

Systems� To appear�

�
� J�B� Carter� J�K� Bennett� and W� Zwaenepoel� Implementation and performance of Munin� In
Proceedings of the �	th ACM Symposium on Operating Systems Principles� pages ���	���
October �

��

���� J�S� Chase� F�G� Amador� E�D� Lazowska� H�M� Levy� and R�J� Little�eld� The Amber system�
Parallel programming on a network of multiprocessors� In Proceedings of the ��th ACM

Symposium on Operating Systems Principles� pages ��	���� December �
�
�

���� D�R� Cheriton and W� Zwaenepoel� The distributed V kernel and its performance for diskless
workstations� In Proceedings of the �th ACM Symposium on Operating Systems Principles�
pages ��
	��� October �
���

��

���� S�J� Eggers and R�H� Katz� A characterization of sharing in parallel programs and its appli�
cation to coherency protocol evaluation� In Proceedings of the ��th Annual International

Symposium on Computer Architecture� pages ���	���� May �
���

���� B� Fleisch and G� Popek� Mirage� A coherent distributed shared memory design� In Proceedings
of the ��th Symposium on Operating Systems Principles� pages ���	���� December �
�
�

��� K� Gharachorloo� D� Lenoski� J� Laudon� P� Gibbons� A� Gupta� and J� Hennessy� Memory con�
sistency and event ordering in scalable shared�memory multiprocessors� In Proceedings of

the ��th Annual International Symposium on Computer Architecture� pages ��	��� Seattle�
Washington� May �

��

���� E� Jul� H� Levy� N� Hutchinson� and A� Black� Fine�grained mobility in the Emerald system�
ACM Transactions on Computer Systems� �������
	���� February �
���

���� K� Li and P� Hudak� Memory coherence in shared virtual memory systems� ACM Transactions

on Computer Systems� �������	��
� November �
�
�

���� R�G� Minnich and D�J� Farber� The Mether system� A distributed shared memory for SunOS
��� In Proceedings of the Summer ���� USENIX Conference� pages ��	��� June �
�
�

���� Myrias Corporation� System overview� Edmonton� Alberta� �

��

��
� B� Nitzberg and V� Lo� Distributed shared memory� A survey of issues and algorithms� IEEE
Computer� �������	��� August �

��

���� U� Ramachandran� M� Ahamad� and Y�A� Khalidi� Unifying synchronization and data transfer
in maintaining coherence of distributed shared memory� Technical Report GIT�CS�������
Georgia Institute of Technology� June �
���

���� S�K� Reinhardt� J�R� Larus� and D�A� Wood� Tempest and Typhoon� User�level shared mem�
ory� In Proceedings of the ��st Annual International Symposium on Computer Architecture�
pages ���	���� April �

�

���� R�L� Sites and A�Agarwal� Multiprocessor cache analysis using ATUM� In Proceedings of the

��th Annual Intl Symposium on Computer Architecture� pages ���	�
�� June �
���

���� M� Stumm and S� Zhou� Algorithms implementing distributed shared memory� IEEE Com�

puter� ������	�� May �

��

��� J�E� Veenstra and R�J� Fowler� A performance evaluation of optimal hybrid cache coherency
protocols� In Proceedings of the �th Symposium on Architectural Support for Programming

Languages and Operating Systems� pages �
	���� September �

��

���� D�H�D� Warren and S� Haridi� The Data Di�usion machine � A shared virtual memory archi�
tecture for parallel execution of logic programs� In Proceedings of the ���� International

Conference on Fifth Generation Computer Systems� pages
�	
��� December �
���

���� W��D� Weber and A� Gupta� Analysis of cache invalidation patterns in multiprocessors� In
Proceedings of the 	rd Symposium on Architectural Support for Programming Languages

and Operating Systems� pages ��	���� April �
�
�

���� M�J� Zekauskas� W�A� Sawdon� and B�N� Bershad� Software write detection for distributed
shared memory� In Proceedings of the First Symposium on Operating System Design and

Implementation� pages ��	���� November �

�

��

