
Techniques for Reducing Consistency�Related

Communication in Distributed Shared Memory Systems

John B� Carter� John K� Bennett and Willy Zwaenepoel
Computer Systems Laboratory

Rice University
Houston� TX ��������	�

Abstract

Distributed shared memory
DSM� is a software abstraction of shared memory on a
distributed memory machine� One of the key problems in building an e
cient DSM
system is to reduce the amount of communication needed to keep the distributed mem�
ories consistent� In this paper we present four techniques for doing so�
�� software
release consistency�
�� multiple consistency protocols�
�� write�shared protocols� and

�� an update�with�timeout mechanism� These techniques have been implemented in
the Munin DSM system� We compare the performance of seven application programs
on Munin� �rst to their performance when implemented using message passing and
then to their performance when running on a conventional DSM system that does not
embody the above techniques� On a ���processor cluster of workstations� Munin�s per�
formance is within �� of message passing for four out of the seven applications� For
the other three� performance is within �	� to ���� Detailed analysis of two of these
three applications indicates that the addition of a function shipping capability would
bring their performance within �� of the message passing performance� Compared to
a conventional DSM system� Munin achieves performance improvements ranging from
a few to several hundred percent� depending on the application�

This research was supported in part by the National Science Foundation under Grants CDA��������� CCR��	�	�
��
CCR��������� by the IBM Corporation under Research Agreement No�
	��		��� by the Texas Advanced Technology
Program under Grants 		��	�	�� and 		��	�	�
� and by a NASA Graduate Fellowship�

� Introduction

��� Background

There are two fundamental models for parallel programming and for building parallel machines�
shared memory and distributed memory or message passing� The shared memory model is a direct
extension of the conventional uniprocessor model wherein each processor is provided with the
abstraction that there is but a single memory in the machine� A update to shared data therefore
becomes visible to all the processors in the system� In contrast� in the distributed memory model

there is no single shared memory� Instead� each processor has a private memory to which no other
processor has direct access� The only way for processors to communicate is through explicit message

passing�
Distributed memory machines are easier to build� especially for large con�gurations� because

unlike shared memory machines they do not require complex and expensive hardware cache con�
trollers ��� ��� ��� ��� ���� The shared memory programming model is� however� more attractive
since most application programmers �nd it di
cult to program machines using a message passing
paradigm that requires them to explicitly partition data and manage communication� Using a pro�
gramming model that supports a global address space� an applications programmer can focus on
algorithmic development rather than on managing partitioned data sets and communicating values�

A distributed shared memory
DSM� system provides a shared memory programming model
on a distributed memory machine
see Figure ��� The system consists of the same hardware as
that found in a distributed memory machine� with the addition of a software layer� represented
by the dashed line� that provides the abstraction of a single shared memory� In practice� each
memory remains physically independent� and all communication takes place through explicit mes�
sage passing performed by the DSM software layer� DSM systems combine the best features of
shared memory and distributed memory machines� They support the convenient shared memory
programming model on distributed memory hardware� which is more scalable and less expensive
to build� However� although many DSM systems have been proposed and implemented ��� ��� ���
�	� ��� ��� �� ��� ��� ��� �	� ���� achieving good performance on DSM systems for a sizable class of
applications has proven to be a major challenge�

To illustrate this challenge� Figure � shows how a conventional DSM system implements the

Proc 1 Proc 2 Proc3 ProcN

Mem2Mem1 Mem3 MemN

Network

Abstraction of shared memory

Msgs

Figure � High�Level View of a Distributed Shared Memory System

�

shared memory abstraction ����� The global shared address space is divided in pages� depicted by
a shaded box in the global address space in Figure �� The local memory of each processor is used
as a cache on the global shared address space� The boxes at the bottom of Figure � represent the
pages that are present in each processor�s local memory� When Proc� attempts to access a page
of global virtual memory for which it does not have a copy� a page fault occurs� This page fault
is handled by the DSM software� which retrieves a copy of the missing page from another node�
in this case Proc�� and restarts Proc�� If the access is a read� then the page becomes replicated
in read�only mode� If the access is a write� then all other copies of the pages are invalidated�
Throughout the rest of this paper� the term conventional DSM ���� refers to a DSM system that
employs a page�based write�invalidate consistency protocol� such as the one just described�

The primary source of overhead in a conventional DSM system is the large amount of communi�
cation that is required to maintain consistency� or� put another way� to maintain the shared memory
abstraction� Ideally� the amount of communication for an application executing on a DSM system
should be comparable to the amount of communication for the same application executing directly
on the underlying message passing system� Conventional DSM systems have found it di
cult to
achieve this goal because of restrictive memory consistency models and in�exible consistency proto�
cols� The false sharing problem is an example of this phenomenon� False sharing occurs when two
threads on di�erent machines concurrently update di�erent shared data items that lie in the same
virtual memory page� In conventional DSM systems� this false sharing can cause a page to �ping�
pong� back and forth between di�erent machines� In contrast� in a message passing system� each
thread would independently update its own copy of the data� without unnecessary communication�
Some of these problems can be overcome by carefully restructuring the shared memory programs
to re�ect the way that the DSM system operates� For example� one could decompose the shared
data into small page�aligned pieces or one could introduce new variables to reduce the amount of
false sharing� However� this restructuring can be as tedious and di
cult as using message�passing
directly�

Local Physical Memories

Global Virtual MemoryPage Fault

DSM Software

Proc1 Proc2 Proc3 ProcN

Figure � Conventional Distributed Shared Memory Implementation

�

��� Summary of Results

In this paper� we present the following four techniques for reducing the amount of communication
needed for keeping the distributed memories consistent�
�� Software release consistency is a software implementation of release consistency ��	�� speci��
cally aimed at reducing the number of messages required to maintain consistency in a software
DSM system� Roughly speaking� release consistency requires memory to be consistent only
at speci�c synchronization points�

�� Multiple consistency protocols are used to keep memory consistent in accordance with the
observation that no single consistency protocol is the best for all applications� or even for all
data items in a single application ��� ����

�� Write�shared protocols address the problem of false sharing in DSM by allowing multiple
processes to write concurrently into a shared page� with the updates being merged at the
appropriate synchronization point� in accordance with the de�nition of release consistency�

�� An update�with�timeout mechanism� which is in essence an update protocol that causes re�
mote copies of shared data to be updated rather than invalidated� However� copies that are
not referenced during the last timeout interval are deleted� eliminating the need for further
updates and thus reducing the total amount of communication�

These techniques have been incorporated in the Munin DSM system� Munin has been imple�
mented on a network of SUN����� workstations running the V�System ����� The Munin program�
ming interface is the same as that of conventional shared memory parallel programming systems�
except that it requires
i� all synchronization to be visible to the runtime system� and
ii� all shared
variables to be declared as such� and
optionally� annotated with the consistency protocol to be
used� Other than that� Munin provides thread� synchronization� and data sharing facilities like
those found in many shared memory parallel programming systems� e�g�� Presto ����� Munin does
not currently support thread migration�

To evaluate the bene�ts of these optimizations� we measured the performance of seven shared
memory parallel programs� Matrix Multiplication
MULT�� Finite Di�erencing
DIFF�� both a
coarse�grained and a �ne�grained version of the Traveling Salesman Problem
TSP�C and TSP�
F�� Quicksort
QSORT�� Fast Fourier Transform
FFT�� and Gaussian Elimination with partial
pivoting
GAUSS�� Three versions of each program were written� a message passing version� a
Munin DSM version� and a conventional DSM version� The computational aspects of all three
versions of each application were identical� The conventional DSM versions use a page�based write�
invalidate protocol as described in Section ����

Munin�s performance is within �� of message passing for MULT� DIFF� TSP�C� and FFT� For
TSP�F� QSORT� and GAUSS� performance is within �	� to ���� Detailed analysis of TSP�F and
QSORT indicates that the addition of a function shipping capability would bring their performance
within �� of the message passing performance� Compared to a conventional DSM system� Munin
achieves performance improvements ranging from a few percent for MULT to several hundred
percent for FFT�

��� Outline of the Paper

The rest of this paper is organized as follows� Section � describes the techniques for reducing
consistency�related communication� Section � summarizes some aspects of the implementation
that are relevant to the performance evaluation� Section � describes the applications used in the
evaluation� as well as the experimental methodology� Section � contains an overview of the results�

�

followed by a program�by�program comparison of the performance of the Munin� message passing�
and conventional DSM versions in Section �� Section � attempts to isolate the bene�ts of the
di�erent techniques used to reduce consistency�related communication� Section � explores the
additional performance bene�ts that could be achieved by the use of function shipping� Related
work is discussed in Section 	� We conclude in Section ���

� Techniques for Reducing Communication

If DSM systems are to approach the performance of their message passing counterparts� then their
communications requirements cannot be substantially higher than those of message passing systems�
In this paper we explore four techniques for achieving this goal� These techniques are discussed in
detail in this section�

��� Software Release Consistency

����� Release Consistency

Conventional DSM systems� as described in Section �� employ the sequential consistencymodel ����
as the basis for their consistency protocols� Sequential consistency essentially requires that any
update to shared data become visible to all other processors before the updating processor is allowed
to issue another write to shared data ����� This requirement imposes severe restrictions on possible
performance optimizations� These restrictions have led to both theoretical ���� and empirical ���
�	� arguments that DSM systems based on sequential consistency require a substantial amount of
communication and are thus ine
cient� Therefore� we chose to explore a more relaxed notion of
consistency in DSM systems�

Among the various relaxed memory models that have been developed ���� �	� ��� ���� we opted
for the release consistency model developed as part of the DASH project ��	� ���� Release con�
sistency exploits the fact that programmers use synchronization to separate accesses to shared
variables by di�erent threads� The system then only needs to guarantee that memory is consistent
at
select� synchronization points� This ability to allow temporary� but harmless� inconsistencies is
what gives release consistency its power� Consider for instance a program where all access to shared
data is enclosed in critical sections� Release consistency guarantees that when a thread success�
fully acquires the critical section lock� it gains access to a version of shared data that includes all
modi�cations made before the lock was last released� Similarly� for a program where all processes
synchronize at a barrier� when a thread departs from the barrier� it is guaranteed to see all updates
made by all other threads before they reached the barrier� In general� if a program is free of data
races� or� in other words� if there is synchronization between all con�icting shared memory accesses�
then the program generates the same results on a release consistent memory system as it would on a
sequentially consistent memory system� Experience with release consistent memories indicates that
because of the need to handle arbitrary thread preemption� most shared memory parallel programs
are free of data races even when written assuming a sequentially consistent memory ���� ����

More formally� the following constraints on the memory subsystem ensure release consistency�

�� Before an ordinary read or write is allowed to perform with respect to any other processor�
all previous acquire accesses must be performed�

�� Before a release access is allowed to perform with respect to any other processor� all previous
read and write accesses must be performed�

�

�� Synchronization accesses must be sequentially consistent with one another�

Lock acquires and releases map in the natural way on to acquires and releases� A barrier arrival
is treated as a release� while a barrier departure is treated as an acquire� Release consistency
relaxes the constraints of sequential consistency in three ways�
i� ordinary reads and writes can
be bu�ered or pipelined between synchronization points�
ii� ordinary reads and writes following a
release do not have to be delayed for the release to complete
i�e�� a release only signals the state
of past accesses to shared data�� and
iii� an acquire access does not have to delay for previous
ordinary reads and writes to complete
i�e�� an acquire only controls the state of future accesses
to shared data�� The �rst point is the primary reason for release consistency�s e
ciency� Because
ordinary reads and writes can be bu�ered or pipelined� a release consistent memory can mask much
of the communication required to keep shared data consistent�

����� Bu�ered Update versus Pipelined Invalidate Release Consistency

The hardware implementation of release consistency in the DASH project pipelines invalidation
messages caused by writes to shared data� This implementation is primarily geared towards masking
the latency of writes� rather than reducing the number of messages sent� In a software DSM system�
where the overhead of sending messages is very high� it is more important to reduce the frequency of
communication than it is to mask latency by pipelining messages� For this reason� we developed an
implementation of release consistency that bu�ers writes instead of pipelining them� as illustrated
in Figures � and �� These �gures illustrate how writes to three shared variables
x� y� and z� within
a critical section are handled by an implementation of release consistency that uses pipelining and
an implementation that uses bu�ering� respectively� When a processor writes to several di�erent
replicated data items within a critical section� the pipelining scheme sends one message per write�
while the bu�ering implementation bu�ers writes to shared data until the subsequent release� at
which point it transmits the bu�ered writes� Ideally� the bu�ering implementation reduces the
number of messages transmitted from one per write to one per critical section when there is a
single replica of the shared data� The dashed line portion of the execution graph represents the
delay that a processor experiences when releasing a lock� Because the bu�ering implementation
delays all writes until the release point� it must transmit all bu�ered writes then� increasing the
latency of releases� Nevertheless� the reduction in the number of messages far outweighs the e�ect
of the higher release latencies�

Bu�ering and pipelining reduce the cost of writes� but have no e�ect on the cost of read misses�
In software DSM systems� the cost of these read misses is very high� both in terms of communication

P1
w(x) w(y) w(z)

P2

x y z

release stalled

ack ack ack

Figure � Pipelining Invalidations

�

P1
w(x) w(y) w(z)

P2

release stalled

yx z

Single update message ack for (x,y,z)

Figure � Bu�ering and Merging Updates

and in terms of the length of time that a thread stalls before resuming after a read miss� The impact
of read misses can be partially mitigated by using an update protocol� Update protocols based
on sequential consistency have fallen out of favor because of the large amount of communication
required to send update messages for every write� An update protocol based on release consistency
can� however� bu�er writes� which reduces substantially the amount of communication required�

��� Multiple Consistency Protocols

Most DSM systems employ a single protocol to maintain the consistency of all shared data� The
speci�c protocol varies from system to system� For instance� Ivy ���� supports a page�based write�
invalidate protocol
see Section �� while Emerald ���� uses object�oriented language support to
handle shared object invocations� Each of these systems� however� treats all shared data the same
way� The use of a single protocol for all shared data leads to a situation where some programs
can be handled e�ectively by a given DSM system� while others cannot� depending on the way
in which shared data is accessed by the program� To understand how shared memory programs
characteristically access shared data� we studied the access behavior of a suite of shared memory
parallel programs� The results of this study ��� and others ��� ��� ��� ��� ��� ��� support the notion
that using the �exibility of a software implementation to support multiple consistency protocols can
improve the performance of DSM� They also suggest the types of access patterns that should be
supported� conventional� read�only� migratory� write�shared� and synchronization��

Conventional shared variables are replicated on demand and are kept consistent using an
invalidation�based protocol that requires a writer to be the sole owner before it can modify the
data� When a thread attempts to write to replicated data� a message is transmitted to invalidate
all other copies of the data� The thread that generated the miss blocks until all invalidation mes�
sages are acknowledged� This single owner consistency protocol is typical of what existing DSM
systems provide ���� ��� ���� and is what we use exclusively to represent a conventional DSM system
in our performance evaluation�

Once read�only data has been initialized� no further updates occur� Thus� the consistency
protocol simply consists of replication on demand� A runtime error is generated if a thread attempts

�The results of our original study indicated that there were eight basic access patterns �private� write�once� migratory�
write�many� producer�consumer� result� read�mostly� and synchronization�� but experience has made it clear that
several of the protocols were redundant� Speci�cally� the result and producer�consumer access patterns were sub�
cases of the write�shared access pattern�

�

to write to read�only data� Read�only data is provided as a special case of conventional data for
debugging purposes�

Migratory data is accessed multiple times by a single thread� including one or more writes�
before another thread accesses the data ��� ���� This access pattern is typical of shared data that is
accessed only inside a critical section or via a work queue� The consistency protocol for migratory
data propagates the data to the next thread that accesses the data� provides the thread with read
and write access
even if the �rst access is a read�� and invalidates the original copy� This protocol
avoids a write miss and a message to invalidate the old copy when the new thread �rst modi�es
the data�

Write�shared variables are frequently written by multiple threads concurrently� without inter�
vening synchronization to order the accesses� because the programmer knows that each thread
reads from and writes to di�erent portions of the data� Because of the way that the data is laid
out in memory� access to write�shared data su�ers from the e�ects of false sharing if the DSM
system attempts to keep these di�erent portions of the data consistent at all times� This protocol
is discussed in more detail in Section ����

We support three types of synchronization variables� locks� barriers� and condition variables�
Because synchronization variables are accessed in a fundamentally di�erent way than normal data
objects� it is important that synchronization not be provided through shared memory� but rather
via a suite of synchronization library routines or similarly specialized implementation� Doing so
reduces the number of messages required to implement synchronization� especially compared to
conventional spinlock algorithms ���� and thereby reduces the amount of time that threads spend
blocked at synchronization points�

��� Write�Shared Protocol

The write�shared protocol is designed speci�cally to mitigate the e�ect of false sharing� as dis�
cussed in Sections � and ���� False sharing is a particularly serious problem for DSM systems for
two reasons�
i� the consistency units are large� so false sharing is very common� and
ii� the la�
tencies associated with detecting modi�cations and communicating are large� so unnecessary faults
and messages are particularly expensive� The write�shared protocol allows concurrent writers and
bu�ers writes until synchronization requires their propagation� For instance� Figure � shows two
processes concurrently updating a page� The updates are bu�ered locally� and when the processes
arrive at a barrier� their updates are sent to the other processor�

In order to record the modi�cations to write�shared data� the DSM system initially write protects
the pages containing the data� When a processor �rst writes to a page of write�shared data� the

P1

P2

Concurrent writes

Concurrent writes

Release

Release

Acquire

Acquire

mods

Figure � Concurrent Access in the Write�Shared Protocol

�

DSM software makes a copy of the page
a twin�� and queues a record for the page in the delayed
update queue
see Figure ��� The DSM them removes write protection on the shared data so that
further writes can occur without any DSM intervention� At release time� the DSM system performs
a word�by�word comparison of the page and its twin� and run�length encodes the results of this
di� into the space allocated for the twin
see Figure ��� Each encoded update consists of a count
of identical words� the number of di�ering words that follow� and the data associated with those
di�ering words� Each node that has a copy of a shared object that has been modi�ed is sent a list
of the updates that are available� Nodes receiving update noti�cations request the updates they
require�� decode them� and merge the changes into their versions of the shared data� A runtime
switch allows this comparison to be performed at the byte level� as opposed to the word level� if
the data is more �nely shared�

Another runtime switch can be set to check for con�icting updates to write�shared data� If this
switch is set� then� when a di� arrives at a processor that has a dirty copy of the page� the DSM
system checks whether any of the updates in the di� con�ict with any of the local updates� and�

X

X

Copy on write

Make original writable

Write(X)

twin

X

Delayed Update
Queue

Figure 	 Write�Shared Protocol� Creating Twins

Write protect
(if replicated)

X

X

X

Update
Replicas

Compare
& Encode

‘‘Diff’’

twin

Figure
 Write�Shared Protocol� Sending Out Di�s

�If all of the encoded updates �t into a single packet� they are sent directly in place of the list of available updates�
thus eliminating unnecessary communication in the event that only a small amount of shared data has been modi�ed�

�

if so� signals an error� The ability to detect con�icting updates allows Munin to support dynamic
data race detection�

The results of several trace studies indicate that the overhead of bu�ering updates and trans�
mitting them at synchronization points is small compared to the amount of overhead eliminated
by reducing the amount of communication required to maintain consistency� The average number
of di�erent objects accessed between synchronization points is small ���� so the DSM system only
needs to enqueue changes infrequently� Furthermore� when a shared data object needs to be up�
dated� it usually resides on a small number of other processors ��� ���� Thus� the number of update
messages required to maintain consistency is small�

��� Update Timeout Mechanism

Update protocols su�er from the fact that updates to a particular data item are propagated to
all of its replicas� including those that are no longer being used� In DSM systems� this problem
becomes even more severe� because the main memories of the nodes in which the replicas are kept
are very large and it takes a long time before a page gets replaced� if at all� Without special
provisions� updates to these stale replicas can lead to a large number of unnecessary consistency
messages� resulting in poor performance� This e�ect is a major reason that existing commercial
multiprocessors use invalidation�based protocols� We address this problem with a timeout algorithm
similar to the competitive snoopy caching algorithm devised by Karlin ����� The goal of the update
timeout mechanism is to invalidate replicas of a cached variable that have not been accessed recently
upon receipt of an update�

An example of the problem and our solution are illustrated in Figure �� In the �gure the
circles represent four processors in the system� and the arrows represent the source and destination
of updates for a particular shared variable� In this example� exactly two processors access the
variable at any given time� A dark shaded circle represents a processor that is actively using the
shared variable� while a cross�hatched circle represents a processor that is not using the shared
variable but that is still receiving updates to it� In Figure �
a�� only the two processors using
the variable are sending or receiving updates involving the variable� which is the desired situation�
In Figure �
b�� only two processors are using the variable� but a third is receiving updates to it
because it recently used the variable and still has a copy of it in its memory� Without the use
of an update timeout mechanism� this processor will continue to receive updates to the variable
until the program terminates or the variable is invalidated because of memory capacity limits� even
if it never again uses the variable� If� over the entire execution of the program� every processor
accessed the variable at some point� then eventually every processor would receive updates for the
variable� even though at most two processors were using it at a time� The timeout mechanism

(a) (b) (c)

Figure � Update Timeout Mechanism

	

eliminates these logically unnecessary updates by invalidating stale replicas� Figure �
c� illustrates
the situation after the timeout mechanism has invalidated the stale replica that had been cached
in the lower left processor� Only the two processors using the variable are sending or receiving
updates involving the variable� which is the desired situation�

Munin�s update timeout mechanism is implemented as follows� When receiving an update for
a page for which no twin exists locally� the page is mapped such that it can only be accessed
in supervisor mode� and the time of receipt of this update is recorded� A local access causes a
fault� as a result of which protection is removed and the timestamp is reset� If the page is still in
supervisor mode when another update arrives
meaning it has not been accessed locally since the
�rst update�� and a certain time window � has expired
�� milliseconds in the prototype�� then the
page is invalidated� and a negative acknowledgement is sent to originator of the update� causing it
to no longer to send updates to this processor�

The update timeout mechanisms works well in conjunction with the implementation of the
write�shared protocol
see Section ���� whereby a node �rst sends out a lists of updates that it has
available� The recipients of this message then select which updates they need to receive� No updates
are requested for the pages that were invalidated by the timeout mechanism� thereby avoiding the
propagation of these updates�

The use of update timeouts results in a hybrid update�invalidate protocol that allows Munin
to gain the bene�ts of an update mechanism� i�e�� the reduction in the number of read misses and
subsequent high�latency
idle� reloads� while at the same time retaining the superior scalability of
an invalidation protocol by limiting the extent to which stale copies of particular pages are updated�

� The Munin DSM Prototype

The techniques described in Section � have been implemented in the Munin DSM system� Munin
was evaluated on a network of SUN����� workstations running the V�System ���� connected via an
isolated �� megabit per second Ethernet� This section provides a brief overview of aspects of the
implementation of Munin that are relevant to its evaluation� A more detailed description of the
Munin prototype appears elsewhere ���� ����

��� Writing A Munin Program

Munin programmers write parallel programs using threads� as they would on many shared memory
multiprocessors� All of the current applications were written in C� Synchronization is supported by
library routines for the manipulation of locks� barriers and condition variables�

Munin currently supports only statically allocated shared variables� This is an artifact resulting
from the fact that none of the current applications use dynamically allocated shared data� Sup�
port for dynamic allocated shared data could easily be added� The programmer annotates the
declaration of shared variables to specify what protocol to use to keep shared data consistent� e�g��
�shared fprotocolg �C type� �variable name��� The keyword shared is required to specify
that a variable will be shared among processes� although the protocol can be omitted� If the
protocol is omitted� the conventional protocol is used� The choice of conventional as the default
protocol was arbitrary� all of the shared data in the test programs was fully annotated� Incorrect
annotations may result in ine
cient performance or in runtime errors that are detected by the
Munin runtime system� but not in incorrect results�

��

��� Compiling and Linking a Munin Program

A preprocessor �lters the source code in search of shared variable declarations� For each such
declaration� the preprocessor removes the Munin�speci�c �shared fprotocolg� portion and adds
an entry to an auxiliary �le� After preprocessing� the source �le is compiled with the regular
compiler� The Munin linker reads the auxiliary �le and relocates the shared variables to a shared
segment� By default� the linker places each shared variable on a separate page� In addition� the
Munin linker appends to the executable a shared segment symbol table that describes the layout
of the shared memory and the protocols to be used for the shared data� These additions to Munin
executables had a negligible impact on program size or startup costs�

��� Runtime Overview

Figure 	 illustrates the organization of a Munin program during runtime� On each participating
node� the Munin library is linked into the same address space as the user program� and thus can
access user data directly� The two major data structures used by the Munin runtime system are
the delayed update queue
see Section ��� and the object directory � which maintains the state of
the shared data being used by local user threads� A Munin system thread installs itself as the
page fault handler for the Munin program� As a result� the underlying V kernel ���� forwards to
this system thread all memory exceptions� The Munin thread also interacts with the V kernel
to communicate with the other Munin nodes over the network� and to manipulate the virtual
memory system as part of maintaining the consistency of shared memory� The prototype uses no

Object

Directory

Munin

Runtime

DUQ

User

Code

and

Data

SUN 3/60s

Network (10 Mbps Ethernet)

...
V Kernel

Figure � Munin Runtime Organization

��

features of V for which equivalent features are not commonly available on other platforms
e�g��
Unix or Mach�� In addition� we avoided using features that we felt might not be common on
future workstation clusters� such as reference bits in the page table or a multicast capability on
the network� For the update timeout mechanism� references are detected by mapping write�shared
pages to supervisor mode so that the �rst reference to a page after an update to it is received results
in a page fault� We thus maintain a reference bit and timestamp for each page without requiring
hardware supported reference bits� Although the prototype runs on a collection of workstations
connected via an Ethernet� the multicast capability of Ethernet is not used so that our results can
be generalized to platforms without hardware multicast�

��� The Object Directory

On each node� the Munin runtime system maintains an object directory containing information on
the state of each data item in the global shared memory� as shown in Figure 	� All shared variables
on the same physical page are treated as a single object� Variables that are larger than a page�
e�g�� a large array� are treated as a number of independent page�sized objects� Munin uses variables
rather than pages as the basic unit of granularity because this better re�ects the way data is used
and reduces the amount of false sharing between unrelated variables ����

Munin�s object directory is structured as a hash table that maps a virtual address to an entry
that describes the data located at that address� The object directory on the Munin root node
is initialized from the shared data description table located in the executable �le� The object
directory on the other nodes is loaded when the node is created� and then initialized to indicate
that no shared data is present� When Munin cannot �nd an object directory entry in the local
hash table� as occurs the �rst time a node other than the root node accesses a shared data item� it
requests a copy from the root node� Directory entries include the following �elds�

� Lock� provides exclusive access to the entry to serialize access to directory entries by di�erent
threads�

� Start address and Size� act as keys for looking up a shared data item�s directory entry�
given an address within the data�

� Protocol� speci�es the protocol that the fault handler should use when servicing access faults
on the data item�

� State� characterizes the dynamic state of the data� such as whether it is present locally and
whether it is writable�

� Copyset� represents a �best guess� of the set of processors with copies of the data�

� Probable owner� represents a �best guess� of the owner of the data� which has di�erent
interpretations depending on the protocol being used to keep the data consistent�

� Performance statistics� collect runtime statistics used for performance tuning�

The data item�s copyset is the set of all nodes that the local node believes have a copy of the
data� either because a copy was present when the local node originally accessed the data� or the
local node has handled requests from the other nodes for the data� It is possible for the copyset
to include nodes no longer caching the data because they have deleted their copy� and it is also
possible that nodes that are caching copies of the data are not in the copyset� because another
node satis�ed their load request� If a copy of the data resides locally� the transitive closure of the

��

copysets is guaranteed to be a superset of the set of nodes that have a copy of the data� because
an entry in a copyset is only removed when the corresponding node informs the other nodes that
it is no longer caching the data� It is this property that ensures the correctness of the distributed
ownership version of the update mechanism�

The probable owner is used to determine the identity of the Munin node that currently owns the
data ����� The owner node is used by the conventional and migratory protocols to arbitrate write
access to the data� For the write�shared protocol� the owner node represents the copy of last resort
that cannot be unilaterally purged from memory
e�g�� as part of the update timeout mechanism��
without �nding another willing node to become the owner of last resort� This approach is analogous
to the copy of last resort used in cache�only multiprocessors ����� Munin implements a dynamic
ownership protocol to distribute the task of data ownership across the nodes that use the data�
When a shared data item is not owned by the local node� the information in the probable owner

�eld acts as a �hint� to reduce the overhead of performing consistency operations�
The object directory maintenance protocol is designed to reduce the number of messages re�

quired to maintain the distributed object directory� Munin distributes the state information asso�
ciated with write�shared data across the nodes that contain cached copies of the data� In many
cases� this elimination of the notion of a static �owner� of data allows nodes to respond to requests
completely locally� This approach also allows Munin to exploit locality of reference when main�
taining directory information� since the need to maintain a single consistent directory entry� as has
been proposed for most scalable shared�memory multiprocessors ��� ��� ���� is eliminated�

��� Synchronization Support

Synchronization objects are accessed in a fundamentally di�erent way than ordinary data ���� Thus�
Munin provides e
cient implementations of locks� barriers� and condition variables that directly use
V�s communication primitives rather than synchronizing through shared memory� More elaborate
synchronization mechanisms� such as monitors and atomic integers� can be built using these basic
mechanisms� Each Munin node maintains a synchronization object directory� analogous to the
data object directory� containing state information for the synchronization data� All of Munin�s
synchronization primitives cause their invoking thread to block on an �acquire� and cause the local
delayed update queue to be purged on a �release��

����� Locks

Munin employs a queue�based implementation of locks similar to existing implementations on
shared memory multiprocessors ���� ���� This allows a thread to request ownership of a lock and
block awaiting a reply� without repeated queries� The system associates an ownership �token�
and a distributed queue with each lock� A probable owner mechanism like that described above
is used to locate the token or the end of the queue associated with the lock� The token migrates
to nodes as they become owners� so no single node is responsible for maintaining the state of a
given lock� This has the same bene�ts in terms of exploiting locality of reference� removing central
bottlenecks� and reducing communications� as the distributed data ownership protocol� A frequent
situation in which this scheme works to particular advantage is when a thread attempts to reacquire
a lock for which it was the last owner� In this case� the thread �nds the associated token to be
available locally� and is thus able to acquire the lock immediately
without any message overhead��
Similarly� if a small subset of threads continuously reuse the same lock� they communicate only
with one another�

When the lock ownership token is unavailable locally� a message is sent along the probable

��

owner chain to the last lock holder� If the lock is free
the token is available�� the last lock holder
forwards the token to the requester� which acquires the lock and continues executing� Otherwise�
the thread that was at the end of the queue stores the locking thread�s identity into a local data
structure without replying� Each enqueued thread knows the identity of the thread that follows
it on the queue� if any� so when a thread releases a lock and the associated queue is non�empty�
lock ownership is forwarded directly to the next thread in the queue after all delayed updates are
�ushed in accordance with the requirements of release consistency�

����� Barriers

Barriers are used to simultaneously synchronize multiple threads� When a barrier is created� the
user speci�es the number of threads that must reach the barrier before it is lowered� When a
thread wishes to wait at a barrier� it �ushes any delayed updates� sends a message to the barrier
manager thread
a well�known thread located on the root node�� and awaits a response� When
all of the threads have arrived at the barrier� the barrier manager replies to each waiting thread
to let it resume� We considered using a distributed barrier mechanism similar to those designed
for scalable multiprocessor systems ����� but for the small size of the prototype implementation� a
simple centralized scheme was more practical and e
cient� Unlike locks� which are point�to�point
and which exhibit a high degree of locality that makes it bene�cial to migrate ownership� barriers
are most often used to synchronize all of the user threads in the program� In this case� locality
of reference cannot be exploited� because single threads or small subsets of threads do not tend
to access the barrier without intervening accesses by other threads� Thus� until the single barrier
manager becomes a bottleneck� there is no reason to distribute barrier ownership�

����� Condition Variables

Munin�s condition variables are essentially binary semaphores that also support a broadcast wakeup
capability� Unlike locks� condition variables give threads the capability to synchronize indirectly�
Any thread can perform a signal operation� while the lock protocol allows only the lock owner
to release the lock� While it is possible to build this kind of mechanism using locks� we found it
convenient to include condition variables as a primitive� In accordance with the requirements of the
release consistency model� delayed modi�cations are �ushed before the signal or broadcast message
is forwarded to the condition manager thread�

� Evaluation

��� Application Programs

Seven application programs were used in the evaluation� Three di�erent versions of each application
were written� a Munin DSM version� a conventional DSM version that used the conventional
protocol for a sequentially consistent memory� and a message passing version� Great care was
taken to ensure that the the �inner loops� of each computation� the problem decomposition� and
the major data structures for each version were identical� Except where noted� all array elements are
double precision �oating point numbers� Both the DSM system and the message passing programs
used V�s standard communication mechanisms�

The DSM programs were originally written for a shared memory multiprocessor
a Sequent
Symmetry�� Our results may therefore be viewed as an indication of the possibility of �porting�
shared memory programs to software DSM systems� but it should be recognized that better results

��

may be obtained by tuning the programs to a particular DSM environment� Table � summarizes
the seven application programs and problem sizes� An e�ort was made to select a suite of programs
that would represent a relatively wide spectrum of shared memory parallel programs� varying in
their parallelization techniques� granularity� degree and nature of sharing� and locality of shared
data references� Matrix Multiply
MULT�� Finite Di�erencing
DIFF�� and Gaussian Elimination
with partial pivoting
GAUSS� are numeric problems that statically distribute the data across
the threads� MULT� DIFF� and GAUSS exhibit increasing degrees of sharing� FFT dynamically
reallocates the data across threads� and exhibits an extremely high degree of sharing� The Trav�
eling Salesman Problem
TSP� and Quicksort
QSORT� programs use the task queue model to
dynamically allocate work to di�erent threads� The granularity for TSP was varied
TSP�C and
TSP�F access data at a coarse and �ne grain� respectively�� QSORT exhibits a high degree of
false sharing in the array to be sorted� Small to moderate problem sizes were chosen so that the
uniprocessor running times would be in the range of hundreds of seconds� and the sixteen processor
running times would be on the order of tens of seconds� The uniprocessor running times represent
sequential implementations of the programs with all synchronization and communication removed�

��� Experimental Methodology

For all three versions of each program� the sequential initialization routine is executed on the root
node� Then the appropriate number of additional nodes are created� which for the DSM versions
gives each node a copy of the non�shared data� The non�root nodes initialize themselves� and then
synchronize with the root node by waiting at a barrier in the DSM versions and via an explicit
message in the message passing versions� For the DSM versions� after the user thread on the root
node creates the required worker threads� it reads the clock to get the initial value and then waits
at the barrier� which causes the computation to begin� For the message passing versions� the root
thread waits until all of the worker threads have sent it the initialization message� It then reads
the initial clock value and sends a message to each of the workers to start computation� At this
point� the workers read their inputs� via page faults for the DSM versions or via request messages
for the message passing versions� Once all of the workers have completed� the root thread again
reads its clock and calculates the total elapsed computation time�

In addition to execution times� the Munin runtime system gathers statistics on the number of

Program Problem size

MULT ��� by ��� square matrices

DIFF ��� by ��� square matrices

TSP�C ���city tours� recurse when �� cities left

TSP�F ���city tours� recurse when �� cities left

QSORT ���K elements� recurse when less than ����

FFT ��K elements

GAUSS ��� by ��� square matrices

Table � Programs and Problem Sizes Used in Experiments

��

faults� the amount of data transferred� and the amount of time stalled while performing various
consistency operations� The message passing kernel collects similar data� Selected portions of
these statistics are used throughout the analysis to highlight the reasons for observed performance
di�erences between the di�erent versions of the programs�

� Overview of Results

The main results we report are the speedup of the various versions of the parallel programs over
the sequential version� measured for � to �� processors� Figures �� through �� show the speedup
for each of the application programs as a function of the number of processors� Table � shows the
speedup achieved on sixteen processors for the three versions of each application� The percentages
in parentheses represent the percentage of the message passing speedup achieved by Munin� and the
percentage of both the message passing and the Munin speedup achieved by the conventional DSM
implementation� Tables � and � show the amount of communication required during execution of
the programs on sixteen processors� both in terms of number of messages and kilobytes of data
transmitted�

For MULT� DIFF� TSP�C� and FFT� the Munin versions achieved over 	�� of the speedup of
their hand�coded message passing equivalents� while for TSP�F� QSORT� and GAUSS the Munin

Message Munin Conventional

Passing DSM DSM

MULT ���� ����
����� ����
		�� 		��

DIFF ���� ����
	��� ���
���� ����

TSP�C ���� ����
	��� ����
���� 	���

TSP�F ��	 ���
���� ���
���� ����

QSORT ���� ��	
���� ���
���� ����

FFT ��� ���
	��� ���
 ��� ���

GAUSS ���� ���
���� ���
���� �	��

Table � Speedups Achieved
�� processors�

Program Message Passing Munin Conventional

MULT ��� ���� ��	�
DIFF ����� ����� �����
TSP�C 	�� ���� �	��
TSP�F 	�	 	��� ���	�
QSORT ��� ����� ��	���
FFT 	��� ����� ��	�	��
GAUSS ����� ����� ����	

Table � Number of Messages for ���Processor Execution

��

Program Message Passing Munin Conventional

MULT ��� ���� ����
DIFF ��	� ���� �����
TSP�C �� ���� ����
TSP�F �� �	�	 �	��
QSORT ��� ����� ������
FFT 	��	 ����� �������
GAUSS �		� ���� ����

Table � Amount of Data
in Kilobytes� for ���Processor Execution

programs achieved between ��� and ���� For the programs with large grain sharing
MULT and
TSP�C�� the conventional versions achieved 		� and 	��� respectively� of the speedup of their
Munin counterparts� For DIFF� TSP�F� QSORT� and GAUSS the performance of the conventional
versions was reduced to ������ of Munin� For FFT� there was so much false sharing that the
conventional version slowed down by a factor of ten when run on more than one processor�

Ideal Mesg Passing Munin DSM Conv DSM

Number of Processors

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

S
pe

ed
up

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

Figure �
 Matrix Multiplication
MULT�

��

Ideal Mesg Passing Munin DSM Conv DSM

Number of Processors

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

S
pe

ed
up

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

Figure �� Finite Di�erencing
DIFF�

Ideal Mesg Passing Munin DSM Conv DSM

Number of Processors

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

S
pe

ed
up

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

Figure �� Coarse�Grained Traveling Salesman Problem
TSP�C�

��

Ideal Mesg Passing Munin DSM Conv DSM

Number of Processors

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

S
pe

ed
up

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

Figure �� Fine�Grained Traveling Salesman Problem
TSP�F�

Ideal Mesg Passing Munin DSM Conv DSM

Number of Processors

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

S
pe

ed
up

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

Figure �� Quicksort
QSORT�

�	

Ideal Mesg Passing Munin DSM Conv DSM

Number of Processors

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

S
pe

ed
up

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

Figure �� Fast Fourier Transform
FFT�

Ideal Mesg Passing Munin DSM Conv DSM

Number of Processors

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

S
pe

ed
up

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

Figure �	 Gaussian Elimination with Partial Pivoting
GAUSS�

��

� Detailed Analysis

In this section we analyze in detail� on a per�program basis� the reasons for the performance
di�erences between the various versions of each program� Unless otherwise noted� the numbers in
this section pertain to the ���processor execution�

��� Matrix Multiply

Program Description

The problem is to multiply two N by N input arrays� and put the result in an N by N output
array� Matrix Multiply is parallelized by giving each worker thread a number of contiguous rows
of the output array to compute� After each worker thread has terminated� the root thread reads
in the result array and terminates�

The DSM versions use a barrier to signal completion� each worker thread in the message passing
version sends its result rows to the master when they have been computed� The Munin version
declares the input arrays as read only and the output array as write shared�

Analysis

Matrix multiplication is almost completely compute�bound� As a result� the three versions achieved
almost identical speedups
���� for conventional DSM� ���� for Munin� and ���� for message pass�
ing�� In all cases� the cumulative computation time is roughly 	�� seconds� while the cumulative
communication time is roughly � seconds� Both the Munin and the conventional DSM versions
perform approximately twice as much communications as the message passing version� because the
DSM worker threads fault in the empty result array at the beginning of the computation� while
the message passing worker threads simply initialize their portion of the result array in place�
Also� in Munin� when a thread arrives at the �nal barrier� it updates any copies of a page in
the result matrix that are cached by neighboring nodes due to false sharing� This results in the
Munin version performing more communication than the conventional version� The Munin version
still outperforms the conventional version because the extra communication is largely overlapped
with computation� while the read misses experienced by the conventional version cause processors
to stall� Nevertheless� compared to the overall execution time� the time spent communicating is
minor� so both the conventional and Munin versions exhibit near linear speedup�

��� Finite Di	erencing

Program Description

During each iteration of the �nite di�erencing algorithm� all elements of a matrix are updated to
the average of their nearest neighbors
above� below� left� and right�� To avoid overwriting the old
value of a matrix element before it is used� an iteration is split up in two half�iterations� In the
�rst half�iteration� the program uses a scratch array to compute the new values� In the second� it
copies the scratch array back to the main matrix�

Each thread is assigned a number of contiguous rows to compute� The algorithm requires only
those elements that lie directly along the boundary between two threads� subarrays to be commu�
nicated at the end of each iteration� In the Munin version� the matrix is declared as write shared�
In the DSM versions� the programmer is not required to specify the data partitioning to the runtime
system � it is inferred at runtime based on the observed access pattern� After each half�iteration� the

��

DSM worker threads synchronize by waiting at a barrier� The message passing workers exchange
results directly between neighboring nodes after each iteration�

Analysis

DIFF has a much smaller computation�to�communication ratio than MULT
see Tables � and ���
but the Munin version still performs within �� of the message passing version
a speedup of ����
for Munin versus ���� for message passing�� The reason for Munin�s good performance is its use
of software release consistency and the write�shared protocol� Together� these techniques result in
the underlying communications patterns for the Munin version and the message passing version
being nearly identical� When each thread �rst accesses a page of shared data� it gets a copy of
the page� Thus� at the end of the �rst half�iteration� each node has a read�write copy of any
pages for which it has the only copy� and a read�only copy of any pages that lie along a boundary�
During the second half�iteration� during which each thread copies the new values from the scratch
array to the shared array� each node creates a di� of its shared pages� When a thread arrives at
the barrier after this half�iteration� it sends the di� directly to the appropriate neighbors before
sending the barrier message to the barrier master� These di�s include all of the modi�ed data
on each boundary page� and not just the edge elements� Since the shared pages are still shared
even after they are purged� they are write�protected again� so subsequent writes will be detected�
For subsequent iterations� each node experiences a protection violation on the boundary pages�
and then performs local operations
creating twins�� except when exchanging the results� Thus�
the data motion in the Munin version of DIFF is essentially identical to the message passing
implementation � communication only occurs at the end of each iteration and only neighboring
nodes exchange results� The only overhead comes from fault handling� and from copying� encoding�
and decoding the shared portions of the matrix� As an aside� a curious phenomenon can be seen
in Table �� the Munin version of DIFF transmits less data than the message passing version� This
is a result of the fact that Munin only transmits the words that have been modi�ed during each
iteration� while the message passing version ships the entire edge row� During the early iterations�
many of the edge values have not yet been modi�ed� and thus Munin does not transmit any new
values for them� In practice� this extra transmitted data had a negligible e�ect on the running
times� Rather� Munin�s good performance derived from the fact that it transmits data only during
synchronization and su�ers no read misses
after the �rst iteration��

The conventional DSM version of DIFF achieved a speedup of only ���� compared to ���� for
Munin� The conventional version su�ers from
�� frequent read faults and reloads as a result of the
invalidation protocol� and
�� blocking on write faults as a result of sequential consistency� The
Munin version of DIFF creates and transmits di�s at the end of each iteration� which results in
shared data being present before it is accessed during the next iteration� This eliminates read misses
and reloads on the next iteration� In contrast� the conventional DSM implementation invalidates
and reloads every shared page in its entirety on each iteration� In addition� write faults can be
handled completely locally in Munin if the data is already present� which is the case for all but
the �rst iteration� The local node simply makes a twin of the data� The conventional DSM
implementation sends an invalidation message and waits for a response� The tradeo� is that
synchronization under Munin is slowed down because memory needs to be made consistent before
the synchronization operation can complete� However� the total time that the Munin worker threads
spend blocked while waiting for memory to be made consistent
���� seconds� is far less than the
time spent invalidating and reloading the data in the conventional version
a total of ����� seconds��
The time spent invalidating and reloading seriously impacts execution time
����� seconds of a total
execution time of ����� seconds��

��

��� Traveling Salesman Problem

Program Description

The Traveling Salesman Problem
TSP� takes as its input an array representing the distances
between cities on a salesman�s route� and computes the minimum length �tour� passing through
each city exactly once� A tour queue maintains a number of partially evaluated tours� If the number
of nodes remaining to complete the tour is below a threshold� �� for TSP�F and �� for TSP�C�
the remainder of the tour is evaluated sequentially� If the number of nodes remaining is above this
threshold� the partial tour is expanded by one node� and the new partial tours are entered on the
tour queue� When a partial tour is removed from the queue� a lower bound on the remaining part
of the tour is computed� and the tour is rejected if the sum of the current length and the lower
bound is higher than the current best tour� This check is also performed before a potential new
subtour is put on the task queue� The tour queue is a priority queue that orders the remaining
subtours in the inverse order of a lower bound of their total length� Thus� the �most promising�
subtours are evaluated �rst� which tends to prune uninteresting subtours more quickly� The major
shared data structures of TSP are the current shortest tour and its length� an array of structures
that represent partially evaluated tours� a priority queue that contains indices into the tour array
of partially evaluated tours� and a stack of indices of unused tour array entries� TSP�C and TSP�F
di�er only in the problem granularity� TSP�C sequentially solves subtours of length �� or less�
while TSP�F sequentially solves subtours of length �� or less� Depending on the particular input
data set� the computation to communication ratio of TSP�C can be as much as ten times higher
than that of TSP�F�

In the DSM versions� locks protect the priority queue� the current shortest tour� and its length�
A condition variable is used to signal when there is work to be performed� Worker threads acquire
the lock and continue to remove partial tours from the queue until a �promising� tour has been
found that can be expanded sequentially� at which time the lock is released� In Munin� the priority
queue and the stack of unused tours are declared migratory� while the other shared data structures
are declared write shared� For the message passing version� themastermaintains a central priority
queue that contains the indices of subtours to be solved� The slaves send request messages to the
master� which responds either with a subtour to be solved sequentially� or an indication that there
is no more work� Workers tell the master when they �nd a new global minimum� and the master
is responsible for propagating it�

Analysis �Coarse Grain TSP�

The Munin version achieved a speedup of ����� within �� of the ���� achieved by the message
passing version� TSP�C is rather compute�bound� under �� seconds of communication for the
Munin version compared to a total execution time of ��� seconds� The performance di�erence
between the message passing version and the Munin version comes from the cost of accessing the
priority queue� In Munin� each time a thread tries to remove a tour from the queue� the queue data
structure needs to be shipped to that thread� This behavior had two adverse e�ects on performance�
First� worker threads cumulatively spent �� seconds waiting on the task queue lock� Second� the
Munin version shipped � megabytes of data� compared to only 	�� kilobytes in the message passing
version�

The di�erence in performance between the Munin and conventional DSM versions of TSP�C
a
speedup of ���� for Munin versus ���� for conventional DSM� stems from
�� the use of a migratory
protocol for the task queue� and
�� the use of an update� instead of an invalidate� protocol for
the minimum tour length� The slightly higher overhead caused by loading and invalidating� rather

��

than simply migrating� the task queue had the e�ect of causing more processors to idle themselves
waiting for work� This was because access to the task queue was the primary bottleneck
a total of
	� seconds for the conventional version versus only �� in the Munin version�� The minimum tour
length is an example of a shared data item for which an update protocol is better than an invalidate
protocol� because it is read much more frequently than it is written� With the conventional protocol
running on N processors� a thread that needs to update the minimum tour length typically sends
N � � invalidations and then waits for N � � acknowledgements� All other threads in turn incur
an access miss� and its associated latency� to obtain a new copy of the minimum tour length�

Analysis �Fine Grain TSP�

The Munin version of TSP�F achieved a speedup of ���� ��� less than the ��	 speedup achieved by
the message passing version� The reasons for the reduction in performance are the same as for TSP�
C� but their relative importance is increased� In TSP�F� worker threads spent a cumulative ���
seconds waiting for the priority queue� and a total of ��� seconds performing useful computation�
In addition� 	�� megabytes of data were transmitted in the Munin version� compared to only 	��
kilobytes for the message passing version� Similar arguments apply for the conventional DSM
version� resulting in a speedup of only ����

��� Quicksort

Program Description

Quicksort
QSORT� is a recursive sorting algorithm that operates by repeatedly partitioning an
unsorted input lists into unsorted sublists such that all of the elements in one of the sublists are
strictly greater than the elements of the other� The Quicksort algorithm is then recursively invoked
on the two unsorted sublists� The base case of the recursion occurs when the lists are su
ciently
small
� kilobyte in our case�� at which time they are sorted sequentially�

Quicksort is parallelized using a work queue that contains descriptors of unsorted sublists�
from which worker threads continuously remove unsorted lists� In the DSM versions of QSORT�
the major data structures are the array to be sorted� a task queue that contains range indices of
unsorted subarrays� and a count of the number of worker threads blocked waiting for work� Like
TSP� the task queue is declared to be migratory� while the array being sorted is declared to be
write shared� A lock protects the queue� and a condition variable is used to signal the presence
of work to be performed� QSORT di�ers from TSP in that when QSORT releases control of the
task queue� it may need to further subdivide the work by partitioning the subarray and placing
the new subarrays back into the task queue� In contrast� TSP workers never relinquish control of
the task queue until they have removed a subtour that can be solved sequentially� Therefore� the
task queue in QSORT is accessed more frequently per unit of computation� O�setting this is the
fact that the threads in TSP hold the lock protecting the priority queue for a longer time as they
perform the expansion�

For the message passing version of QSORT� the master maintains the work queue� The slaves
send request messages to the master� which responds either with a sublist to be sorted sequentially
or an indication that there is no more work� Along with the requests� the slaves ship the sorted
results from their previous request� if any�

��

Analysis

The Munin version of QSORT achieves only ��� of the speedup of the message passing version

��	 versus to ������ As with TSP�C and TSP�F� most of Munin�s overhead comes from shipping
the work queue each time a node tries to perform a queue insertion or deletion� Compounding
this problem is the fact that the threads do not retain sole ownership of the work queue while
subdividing the work into pieces su
ciently small to solve directly� so they repeatedly need to
reacquire the task queue and partition their subarray until it contains at most ���� elements� As
a result� the threads spent a cumulative ��� seconds waiting on the task queue lock� out of a total
execution time of ���� seconds� Furthermore� the Munin version transmitted �� megabytes of data�
compared to ��� kilobytes for the message passing implementation�

For the conventional DSM version� speedup drops to ���� In addition to the cost of invalidating
and reloading the task queue� rather than simply migrating it� the di�erence in performance between
the conventional DSM version and the Munin version is primarily due to the presence of false sharing
when two threads simultaneously attempt to sort subarrays that reside on the same page� As a
result� communication goes from �� megabytes in about ������ messages for the Munin version� to
��� megabytes in ������� messages for the conventional version�

��� Fast Fourier Transform

Program Description

The Fast Fourier Transform
FFT� program used in the evaluation is based on the Cooley�Tukey
Radix � Decimation in Time algorithm ����� It recursively subdivides the problem into its even
and odd components� until the input is of length �� For this base case� the output is an elementary
function known as a Butter�y� a linear combination of its inputs� For an input array of size N �
the FFT algorithm requires log�N passes� On pass K� the width of each butter�y is N���K����
Thus� for the �rst pass� width of the butter�y is N��� and each subsequent iteration the width of
each butter�y halves� By starting with the wide butter�ies� the result array is a permutation of
the desired value� but this is recti�ed with an O
N� cleanup phase�

If P processors are used to solve an N point FFT� where P is power of �� then a reasonable
initial decomposition of the work allows processor p to work with x�p�� x�p � P �� x�p � �P �� ����
x�p � N � P �� This allows all processors to perform the �rst log�N � log� P passes without any
inter�processor communication� Before executing the last log� P iterations� the processors exchange
data and reallocate themselves to di�erent
contiguous� subarrays� as illustrated in Figure ��� This
�gure illustrates an ��element FFT being performed by two processors
N �� P ��� where the
dashed lines represent computations by p� and the dark lines represent computations by p��

Both the DSM and message passing programs are parallelized by dynamically allocating threads
to data as described above� The array on which the FFT is being performed is declared to be
write shared in the Munin version� By carefully allocating processors to data as described above�
it is possible to only reallocate the processors and exchange data at the end of the �rst log�N �
log� P phases� The DSM programs use a barrier to synchronize at this point� The DSM system
automatically reallocates the data on demand� The message passing version manually encodes and
shu!es the data� using a master process to collect and redistribute all of changes� This manual
redistribution made the message passing version much harder to write than the DSM versions� The
processor reallocation is built in to the algorithm itself�

��

x(0)

x(1)

x(2)

x(3)

x(4)

x(5)

x(6)

x(7)

X(0)

X(2)

X(1)

X(5)

X(3)

X(7)

X(4)

X(6)

log(N) - log(P) passes

exchange
results

Figure �
 Parallel FFT� N �� P �

Analysis

The FFT algorithm used has a very high degree of sharing� which results in it being bus bandwidth
limited to a speedup of approximately ten on a twenty processor� single�bus multiprocessor like the
Sequent Symmetry� Because of the way that the data is distributed� every page is referenced
and
modi�ed� by every thread during the �rst log�N � log� P iterations� the worst possible behavior
for any DSM system� The conventional DSM version slows down by a factor of ten for two or more
processors� while the Munin version achieved a speedup of ��� on sixteen processors� The cause for
this dramatic di�erence in performance is Munin�s ability to e
ciently support multiple concurrent
writers to a shared page of data� The message passing version of FFT performed slightly better

speedup of ��� on �� processors� than the Munin version�

The conventional DSM implementation takes over ������� faults� requires ���� gigabytes of
data to be shipped and ���� million messages to be transmitted� and cumulatively spends over
����� seconds waiting for requests to be satis�ed� While not devoid of overhead� the Munin version
requires orders of magnitude less communication� It only takes ���� faults and reloads a total of
�� megabytes of data� The primary source of overhead for the Munin program comes from sending
out the lists updates during the data exchange phase after the �rst log�N � log� P phases� At
the beginning of the update phase� every processor is caching every page of shared data� This
causes each processor to send a list of updates for every page to every other processor� which adds
two seconds of synchronization overhead� Munin�s update timeout mechanism keeps the processors
from actually shipping most of the data to every node� resulting in the Munin version shipping only
slightly more data than the message passing version�

��� Gaussian Elimination with Partial Pivoting

Program Description

Gaussian Elimination
GAUSS� decomposes a square matrix into upper and lower triangular sub�
matrices by repeatedly eliminating the elements of the matrix under the diagonal� one column at
a time� The basic algorithm for an N by N matrix is shown in Figure ��� For each iteration of the
i�loop� the algorithm subtracts the appropriate multiple of the ith row of the matrix from the rows

��

for i �� � to N do

for j �� i�� to N do

for k � N�� downto i do

a�j��k� �� a�j��k� � a�i��k�	a�j��i�
a�i��i��

Figure �� Basic
w�o pivoting� Gaussian Elimination Algorithm

below it� so that the elements below the diagonal in the ith column are zeroed� Partial pivoting
improves the numerical stability of the basic algorithm by interchanging the ith row with the row
in the range �i � ����N � �� containing the largest
in absolute value� element of the ith column�
Algorithmically� this involves inserting a phase between the i and j loops that searches the ith

column for the pivot element� and swapping that row and the ith row�
We decomposed the computation by column so that the pivoting phase� which can be a syn�

chronization bottleneck� can be performed on a single processor� Each thread gets roughly bN�Pc
columns� striped across the matrix� and any extra columns are spread evenly across the worker
threads� The computation itself involves N iterations� one per column� each iteration consisting of
a pivoting phase and a computation phase�

The DSM versions are parallelized as follows� The shared data structures are the array on which
the elimination is being performed� a vector into which the pivot row is copied� and an integer that
contains the number of the pivot row � all of which are declared to be write shared in the Munin
version� Each iteration starts with a barrier� After the barrier falls� the thread responsible for the
current column performs the necessary pivoting� sets a shared pivot row variable to indicate the row
that needs to be pivoted with the current one� and copies the current column to a shared variable
to be used by the other threads during the computation phase� A barrier is used to separate the
pivoting and computation phases� After the barrier is passed� each thread performs the actual
computation� which involves performing the local pivoting� followed by the elimination step shown
in Figure ���

The message�passing version works similarly� except that the barrier is replaced by messages
from the slaves to the central master� and the pivot column and pivot row number are explicitly
sent to the workers rather than faulted in asynchronously�

Analysis

The DSM versions of Gaussian Elimination require two barriers per iteration for synchronization�
The Munin version achieves a speedup of ���� ��� of the message passing version�s speedup of �����
on sixteen processors� The reason for this reduced performance is that the relatively small amount
of work done per iteration� particularly during the latter stages of the algorithm� accentuates the
overhead imposed by both the general purpose barrier mechanism� and the need to update shared
data during synchronization� On average� each thread spends over �� seconds waiting for barriers�
which includes the time spent exchanging data�

The conventional DSM version of GAUSS achieves a speedup of ��� on sixteen processors� ���
of the message passing version� In addition to the synchronization issues noted in the Munin im�
plementation� the conventional DSM implementation also su�ers from frequent read misses caused
by accesses to invalidated data� While the Munin implementation experiences 	� read misses� the
conventional DSM implementation experiences ����� This is caused by the use of an invalidation�
based consistency protocol in the conventional DSM system� Since all of the modi�cations are made
to shared data that is being actively shared
and constantly used� on all sixteen processors� the

��

update�pruning advantage of an invalidation protocol is not relevant� while the increased number of
read misses is a signi�cant problem� Each thread stalls for an average of �� seconds for read misses
to be serviced� In addition� because the last thread to have its read miss satis�ed must wait until
fourteen other threads have successfully acquired their data� the computations tend to complete at
noticeably di�erent times� This causes the average time spent waiting at barriers to increase from
�� to �� seconds� These two phenomena explain the lower performance of the conventional DSM
implementation�

The performance times reported for the Munin version of all applications� including GAUSS�
were with the update timeout mechanism enabled� For GAUSS� disabling the update timeout
mechanism results in a slight performance advantage
a speedup of ��	� instead of ���� on ��
processors�� This is because� in GAUSS� all of the modi�ed data is accessed every iteration� thus
it is best to propagate the updates� and not selectively invalidate� In this case� the �� millisecond
default update timeout time was too short to ensure that no updates were timed out� Enabling the
timeout mechanism thus resulted in unnecessary invalidations and subsequent reloads�

	 E
ect of Communication Reduction Techniques

In this section we try to isolate the e�ects on performance of each of the techniques for reduc�
ing communications that were described in Section �� This isolation is made somewhat di
cult
because of the synergistic e�ect on performance of using the techniques in conjunction with one
another� In particular� write�shared protocols cannot be used in the absence of release consistency�
Therefore� we �rst compare Munin�s bu�ered write�update implementation of release consistency
to a pipelined write�invalidate implementation of release consistency� Then we compare the use of
multiple protocols versus using a single protocol� write�shared� Finally� we determine the value of
the update timeout mechanism in connection with the update protocol�

�� Bu	ered Update versus Pipelined Invalidate Release Consistency

In Section ����� we described the motivation for using a bu�ered update protocol for implementing
release consistency in software� and the advantages of doing so over using a pipelined invalidate
protocol� To evaluate the impact of our decision� we implemented a pipelined write�invalidate con�
sistency protocol and compared it to the bu�ered update protocol that is in normal use in Munin�
In the pipelined write�invalidate protocol� a write fault causes ownership to be transferred to the
faulting processor� Then invalidations are sent out in separate messages� Multiple invalidations
can be outstanding concurrently� but no synchronization operation is allowed to complete until all
outstanding invalidations have been acknowledged� We compared the performance of this imple�
mentation of release consistency with the Munin implementation using bu�ered�update and with
the conventional DSM system� For MULT� TSP�C� TSP�F� and GAUSS there is little di�erence
between the pipelined write�invalidate and bu�ered write�update implementations of release con�
sistency� For DIFF and QSORT� the bu�ered write�update scheme performs ��� better for ��
processors� while for FFT it performs orders of magnitude better� For the latter three applications�
the pipelined write�invalidate protocol performs slightly better than a conventional write�invalidate
protocol� Figures �	 and �� depict these results for DIFF and FFT� The performance of QSORT
is similar to that of DIFF�

These results demonstrate that while the pipelined write�invalidate protocol o�ers some per�
formance gain over a conventional sequentially consistent write�invalidate protocol in a software
DSM system� a bu�ered write�update protocol outperforms both� Pipelining invalidations allows
useful computation to be overlapped with invalidations� which reduces the cost of writes� However�

��

it does not reduce the penalty associated with read misses� which are very expensive in a software
DSM system� Furthermore� the pipelined�invalidate protocol su�ers from false sharing� much in
the same way that a conventional DSM system does� When read misses dominate� or when there
is substantial false sharing� Munin�s bu�ered update implementation is superior�

�� Multiple Consistency Protocols

The observation that no single consistency protocol is best�suited for all programs was discussed in
Section ���� To evaluate the importance of Munin�s support for multiple consistency protocols� we
compared the performance of two versions of Munin�
i� a version in which multiple consistency
protocols were used� and
ii� a version that labeled all shared data as write�shared� thus employing
Munin�s most versatile protocol� Figure �� presents the results of this experiment for TSP�F�
similar results were obtained for the other multiprotocol test programs
TSP�C and QSORT�� For
TSP�F� using multiple protocols leads to a ��� improvement in speedup for �� processors� The
reason is that the multiple protocol version of the program declares the task queue to be migratory�
resulting in the advantages described in Section ����

�� Update Timeout Mechanism

To test the value of the timeout mechanism in connection with the update protocol� we compared
the performance of versions with and without the timeout enabled� For MULT� DIFF� and TSP�C
there is no di�erence� For TSP�F and QSORT� the version with the timeout enabled is ��� and
��� faster for �� processors� respectively� The di�erence is the largest for FFT� Speedup with

Ideal Pipelined Invs. Buffered Updates Conv DSM

Number of Processors

1 2 3 4 5 6 7 8 9

10 11 12 13 14 15 16

S
pe

ed
up

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

Figure �� Bu�ered Write�Update RC versus Pipelined Write�Invalidate RC
DIFF�

�	

Ideal Pipelined Invs. Buffered Updates Conv. DSM

Number of Processors

1 2 3 4 5 6 7 8 9

10 11 12 13 14 15 16

S
pe

ed
up

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

Figure �
 Bu�ered Write�Update RC versus Pipelined Write�Invalidate RC
FFT�

Ideal Multiple Protocols All Write-Shared

Number of Processors

1 2 3 4 5 6 7 8 9

10 11 12 13 14 15 16

S
pe

ed
up

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

Figure �� Multi�protocol versus All Write�Shared
TSP�F�

��

�� processors drops from ��� to ��� when the timeout was disabled
see Figure ���� Finally� for
GAUSS� the timeout causes a �� dropo� in performance for �� processors�

In terms of the underlying DSM operation� without the timeout mechanism the ���processor
FFT sends ������� messages and ��	 megabytes of data� while� with the timeout mechanism
enabled� the ���processor FFT sends only ������ messages and �� megabytes of data� The reason
that the amount of data shipped does not drop as dramatically as the number of messages is that�
after a page of data has been speculatively invalidated� future accesses require an ��kilobyte page
to be transferred rather than just a di��

The other two programs in which each processor�s working set changes dynamically over the
course of the program execution� TSP and QSORT� are also aided by the use of the timeout
mechanism� For TSP� each page of the shared tour array tends to be used by many di�erent
processors over time� but each processor only uses it for a very short period of time� and only a
few processors use a particular page at a time� Without the timeout mechanism� eventually almost
every processor receives updates for almost every page� The shared sort array in QSORT exhibits
a similar phenomenon�

With GAUSS� all of the modi�ed data are accessed every iteration� The slight dropo� in
performance for GAUSS is caused by the fact that the default update timeout time of �� milliseconds
is too short to ensure that no valid updates are timed out�

� Function Shipping

For TSP�F and QSORT� the two programs that use the task queue model of parallelism and that
have a signi�cant amount of sharing� the Munin sixteen processor versions achieves speedups of

Ideal With Timeouts No Timeouts Conv. DSM

Number of Processors

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

S
pe

ed
up

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

Figure �� E�ect of Update Timeout Mechanism on FFT

��

only ��� and ��	� respectively� compared to ��	 and ���� for the message passing versions� The
conventional DSM versions performed even worse� achieving speedups of ��� and ���� respectively�
As shown in Table �� the major source of overhead for these DSM versions
with the exception of
the conventional version of QSORT� is the amount of time spent waiting on the lock protecting the
work queues� For the conventional version of QSORT� false sharing within the array being sorted
is the dominant source of overhead�

These lock waiting times are large because the DSM versions must ship the work queue� a
sizable data structure� to the acquiring thread before that thread can perform any operation on the
work queue� In comparison� the actual time spent performing operations on the work queue is very
small� The message passing versions do not su�er from this phenomenon� since the work queue is
kept at the root node and worker threads perform remote procedure calls
RPCs�� containing only
a small amount of data� to the root node in order to operate on the queue�

In order to evaluate the feasibility and potential value of using a mixed data�shipping and
function�shipping mechanism in a DSM system� we modi�ed the DSM versions of TSP�F and
QSORT such that the task queue remains attached to the root node� and all access to the task queue
by other nodes is performed using RPC� These modi�cations were done in an ad hoc manner� but
research is ongoing to extend Munin to support both DSM and function shipping in an integrated
fashion� The results of function�shipping access to the task queue for the TSP�F and QSORT are
shown in Figures �� and ��� These �gures show the speedups achieved by Munin and conventional
DSM both with and without function shipping for the task queue�

For TSP�F� function shipping causes both DSM versions to perform almost as well as the
message passing version
on �� processors� a speedup of 	�� for conventional DSM� 	�� for Munin�
and ���� for message passing�� In contrast� without function shipping� Munin achieves a speedup
of only ���� and the conventional DSM a speedup of only ���� For the Munin version without
function shipping� communication is substantially more
	��	 messages and �	�	 kilobytes of data�
than the Munin version with function shipping
���� messages and ��� kilobytes of data�� Perhaps
more importantly� the reduced communication of the function shipping version nearly eliminates
the time that threads are idle waiting for access to the task queue�

For QSORT� improvements are similar to those in TSP�F for the Munin version� but no im�
provement is achieved for the conventional DSM version� The addition of function�shipping for the
task queue raises the ���processor speedup for Munin from ��	 to ���	� compared to ���� for the
message passing version� The conventional DSM version� both with and without function shipping
for the task queue� achieves only a speedup of ���� As explained in Section �� false sharing is
the primary obstacle to good performance for the conventional version� While the average time
waiting for locks is reduced from �� seconds to below � second� the average time a process waits
for fresh copies of data increases from ��� to ��� seconds� so the addition of function shipping has

Program Average lock waiting Execution time
time
per processor�
per processor�

seconds�
seconds�

Munin TSP�F �	 ��
Conventional TSP�F �� ��
Munin QSORT �� ���
Conventional QSORT �� ���

Table � Lock waiting times for TSP�F and QSORT

��

Ideal

Mesg Passing

Munin DSM

Conv DSM

Munin w/ RPC

Conv w/ RPC

Number of Processors

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

S
pe

ed
up

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

Figure �� E�ect of Function Shipping on Fine�grained TSP

Ideal

Mesg Passing

Munin DSM

Conv DSM

Munin w/ RPC

Conv w/ RPC

Number of Processors

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

S
pe

ed
up

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

Figure �� E�ect of Function Shipping on Quicksort

��

no bene�cial e�ects�
These experiments show that the addition of function shipping for accessing some shared data

can signi�cantly improve the performance of some programs� In addition� the QSORT experiment
further illustrates the value of Munin�s write�shared protocol for dealing with false sharing�

� Related Work

This section compares our work with a number of existing software and hardware DSM systems�
focusing on the mechanisms used by these other systems to reduce the amount of communication
necessary to provide shared memory�

��� Software DSMs

Ivy was the �rst DSM system ����� It uses a single�writer� write�invalidate protocol for all data� with
virtual memory pages as the units of consistency� This protocol is used as the baseline conventional
protocol in our experiments� The large size of the consistency unit and the single�writer protocol
makes the system prone to large amounts of communication due to false sharing� It is up to the
programmer or the compiler to lay out the program data structures in the shared address space
such that false sharing is reduced� The directory management scheme in our implementation is
largely borrowed from Ivy�s dynamic distributed manager scheme�

Both Clouds ���� and Mirage ���� allow part of shared memory to be locked down at a particular
processor� In Clouds� the programmer can request that a segment of shared memory be locked on a
processor� In Mirage� a page remains at a processor for a certain " time window after it is modi�ed
by that processor� In both cases� the goal is to avoid extensive communication due to false sharing�
The combination of software release consistency and write�shared protocols addresses the adverse
e�ects of false sharing without introducing the delays caused by locking parts of shared memory to
a processor�

Mether ���� supports a number of special shared memory segments in �xed locations in the
virtual address space of each machine in the system� In an attempt to support e
cient memory�
based spinlocks� Mether supports several di�erent shared memory segments� each with di�erent
protocol characteristics� Two segments are for small objects
up to �� bytes�� while two are for
large objects
up to ��	� bytes�� One of each pair is �demand�driven�� which means that the
memory is shipped when it is read� as in a conventional DSM� The other is �data�driven�� which
means that it is shipped when it is written� A thread that attempts to read the data will block until
the next thread writes it� This latter form of data can support spinlocks and message�passing fairly
e�ectively� Our support for multiple protocols is more general� without added cost� and Munin�s
separate synchronization package removes the need to support data�driven memory�

Lazy release consistency ���� ���� as used in TreadMarks ��	�� is an algorithm for implementing
release consistency di�erent from the one presented in this paper� Instead of updating every cached
copy of a data item whenever the modifying thread performs a release operation� only the cached
copies on the processor that next acquires the released lock are updated� Simulation studies indicate
that lazy release consistency reduces the number of message required to maintain consistency� but
the implementation is more expensive in terms of protocol and memory overhead� A comparative
evaluation of the two approaches is the subject of an ongoing Ph�D� dissertation �����

A variety of systems have sought to present an object�oriented interface to shared memory� We
use the Orca ��� and the Midway system ���� as examples of this approach� Other noteworthy
systems include Clouds ����� Emerald ����� and Amber ��	�� In general� the object�oriented nature

��

allows the compiler and the runtime system to carry out a number of powerful optimizations� but
the programs have to be written in the particular object model supported�

The Orca language requires that
i� all access to objects is through well�de�ned per�object
operations�
ii� only one operation on an object can be performed at a time� and
iii� there are no
global variables or pointers� This programming model allows the compiler to detect all accesses
to an object directly without the use of page faults� Programmers must� however� structure their
programs so that objects are accessed in a way that does not limit performance� For example�
an Orca implementation of DIFF requires that the edge elements be speci�ed as shared bu�ers
� the entire array should not be declared as a single object� However� once a program has been
structured appropriately� Orca can transparently choose whether to replicate an object or force
all accesses to be made via RPCs to a master node� If it chooses to replicate an object� it can
support both invalidate and update consistency protocols� It remains to be seen how well Orca�s
optimizations can be integrated into a less restrictive language� On an orthogonal issue� Orca�s
consistency management uses an e
cient� reliable� ordered broadcast protocol� For reasons of
scalability� Munin does not rely on broadcast� although support for e
cient multicast could improve
the performance of some aspects of Munin�

Midway ���� proposes a DSM system with entry consistency � a memory consistency model
weaker than release consistency� The goal of Midway is to minimize communication costs by
aggressively exploiting the relationship between shared variables and the synchronization objects
that protect them� Entry consistency only guarantees the consistency of a data item when the lock
associated with it is acquired� To exploit the power of entry consistency� the programmer must
associate each individual unit of shared data with a single lock� For some programs� making this
association is easy� However� for programs that use nested data structures or arrays� it is not clear if
making a one�to�one association is feasible without forcing programmers to completely rewrite their
programs� For example� the programmer of an entry consistent DIFF program would have to hand
decompose the shared array to exploit the power of entry consistency� The designers of Midway
recognized this problem and gave programmers the ability to increase and decrease the strength of
the consistency model supported� Thus� programs for which the data�synchronization association
required by entry consistency is convenient can exploit its �exibility� while programs for which this
association is inconvenient can use either release consistency
when adequate synchronization is
performed� or sequential consistency� Unlike Munin� Midway exploits the power of a sophisticated
compiler� The Midway compiler inserts code around data accesses so that the Midway runtime
system can determine whether a particular shared variable is present before it is accessed� Thus�
Midway is able to detect access violations without taking page faults� which eliminates the time
spent handling interrupts�

��� Hardware DSMs

Recently� a number of designs for hardware distributed shared memory machines have been pub�
lished ��� 	� ��� ��� ��� ��� ���� We limit our discussion to those systems that are most related to
the work presented in this paper�

We have adopted from the DASH project ���� the concept of release consistency� The di�erences
between DASH�s implementation of release consistency and Munin�s implementation of release
consistency were explained in detail in Section ���� DASH uses a write�invalidate protocol for
all consistency maintenance� We instead use the �exibility of its software implementation to also
attack the problem of read misses by using update protocols and migration when appropriate� The
GalacticaNet system ���� also demonstrated that support for an update�based protocol that exploits
the �exibility of a relaxed consistency protocol can improve performance by reducing the number

��

of read misses and attendant processor stalls� The GalacticaNet design includes a provision to time
out updates to stale data� which is shown to have a signi�cant e�ect on performance when there is
a large number of processors�

The APRIL machine addresses the problem of high latencies in distributed shared memory
multiprocessors in a di�erent way ���� APRIL provides sequential consistency� but relies on ex�
tremely fast processor switching to overlap memory latency with computation� For APRIL to be
successful at reducing the impact of read misses� there must be several threads ready to run on
each processor� Because APRIL performs many low�level consistency operations in very fast trap
handling software� it would be possible to adopt several of our techniques to their hardware cache
consistency mechanism�

The Data Di�usion Machine
DDM� ���� and the KSR�� ���� use hardware DSM to support an
all�cache model for memory� wherein the entire memory of the system is treated as a large cache of
the global virtual address space� similar to the way our software DSM treats memory� The KSR��
supports a fairly conventional directory�based write�invalidate consistency protocol� which limits
its scalability when there is frequent write sharing�

�
 Conclusions and Directions for Further Work

Distributed shared memory
DSM� systems provide a shared memory abstraction on hardware
with physically distributed memory� This approach is appealing because it combines the desirable
features of distributed and shared memory machines� Distributed memory machines are easier to
build� but shared memory provides a more convenient programming model� It has� however� proven
di
cult to achieve performance on DSM systems that is comparable to what can be achieved with
hand�coded message passing programs� In particular� conventional DSM implementations have
su�ered from excessive amounts of communications engendered by sequential consistency and false
sharing�

In this paper we have presented and evaluated a number of techniques to reduce the amount of
communication necessary to maintain consistency� In particular� we replaced sequential consistency
by release consistency as our choice of consistency model� We developed a bu�ered� update�based
implementation of release consistency� suitable for software systems� The update protocol has a
timeout feature� preventing large numbers of unnecessary updates to copies of pages that are no
longer in use� Furthermore� we allow the use of multiple protocols to maintain consistency� Of
particular interest among these protocols is the write�shared protocol that allows several processes
to write to a page concurrently� with the individual modi�cations merged at a later point according
to the requirements of release consistency�

We have implemented these techniques in the Munin DSM system� The resulting system runs
on a network of workstations and provides an interface that is very close to a conventional shared
memory programming system� For data�race free programs� release consistent memory produces the
same results as sequentially consistent memory� All synchronization operations must be performed
through system�supplied primitives� and shared variables may optionally be annotated with the
desired consistency protocol� For the applications that we have looked at� these requirements
proved to be a very minor burden�

The use of these techniques has substantially broadened the class of applications for which DSM
on a network of workstations is a viable vehicle for parallel programming� For very coarse�grained
applications conventional DSM performs satisfactorily� However� as the granularity of parallelism
decreases� conventional DSM performance falls behind� while Munin�s performance continues to
track that of hand�coded message passing� The addition of a function shipping ability further

��

improves the performance of DSM�
Hardware technology has improved dramatically since the experiments reported here were per�

formed� and there are no signs that the current rate of performance improvement will abate soon�
In particular� both processor and network speeds have improved by a factor of �fteen to twenty in
the past four years� Interprocessor communication is still a high latency operation� but there are
indications that latencies can be improved by an order of magnitude through careful protocol imple�
mentation ���� ���� At the same time� DRAM latencies are improving very slowly� so some form of
cache will be present on essentially all future high�performance platforms� Finally� hardware DSM
systems are becoming increasingly common� An important issue to address is the applicability of
the techniques introduced in this paper to future DSM system� both hardware and software�

We believe that there are two basic requirements that DSM systems� hardware or software� must
satisfy to provide acceptably high performance� Both the latency and the frequency of processor�
stalling DSM operations
e�g�� cache misses or synchronization events� must be kept low� It appears
that despite improvements in networking and operating system designs� the latency of remote
operations will slowly increase compared to processor cycle times� However� because memory
speeds are not increasing very rapidly� the ratio of remote memory access to local memory access

not satis�ed by the cache� will decrease� This observation would seem to indicate that a simple
implementation of DSM that ships entire pages
or cache lines� on demand and uses invalidation to
maintain consistency would su
ce as processor and network technology improves� We believe that
this will not be the case because of our second requirement for e
cient DSM� a low frequency of
processor�stalling DSM operations� As processor cycle times continue to decrease dramatically� it is
becoming increasingly important to avoid stalling the processor� As described in Section ���� using
a conventional invalidation�based consistency protocol can increase the number of high�latency read
misses dramatically� Also� as the size of memories and caches increase� page and cache line sizes are
also increasing� which indicates that false sharing will become an increasingly important problem�
These observations indicates that some form of update protocol that supports multiple concurrent
writers� such as Munin�s write�shared protocol� will be useful in future DSM systems�

Our current DSM work focuses on novel techniques required to implement DSM on current high�
performance platforms� with faster processors and networks than the ones used for the experiments
in this paper� In particular� we are studying a more aggressive implementation of release consistency�
lazy release consistency� and compiler techniques to further optimize performance� We are also
studying the value of the techniques described here in the context of a distributed shared memory
multiprocessor�

References

��� A� Agarwal and A� Gupta� Memory�reference characteristics of multiprocessor applications under
MACH� In Proceedings of the ��th Annual International Symposium on Computer Architecture� pages
���	���� June �
���

��� A� Agarwal� B��H� Lim� D� Kranz� and J� Kubiatowicz� APRIL� A processor architecture for multipro�
cessing� In Proceedings of the ��th Annual International Symposium on Computer Architecture� pages
�
�	���� May �

�

��� A� Agarwal� R� Simoni� J� Hennessy� and M� Horowitz� An evaluation of directory schemes for cache
coherence� In Proceedings of the ��th Annual International Symposium on Computer Architecture� pages
��
	��
� June �
���

��� M� Ahamad� P�W� Hutto� and R� John� Implementing and programming causal distributed shared
memory� In Proceedings of the ��th International Conference on Distributed Computing Systems� pages
���	���� May �

��

��

��� T�E� Anderson� The performance of spin lock alternatives for shared�memory multiprocessors� IEEE

Transactions on Parallel and Distributed Systems� ������	��� January �

�

��� J� Archibald and J��L� Baer� Cache coherence protocols� Evaluation using a multiprocessor simulation
model� ACM Transactions on Computer Systems� ��������	�
�� November �
���

��� H�E� Bal� M�F� Kaashoek� and A�S� Tanenbaum� Orca� A language for parallel programming of dis�
tributed systems� IEEE Transactions on Software Engineering� pages �

	�
�� March �

��

��� J�K� Bennett� J�B� Carter� and W� Zwaenepoel� Adaptive software cache management for distributed
shared memory architectures� In Proceedings of the ��th Annual International Symposium on Computer

Architecture� pages ���	���� May �

�

�
� J�K� Bennett� S� Dwarkadas� J�A� Greenwood� and E� Speight� Willow� A scalable shared memory
multiprocessor� In Proceedings of Supercomputing ���� pages ���	���� November �

��

��
� B�N� Bershad� E�D� Lazowska� and H�M� Levy� PRESTO� A system for object�oriented parallel pro�
gramming� Software� Practice and Experience� ���������	���� August �
���

���� B�N� Bershad� M�J� Zekauskas� and W�A� Sawdon� The Midway distributed shared memory system� In
COMPCON ��	� pages ���	���� February �

��

���� R� Bisiani and M� Ravishankar� PLUS� A distributed shared�memory system� In Proceedings of the

��th Annual International Symposium on Computer Architecture� pages ���	���� May �

�

���� H� Burkhardt� S� Frank� B� Knobe� and J� Rothnie� Overview of the KSR� computer system� Technical
Report KSR�TR�

�

�� Kendall Square Research� February �

��

���� C� S� Burrus and T� W� Parks� DFT�FFT and Convolution Algorithms� Wiley
Interscience� �
���

���� J�B� Carter� E�cient Distributed Shared Memory Based On Multi
Protocol Release Consistency� PhD
thesis� Rice University� August �

��

���� J�B� Carter� J�K� Bennett� and W� Zwaenepoel� Implementation and performance of Munin� In Pro

ceedings of the �	th ACM Symposium on Operating Systems Principles� pages ���	���� October �

��

���� L� Censier and P� Feautrier� A new solution to coherence problems in multicache systems� IEEE

Transactions on Computers� C������������	����� December �
���

���� D� Chaiken� J� Kubiatowicz� and A� Agarwal� LimitLESS directories� A scalable cache coherence
scheme� In Proceedings of the �th Symposium on Architectural Support for Programming Languages and

Operating Systems� pages ���	���� April �

��

��
� J�S� Chase� F�G� Amador� E�D� Lazowska� H�M� Levy� and R�J� Little�eld� The Amber system� Parallel
programming on a network of multiprocessors� In Proceedings of the ��th ACM Symposium on Operating

Systems Principles� pages ���	���� December �
�
�

��
� D�R� Cheriton� The V distributed system� Communications of the ACM� ���������	���� March �
���

���� P� Dasgupta� R�C� Chen� S� Menon� M� Pearson� R� Ananthanarayanan� U� Ramachandran�M� Ahamad�
R� LeBlanc Jr�� W� Applebe� J�M� Bernabeu�Auban� P�W� Hutto� M�Y�A� Khalidi� and C�J� Wilekn�
loh� The design and implementation of the Clouds distributed operating system� Computing Systems

Journal� �� Winter �

�

���� G�S� Delp� A�S� Sethi� and D�J� Farber� An analysis of MemNet� An experiment in high�speed shared�
memory local networking� In Proceedings of the Sigcomm �

 Symposium� pages ���	���� August �
���

���� C� Dubnicki and T� LeBlanc� Adjustable block size coherent caches� In Proceedings of the ��th Annual

International Symposium on Computer Architecture� pages ��
	��
� May �

��

���� M� Dubois and C� Scheurich� Memory access dependencies in shared�memory multiprocessors� IEEE

Transactions on Computers� ��������
	���� June �

�

��

���� S� Dwarkadas� P� Keleher� A�L� Cox� and W� Zwaenepoel� Evaluation of release consistent software
distributed shared memory on emerging network technology� In Proceedings of the ��th Annual Inter

national Symposium on Computer Architecture� pages ���	���� June �

��

���� S�J� Eggers and R�H� Katz� A characterization of sharing in parallel programs and its application to
coherency protocol evaluation� In Proceedings of the ��th Annual International Symposium on Computer

Architecture� pages ���	���� May �
���

���� B� Fleisch and G� Popek� Mirage� A coherent distributed shared memory design� In Proceedings of the

��th ACM Symposium on Operating Systems Principles� pages ���	���� December �
�
�

���� K� Gharachorloo� A� Gupta� and J� Hennessy� Performance evaluations of memory consistency models
for shared�memory multiprocessors� In Proceedings of the �th Symposium on Architectural Support for

Programming Languages and Operating Systems� April �

��

��
� K� Gharachorloo� D� Lenoski� J� Laudon� P� Gibbons� A� Gupta� and J� Hennessy� Memory consistency
and event ordering in scalable shared�memory multiprocessors� In Proceedings of the ��th Annual

International Symposium on Computer Architecture� pages ��	��� Seattle� Washington� May �

�

��
� J� R� Goodman�M� K� Vernon� and P�J� Woest� E�cient synchronization primitives for large�scale cache�
coherent multiprocessor� In Proceedings of the 	rd Symposium on Architectural Support for Programming

Languages and Operating Systems� pages ��	��� April �
�
�

���� J�R� Goodman� Cache consistency and sequential consistency� Technical Report CS��

�� University of
Wisconsin�Madison� February �

��

���� D� Hensgen� R� Finkel� and U� Manber� Two algorithms for barrier synchronization� International

Journal of Parallel Programming� �������	��� January �
���

���� D�B� Johnson and W� Zwaenepoel� The Peregrine high�performance rpc system� Software� Practice

and Experience� �������
�	���� February �

��

���� E� Jul� H� Levy� N� Hutchinson� and A� Black� Fine�grained mobility in the Emerald system� ACM

Transactions on Computer Systems� ������

	���� February �
���

���� A�R� Karlin� M�S� Manasse� L� Rudolph� and D�D� Sleator� Competitive snoopy caching� In Proceedings

of the ��th Annual IEEE Symposium on the Foundations of Computer Science� pages ���	���� �
���

���� R� Katz� S� Eggers� D� Wood� C�L� Perkins� and R� Sheldon� Implementing a cache consistency protocol�
In Proceedings of the ��th Annual International Symposium on Computer Architecture� pages ���	����
June �
���

���� P� Keleher� Distributed Shared Memory Using Lazy Release Consistency� PhD thesis� Rice University�
�

��

���� P� Keleher� A� L� Cox� and W� Zwaenepoel� Lazy consistency for software distributed shared memory�
In Proceedings of the ��th Annual International Symposium on Computer Architecture� pages ��	���
May �

��

��
� P� Keleher� S� Dwarkadas� A� Cox� and W� Zwaenepoel� Treadmarks� Distributed shared memory on
standard workstations and operating systems� In Proceedings of the ���� Winter Usenix Conference�
pages ���	���� January �

��

��
� L� Lamport� How to make a multiprocessor computer that correctly executes multiprocess programs�
IEEE Transactions on Computers� C����
���

	�
�� September �
�
�

���� D� Lenoski� J� Laudon� K� Gharachorloo� A� Gupta� and J� Hennessy� The directory�based cache
coherence protocol for the DASH multiprocessor� In Proceedings of the ��th Annual International

Symposium on Computer Architecture� pages ���	��
� May �

�

���� K� Li and P� Hudak� Memory coherence in shared virtual memory systems� ACM Transactions on

Computer Systems� ��������	��
� November �
�
�

�	

���� R�J� Lipton and J�S� Sandberg� PRAM� A scalable shared memory� Technical Report CS�TR���
����
Princeton University� September �
���

���� T� Lovett and S� Thakkar� The Symmetry multiprocessor system� In Proceedings of the ��

 Interna

tional Conference on Parallel Processing� pages �
�	��
� August �
���

���� J�M� Mellor�Crummey and M�L� Scott� Synchronization without contention� In Proceedings of the

�th Symposium on Architectural Support for Programming Languages and Operating Systems� pages
��
	���� April �

��

���� R�G� Minnich and D�J� Farber� The Mether system� A distributed shared memory for SunOS ��
� In
Proceedings of the Summer ��
� USENIX Conference� pages ��	�
� June �
�
�

���� B� Nitzberg and V� Lo� Distributed shared memory� A survey of issues and algorithms� IEEE Computer�
��������	�
� August �

��

���� M� Papamarcos and J� Patel� A low overhead coherence solution for multiprocessors with private cache
memories� In Proceedings of the ��th Annual International Symposium on Computer Architecture� pages
���	���� May �
���

��
� U� Ramachandran� M� Ahamad� and Y�A� Khalidi� Unifying synchronization and data transfer in main�
taining coherence of distributed shared memory� Technical Report GIT�CS������� Georgia Institute of
Technology� June �
���

��
� R�L� Sites and A�Agarwal� Multiprocessor cache analysis using ATUM� In Proceedings of the ��th

Annual International Symposium on Computer Architecture� pages ���	�
�� June �
���

���� M� Stumm and S� Zhou� Algorithms implementing distributed shared memory� IEEE Computer�
��������	��� May �

�

���� C�P� Thacker� L�C� Stewart� and E�H� Satterthewaite� Jr� Fire�y� A multiprocessor workstation� IEEE
Transactions on Computers� ������

	
�
� August �
���

���� A�C� Thekkath and H� Levy� Limits to low�latency communications on high�speed networks� acm

Transactions on Computer Systems� ��������
	�
�� May �

��

���� J�E� Veenstra and R�J� Fowler� A performance evaluation of optimal hybrid cache coherency proto�
cols� In Proceedings of the �th Symposium on Architectural Support for Programming Languages and

Operating Systems� pages ��
	��
� September �

��

���� D�H�D� Warren and S� Haridi� The Data Di�usion machine � A shared virtual memory architecture
for parallel execution of logic programs� In Proceedings of the ��

 International Conference on Fifth

Generation Computer Systems� pages
��	
��� Tokyo� Japan� December �
���

���� W��D� Weber and A� Gupta� Analysis of cache invalidation patterns in multiprocessors� In Proceedings

of the 	rd Symposium on Architectural Support for Programming Languages and Operating Systems�
pages ���	���� April �
�
�

���� A� Wilson and R� LaRowe� Hiding shared memory reference latency on the GalacticaNet distributed
shared memory architecture� Journal of Parallel and Distributed Computing� ���������	���� August
�

��

���� L�D� Wittie� G� Hermannsson� and A� Li� Eager sharing for e�cient massive parallelism� In ����

International Conference on Parallel Processing� pages ���	���� St� Charles� IL� August �

��

��
� R�N� Zucker and J��L� Baer� A performance study of memory consistency models� In Proceedings of the

��th Annual International Symposium on Computer Architecture� pages �	��� May �

��

��

