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Abstract

Distributed systems save large amounts of logs to enable delayed investigation of their
behavior. One kind of such logs are statistics, which are sequences of frequently probed
values of the measures built into the monitored system. The thesis proposes a new
approach for compression of the statistics which are downloaded for analysis from cus-
tomers of the NEC HYDRAstor system. The designed compressor uses numerical rela-
tionships between values of the samples of the statistics, discovered earlier by a special
tool on the support’s site, and some domain-knowledge about the format of files. Files
compressed in this manner should be further compressed with a general-purpose com-
pressor, like bzip2. Experiments on real data received from customers proved that the
size of packages downloaded from customers can be decreased by about 50% when using
the described approach in comparison with the usage of the bzip2 tool only.
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Chapter 1

Introduction

’Man is the measure of all things: of things which are, that they are, and of
things which are not, that they are not.’

Protagoras

Distributed systems are currently gaining popularity. Their complexity makes it
difficult to monitor them on-line, so methods of gathering the state of the system for
delayed investigation are being developed. Obtaining volumes of data large enough may
be crucial, thus compression algorithms are being improved. The thesis presents and
assesses a new approach for compression of the statistics generated by a commercial,
secondary-storage, distributed system – NEC HYDRAstor. Statistics are frequently-
probed values of thousands of measures built into HYDRAstor, which aim to present
the current state of the system.

The need for improving compression of the statistics emerged from a real-life use case.
In general, investigation of the problems with HYDRAstor running in the customer’s
datacenter requires obtaining the statistics. However, some institutions significantly
limit the amount of data that can be downloaded from them due to security reasons.
Naturally, having a small quantity of samples of the statistics dramatically increases
the time and effort spent on the analysis of a problem with the system, so there is a
need to enlarge the number of samples of the statistics that are being obtained from
the customers without increasing the size of passed packages. On the other hand, the
proposed solution should be lossless because any distortion of values of samples after
decompression may lead to false conclusions drawn from the analysis of such statistics.

The aim of the thesis is to present a method of efficient, lossless compression of the
statistics, which is adjusted to the close cooperation with the NEC HYDRAstor system.
The proposed solution was implemented, so different experiments were conducted on the
created software to measure the achievable compression ratios and performance. The
solution presented in the thesis enables support engineers to receive more samples of
the statistics from the customer’s installations without downloading more data. As a
result, the quality of service of HYDRAstor improves as investigation of the state of
HYDRAstor is simpler.
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The thesis consists of six chapters:

2 ’Background’ contains a brief introduction to NEC HYDRAstor, which is impor-
tant for understanding of the decisions made while preparing the solution.

3 ’The distributed model of correlation-based compression’ presents the concept of
the proposed solution.

4 ’Correlations miner’ describes and assesses the first of the two implemented tools,
named StatsMiner. Evaluation is being made both on some artificial data and on
the statistics received from customers.

5 ’Compressor’ describes the second of the implemented tools, named StatsCompres-
sor. The chapter also contains an evaluation of the tool on some artificial data
and discusses a few models of cooperation of StatsMiner with StatsCompressor.

6 ’Evaluation on real statistics obtained from customers’ evaluates the implemented
software and different models of its usage on the statistics received from customers.

7 ’Related work’ summarizes other research carried out in the fields touched upon
by the thesis. On that basis, some suggestions for future work are being made.

8



Chapter 2

Background

The problem which this thesis aims to solve materialized during usage of the NEC HY-
DRAstor system, so the solution should address the specific requirements of HYDRAstor.
Due to that, a short description of the aforementioned system, concerning constraints
it imposes on the developed solution, is needed. A comprehensive specification of HY-
DRAstor can be found in [DGH+09].
The chapter contains three sections:

2.1 ’General overview of HYDRAstor’ contains a description of the HYDRAstor sys-
tem. Many important terms, referred to later, will be defined here.

2.2 ’System monitoring’ discusses logs collecting and analyzing issues, including the
HYDRAstor point of view. The section also contains broadened explanations of
why the research described in the thesis is important.

2.3 ’Gathering statistics in HYDRAstor’ presents some technical details of the process
of gathering statistics in the HYDRAstor system and formats of files used for
storing the statistics, as the described solution has to fit in the framework.

2.1. General overview of HYDRAstor

HYDRAstor, provided by NEC Corporation, is an enterprise level, scalable, secondary
storage system, making use of hard drives instead of tape drives. It supports writing
backup data with high throughput and low latency, which are crucial requirements for
this kind of software. It is of such great importance because backup windows always have
a very limited length due to the fact that backup operation may dramatically reduce the
efficiency of the backuped system. This constitutes a major constraint for the solution
described in the thesis – no software running alongside HYDRAstor can have a negative
impact on the write performance.

As write is a primary operation conducted in HYDRAstor, it will be described with
slightly more detail. When entering the system, the byte-stream of backup data is being
divided into a stream of variable-sized, immutable chunks. If some chunks already exist
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in the system, this fact will be discovered thanks to the usage of chunks’ content hashing,
and such chunks will not be written twice. This process is called inline deduplication
and application of this concept is crucial for HYDRAstor’s performance. If the chunk
should be stored, decision where to put it should be taken. HYDRAstor is in fact a fault-
tolerant distributed system, consisting of a group of servers. To preserve the consistency
of data in case of server or disk failure, each chunk is erasure-coded by applying to it
Reed-Solomon codes. SHA-1 hashes of the encoded chunks and Distributed Hash Table
concept are used for determining a logical place of storing the chunks. Finally, the data
is being transferred by the internal network to the physical node corresponding to the
logical one selected in the previous step.

Naturally, it is possible to read data from HYDRAstor, although this process is not
so common and thus not so important as the writing, so the system was optimized for
writing rather then reading. Reads are generally not frequent.

Finally, data can be deleted from HYDRAstor. The trade-off for a fast, low latency
writing is that the deletion process becomes rather complex and acts as a garbage col-
lection mechanism. There are three distinct phases, each having different impact on the
system. First of all, if an order to remove some data from the system is received, it affects
the internal metadata only and real data still exist on drives. To decide which physically
stored chunks should be erased, a special process called deletion should be run. Its aim
is to mark some chunks as ’to-remove’. Deletion is a complex, distributed algorithm and
will not be described here, albeit full description can be found in [SAHI+13]. However,
there are some facts about deletion which should be considered while developing statis-
tics compression. First of all, deletion is run periodically and rather rare usage of this
tool is preferred. It means that statistics of this process stay constant for long periods of
time. Secondly, it consumes substantial resources while operating, so HYDRAstor can
behave differently when deletion is in progress. It is worth pointing out that deletion
can run simultaneously with writing. As it has already been stated, deletion only marks
some physical chunks as unused. To retrieve the disk space, a space reclamation pro-
cess should be run. Contrary to the deletion process, space reclamation does not have
much impact on HYDRAstor and is just one of many processes run from time to time
as so-called background tasks.

2.1.1. Versions

There are four main versions of the HYDRAstor system – H1, H2, H3 and H4. H1 is
a historical one. H2 is the oldest one that is still commercially used, H3 is the most
popular among customers and H4 is the one being currently introduced to the market.
These numbers stand for both hardware and software as HYDRAstor is being sold as a
complete solution – specially designed servers with the aforementioned software installed
on them.

Naturally, NEC publishes patches and updates for the product. As the system is
being heavily utilized in large corporations (which are the main target group of HY-
DRAstor), applying patches may be a very difficult and time-consuming process – there
should be a service window large enough to do all the maintenance. Due to that, con-
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sumers install only these patches which they really need. As a result, there exist many
different subversions within every version of HYDRAstor. It is not surprising that each
subversion can behave slightly differently so the designed solution for the statistics com-
pression should be appropriately flexible. Moreover, HYDRAstor has many configuration
parameters which are used for performance tuning according to the specific customer’s
needs.

The designed software, conducting correlation-based statistics compression, should
be compatible with H4 systems at least, although the possibility of simple porting it to
the previous versions will definitely be a plus.

2.1.2. Physical architecture

Each installation of HYDRAstor consists of two kinds of servers dedicated to two different
tasks. The heart of the system are Storage Nodes (SN), which hold the data. All
storage nodes are joined together via network connections. Another kind of servers
are Acceleration Nodes (AN) which work as a gateway to HYDRAstor, providing data
access API. ANs and HNs are connected to each other, however ANs are connected to
the customer’s servers as well (SNs are not).

The distinction between ANs and SNs is important for the statistics compression
because processes running on both kinds of servers gather statistics but these statistics
are not the same and the nodes behave differently. In the H3 version processes of ANs
and SNs have about 50 000 statistics each, however statistics of processes running on
AN nodes contain many more constants.

In the H4 version, instead of AN there are Hybrid Nodes (HNs), which combine the
features of old ANs and SNs. In this configuration, processes from old ANs and SNs run
simultaneously on the same machines.

It was decided to carry out all the experiments presented in the thesis on the statistics
gathered from SN or HN nodes (in the case of HNs only statistics from the storage
processes were taken into account). There were a few technical reasons for it. Moreover,
in this approach results of the experiments are more consistent. It is believed that the
compression ratio of the statistics generated by processes from ANs will be even better
than this of the statistics gathered from SNs.

2.1.3. Software architecture

Architecture of a single node

HYDRAstor is a concurrent application, making extensive use of message passing com-
munication. Different subsystems of HYDRAstor (called units) exchange messages with
each other thanks to the OOSF Framework (Object-Oriented Server Framework). More-
over, OOSF Framework schedules execution of the units code on its own threads (it
implements the idea of user-space threads). If there is a message for a specific unit,
this unit is put into a queue and waits for an idle scheduler’s thread to execute it. The
scheduler does not offer any form of preemption so the code is run until the control
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returns to the scheduler or the running thread sends a message. As it can be easily seen,
the scheduler definitely does not offer any constraints on the period of time of running
a piece of code. The concept of OOSF Framework will be important when the process
of gathering statistics will be described.

Each unit has its own characteristic and a set of specific statistics it generates. This
statistics will not be individually described here because they are very specialized and
there are too many of them. On the other hand, certain phenomena should be mentioned
here. First of all, units often count the number of messages they receive and send, so it
seems that there would be some statistics which equal the sum of other ones. Similarly,
bandwidth of some processes is measured (for example performance of all the disks
together), but bandwidth of their subprocesses is recorded as well (performance of each
disk separately, concerning writes and reads volume). Secondly, some of the statistics
will be identical, for example when a specific type of messages is sent between two units
only and these messages are counted in both units. Another similar situation takes place
when a message triggers an action (being counted) or another kind of message to be sent.
Thirdly, there are sometimes non-trivial relationships between recent changes of value
of some statistics and the value of some other statistics. Sadly, it is hard to present an
easy example of such dependency without an extensive introduction. All the mentioned
relationships are even more complex, because their existence depend on the current state
of the system – for example they are not satisfied when deletion is running.

Relationships between values of statistics can be recorded in a form of some rules.
The only problem is where to obtain these rules from. Preparing expert knowledge-based
rules is often too expensive because it involves reading the code of software and making
decisions, whether two statistics are always the same or if some rare exceptions exist.

Distributed system perspective

As it has been stated before, HYDRAstor is a scalable, fault-tolerant distributed system.
Each physical node can host multiple storage servers, proxy servers and protocol drivers
(depending on the type of node) called components. Components can migrate from one
node to another in many situations, for example if a faulty disk has been discovered or a
system needs rebalancing due to its extension. What is more, the number of components
can change in time – if the amount of data grows, a split of component may be needed
to achieve better performance. Naturally, changes in the distribution of components are
not very common but statistics from such events are frequently analyzed as they depict a
kind of a corner case of the system. There is a number of statistics connected with each
component and they are being gathered on the node on which the component actually
resides. It means that in the case of component transfer between physical nodes, some
statistics cease to be gathered on an old node and become logged on the other.
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2.2. System monitoring

2.2.1. Motivation

The survey [OGX12] identifies five reasons for gathering logs:

1. debugging,

2. performance,

3. security,

4. reporting and profiling,

5. prediction.

The first two – debugging and performance – are the most important for HYDRAstor.
As it has been mentioned before, the designed solution should improve the quality of
maintenance of HYDRAstor installations at the customer’s site in the case of occur-
rence of bugs or expectations concerning performance improvements. To achieve this
goal, statistics are often used as a source of knowledge about the specific hardware
and software configuration and the current state of the system. This usage exploits to
some extent the item ’reporting and profiling’ from the list above. However, authors
of [OGX12] go further and describe the usage of an artificial intelligence (for example
clustering tools) for preparation of semi-automatically generated reports about the sys-
tem. It seems reasonable to consider whether this kind of tool will be usable in the
HYDRAstor maintanance, especially that it would help in preliminary visualization of
problematic areas. When it comes to ’prediction’ point, HYDRAstor already has an
anomaly detection tool. It leverages expert-knowledge based rules for discovering mis-
behavior of the system. The last item from the list above, which has not been mentioned
yet, is security. It seems that security problems (perceived as intrusions or breaches) do
not apply to HYDRAstor because the system is a ’very’ backend solution and security
is already being enforced by the higher layers of software (especially software creating
backup).

2.2.2. Logs and statistics

Up to now the term ’logs’ and ’statistics’ have been used interchangeably and now it
is time to make a clear distinction between them and explain why statistics are so
extensively used in HYDRAstor.

Traditionally, a ’log’ consists of a number of lines, each having a timestamp, de-
scribing a singular event in the system – for example receipt of the message. Logs are
generally extremely verbose, which can act both as up- and downside. As the single log
message (generally) maps to the single event, debugging based on logs is easier because it
is possible to get all the details of the event. At the same time, big systems gather huge
amount of this traditional logs so it puts a visible, negative impact on the performance.
Moreover, getting a set of messages connected with a specific situation requires extensive
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filtering and transforming. Additionally, obtaining a full image of the system behavior
is more complicated because it involves parsing and aggregating data from logs.

Statistics, as they are used in HYDRAstor, are sequences of samples gathered peri-
odically. For example, every 20 seconds a number of requests passed to each disk is being
dumped. The number of requests is known but all the knowledge about the sources of
requests or their specific type is lost, which makes debugging more complicated. How-
ever, it seems not to be a problem for experienced maintainers, as the example of the
HYDRAstor shows. On the other hand, statistics facilitate the process of getting the
overall image of the system because making a plot out of them involves the minimal
amount of parsing and transforming. The biggest advantage of this approach is the fact
that it conserves disk space and thus minimizes impact on performance. Statistics can
be treated as higher level logs – they give overall perspective at the price of reducing the
details by aggregating data. It is possible to convert messages from logs into statistics
but not the other way round. Statistics are in fact a kind of lossy compression of logs.

HYDRAstor gathers both logs and statistics but statistics are more important. Clas-
sical logs cover the most important situations, for example failed assertions. Some legacy
code still logs certain common situations but as it has strong impact on performance,
such code is being transformed to use statistics instead. Statistics in HYDRAstor are
used for saving all the information about the current system state. As it was described
before, each machine generates about 50 000 different statistics, depending on the role
in the installation and software version.

2.3. Gathering statistics in HYDRAstor

2.3.1. Process of gathering statistics

Gathering statistics in HYDRAstor can be divided into several phases.
The first one can be called unit-local: each unit has a map of counters representing

statistics. Appropriate events trigger actions on these counters. It should be mentioned
here that the described counters do not store any timestamps.

The second phase is node-local: One specialized unit periodically sends a message
(MessageRequestStats) to other units to pass back the current values of their statistics
(values of counters). Receipt of this message sometimes results in resetting some of the
statistics, for example those informing about “recent” changes. The answer message is
being redirected to the StatsGather module which is responsible for storing data on disk.
StatsGather dumps statistics in one of the formats which will be described in the next
subsection (see Par. 2.3.2).

The node-local phase has some special characteristics which have been taken into ac-
count while designing the solution described in the thesis. The most important problem
is that the scheduler does not guarantee that any set of messages (especially any subset
of the sent MessageRequestStats) will be delivered synchronically to their recipients. It
means that if there are two statistics which are always identical but reside in different
units, their values may differ slightly. The variations are mostly very small but it makes
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the problem of finding correlations much harder. Moreover, it also affects the compres-
sion. This issue will be addressed later. On the other hand, this problem has no impact
on the statistics which originate from the same unit.

Another impediment connected with the node-local phase of gathering statistics is
the fact that statistics may be requested from different units with different frequency.
Currently, all units are asked for statistics every 20 seconds, however it is planned to
allow some units to be inquired every 5 seconds. As a result, the designed software
should be able to compare samples gathered with different frequency.

Statistics which are stored on disk wait until the user requests them (the download-
phase) or they become old enough to be deleted to conserve the space. Nowadays there
are no other ways of utilizing the statistics in HYDRAstor. Admittedly there is an
anomaly detection tool but it works online.

As it can be noted, statistics from different nodes are never merged into one file.
Such an action would involve much network traffic and seems not to give any benefits in
the download-phase, because if the user has to download statistics, there is no difference
between downloading data from one node or from a few, especially that there are scripts
which automate the process. On the contrary, a single file contains the statistics gathered
from all the units running on the node.

2.3.2. Formats of files storing statistics in HYDRAstor

HYDRAstor, probably as any piece of commercial software with extended market pres-
ence, uses a few types of formats for storing statistics and evolution of formats can be
seen across various versions of the system. There are naturally some expectations a
statistics file should meet. Although statistics are being mostly visualized using a spe-
cial tool (called StatsViewer), there is sometimes a need for manual manipulations of
the files. Due to this, a good format should enable easy manipulations using standard
unix tools such as grep, cut, sort etc. On the other hand, such files should not use too
much space and generating them should not have an impact (neither CPU nor memory
consumption) on the working system.

XML files

XML files are the oldest ones used in HYDRAstor for storing statistics. A file consists of
a few (about 20) markups describing metadata and the rest of the file are markups, one
per line, each of them informing about exactly one statistic – there is a name, time offset,
frequency of gathering and sequence of samples. Such organization of data has many
advantages – it is readable for humans, the process of generating a file is not complicated
and there are some existing XML-parsers on the market. On the other hand, XML files
use a lot of disk space. This problem is mitigated by compressing the files using the
gzip tool. XML files are however not used anymore in the H4 version, so the designed
solution is not expected to directly read files in this format.
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VERSION 1 hydra-0_24_10269-BEv6_s-554-FRF5601_DB-31

* NetworkAddress 192.168.7.131:24800

NEWSTAT stat_alpha 1 C first_example_unit

NEWSTAT stat_beta 2 C first_example_unit

NEWSTAT stat_gamma 3 C first_example_unit

NEWSTAT stat_delta 4 C first_example_unit

NEWSTAT stat_epsilon 5 C second_example_unit

NEWSTAT stat_zeta 6 C second_example_unit

NEWSTAT stat_eta 7 C second_example_unit

SENDER first_example_unit 2012-10-16_10:07:53

TIME OFFSET 0;20;40;60;79;100;121;140;162;180

1 10;20;10;15;12;13;14;16;15;14;

2 10;20;10;15;12;13;14;16;15;14;

3 10;30;40;55;67;80;94;110;125;139;

4 5;22;27;-1;17;11;13;13;20;5;

SENDER second_example_unit 2012-10-16_10:07:54

TIME OFFSET 0;21;40;60;80;100;120;140;160;180;200;220;240;262;281;299;322

5 6;16;11;12;13;14;15;15;15;10;10;12;14;16;2;1;31

6 4;10;26;13;17;14;12;10;15;10;34;32;12;56;7;5;65

7 7;7;7;7;7;7;7;7;7;7;7;7;7;7;7;7;7

The sequence of the samples 

of the statistic no. 2 (stat_beta).

Declaration of the statistic stat_delta,

having type C (counter), identifier 4

and gathered from the first_example_unit.

Definition of the section

containing sequences

of samples of the statistics

gathered from the 

second_example_unit.  

Please note that format of storing the timestamps will not be described in detail.

Timestamps are treated as metadata only and passed to the Zplus file without any modifications.

Metadata

Figure 2.1: Example Zstat file.

Zstat files

The Zstat file format was introduced by one of the updates for H3 and has become
the base format for storing statistics since then. Introducing it was a part of extension
of the functionality of the statistics gathering module. This format offers better space
utilization and now exact time of gathering the samples is being saved. However, the
format is hand-made so a special parser was delivered. Like in the case of XML files, Zstat
files are being compressed using an external compressor. This issue will be discussed
later in the thesis.

The designed software should support Zstat files. The practical side of it will be
described later but theoretically this format puts all the practical constraints on the
created solution. First of all, utilized compression should be lossless compression from
the point of view of Zstat files – compressed and decompressed Zstat file should be
izomorphic to the base one. Secondly, compressed files will be compared to the base
Zstat files to determine the compression ratio. According to it, the format of the files
created by the designed compression tool (named StatsCompressor) will be called Zplus
to highlight these two requirements.

Zstat files are comprised of two sections, each having the same number of lines (see
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Fig. 2.1). In the first section, each line contains a name of one statistic, some metadata of
it and a numerical identifier, which is unique to the file. In the second section, each line
(except for a few, which are sequences of timestamps) contains an identifier of a statistic
and a sequence of its samples. Please note that timestamps will not be described in
detail in the thesis because the designed solution does not use them, so they are being
treated as a kind of metadata and are just copied to the Zplus files. It is important,
that each statistic in the file may have a different number of samples. Zstat files are
compressed using the gzip compressor.

Pack Statistics

The Pack Statistics format was designed in the first attempt to solve the problem of
minimizing Zstat files size in the case of downloading them from the customer restricting
the amount of downloaded data. Pack Statistics files are created in the download-phase
by a special tool from regular Zstat files. There is also a similar program converting
back Pack Statistics into Zstat files.

The described file format is similar to the Zstat file format but numerous simple
tricks are used to make the files smaller. First of all, such files contain a subset of all
statistics only. The user can define it manually or leverage one of the predefined cut
schemes that were manually defined by the HYDRAstor’s developers. Secondly, Pack
Statistics files are compressed using the bzip2 tool, in contrast to gzip in the case of
Zstat files.

A Zstat file consists of two main parts (see Par. 2.3.2): a mapping of the statistics’
names to the numerical identifiers and a mapping of the mentioned identifiers to the
samples’ sequences’ values. It can be observed that the real names of the statistics
have long common prefixes (for example METRIC::DataSynch::DiskRequestManager:
:RequestsCount::total::requestsInProgress::RecentMax and METRIC::DataSynch::Disk
RequestManager::RequestsCount::cannotExecuteBecauseOfLimit::Current). In Pack
Statistics files, name to identifier mapping is described in the form of a tree, which
has stems (METRIC, DataSynch, DiskRequestManager, etc.) in the inner nodes and
identifiers in the leaves. This approach reduces the space consumption by about 20-30%.

The designed solution may be merged into Pack Statistics tools during productization
phase. All the ideas presented above could be used by the designed compression tool.
The way the name-identifier mapping is compressed seems to be quite effective and
will not be improved at this point, especially that the thesis focuses on the problem of
samples’ compression. The idea of limiting the number of statistics in the file makes sense
only if the user knows exactly which statistics are really needed and it is not so common
in practice while starting the investigation of a bug. In such a case, the predefined set of
arbitrarily defined, ’important’ statistics is downloaded. Using these files is harder due
to the lack of many statistics, which are interesting in the specific situation. It is believed
that the designed solution will made the situation, when restricting the statistics’ file
content is necessary, very rare.
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Database files

All the formats described up to now are used to store the statistics at the consumer’s site
and to transfer it to the support team. StatsViewer, the tool used for making plots from
statistics, is able to read the aforementioned formats (except for Pack Statistics, which
need to be converted first) but it needs to load all the data into memory. If statistics
from a long period are being analyzed, opening them takes a long time. From this
problem the need for on-demand statistics loading arose. The solution is a conversion
of statistics’ files (of different formats) into one, standardized database format. In fact,
database files are sqlite databases, which hold already parsed data, ready to use by
StatsViever. It should be mentioned that databases are created on the support team’s
machines only – they are never created at the customer’s site nor transferred through
the Internet due to their size and specific application.

From the point of view of the solution that is being sought, database files are inter-
esting as an input for some of the created tools because it allows the programs to read
files in only one format, as there are converters making database files from any version
of XML or Zstat files.
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Chapter 3

The distributed model of
correlation-based compression

The thesis proposes a new method of minimizing the size of files containing statistics that
are being downloaded from customers. The solution should be lossless and do not have
a negative impact on the HYDRAstor system running on the customer’s machines. As
it was already mentioned in Par. 2.1.3, it is believed that many statistics are correlated
with other ones and the thesis presents a method of compression which tries to leverage
this fact. On the other hand, the described solution was designed to cooperate with
HYDRAstor, so it can use some domain-knowledge about the format and content of the
compressed files.

The central concept of the thesis is a correlation, that is a relationship between
samples of a few statistics. For example, if there are two statistics in a file (statistics f
and g) having the same sequences of samples’ values (f(0) = 5, f(1) = 3, f(2) = 8 and
g(0) = 5, g(1) = 3, g(2) = 8) they are correlated – there is an identity between them
(it will be noted as f = g). Such correlation can be used during compression of the file
(in fact, a correlation-based compression), because it is enough to dump the sequence of
samples of statistic g and save the information, that there is also a statistic f and f = g.
Naturally, identity is just a very simple example of correlation – more complicated are
for example sums (so h = j + k, where h, j, k are statistics).

Technically, there are two types of correlations – strict correlations and weak corre-
lations. The previous paragraph presented a strict one: f = g. An example of a weak
correlation is the following identity – there are statistics fw and gw, fw(0) = 5, fw(1) =
3, fw(2) = 8 and gw(0) = 5, gw(1) = 6, gw(2) = 8, and there is fw = gw + ~d, where
d = [0, 3, 0] and it is called a deviations vector. In fact, there is always a weak corre-
lation between any statistics. Naturally, the better a weak correlation is, the smaller
numbers the deviations vector contains. The concept of a deviations vector will be im-
portant in the chapter about StatsCompressor (Chapter 5). In the thesis, if the notion
of the correlation is used, it is always a strict correlation (unless the weak correlation is
explicitly mentioned).

The correlation-based approach has been implemented in the form of a stand-alone
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tool named StatsCompressor. The tool will be run on the customer’s machines to com-
press the files in the Zstat format (see Par. 2.3.2) containing statistics. The tool out-
puts a file in the Zplus format, which is an extended version of the Zstat format. The
StatsCompressor uses the correlation-based approach and some domain-knowledge about
the format and the content of the Zstat files.

A single Zstat file contains thousands of statistics and each statistic has many sam-
ples, so numerous correlations between the statistics can exist. Discovering the corre-
lations on the customer’s machines might have a strong, negative impact on the per-
formance of the simultaneously running HYDRAstor, so it was decided to prepare a
separate tool, named StatsMiner, which will be used for searching for the correlations
while running on the support’s site machines. The tool reads database files for flexibility
and produces a file containing rules. A single rule describes a single correlation between
statistics. Rules are enriched with some metadata about the quality of correlation, for
example how many times the correlation was found. StatsCompressor uses the rules
created by StatsMiner for conducting a correlation-based compression.

StatsMiner and StatsCompressor form a distributed compression-model, presented
in figure 3.1. The figure shows consecutive operations that should be carried out to
download statistics from a customer, compressed with the usage of the designed software.

StatsMiner runs at the support team’s site and StatsCompressor at the customer’s
site. The support team runs StatsMiner on the set of example files to create the rules
file. The currently implemented version of the tool has not achieved the fully planned
functionality – some algorithms are being proposed in the thesis but they were not
implemented due to the lack of time. However, at present, the number of rules created
by StatsMiner is too big to upload all of them directly to the customer, so some kind
of selection of the rules has to be done. This limited set of rules is being occasionally
transfered to the customer, for example with a package containing a set of patches and
updates, and then stored on the hard drives of the customer’s machines.

If the support team needs to download statistics from the customer, a selected file in
the Zstat format is being compressed using StatsCompressor. Naturally all the Zstat files
could be automatically compressed when created but it seems to be a waste of resources
– the aim of the research was to increase the number of samples downloaded by the
support in case of limited available bandwidth. It was decided that StatsCompressor will
be exploiting domain-knowledge only, not running any algorithms on the byte level. The
aim of this assumption was to focus on the high level correlations between statistics and
not on the lower, byte level. It was believed that existing general-purpose compressors
will carry out this kind of compression faster and better. Moreover, implementing such
an algorithm will be exceptionally error-prone. Ready Zplus file is downloaded from the
customer.

The obtained Zplus file should be decompressed to recreate the original Zstat file
(as the used compression methods are lossless). During the research, the decompressor
was not implemented due to the lack of time, however it might prove that the original
and decompressed Zstat file are identical. A meticulous review of the implemented
compression algorithms had been done for proving that methods of compression are
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lossless. There were also functional tests performed to check whether StatsCompressor
produces Zplus files adhering to the specification.

The presented distributed model of cooperation of StatsMiner with StatsCompressor
is the most general one. Other models will be discussed later in Par. 5.10.

In the subsequent chapters, a notion of finite difference operator ∆, defined in
[GKP94], will be extensively used:

∆f(x) = f(x+ 1)− f(x) (3.1)
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Figure 3.1: Main (distributed) model of usage of the designed solution.
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Chapter 4

Correlations miner

This chapter contains a description and evaluation of StatsMiner, which is a tool for
discovering correlations in the statistics. The rules describing the correlations found will
be used later by StatsCompressor to compress the files with statistics.

The chapter contains the following sections:

4.1 ’General overview’ presents the concept of StatsMiner – the problems it should
solve, the high-level architecture, the main assumptions and the selected technol-
ogy.

4.2 ’Testbed’ describes the methodology of StatsMiner testing and the data used during
this process.

4.3 ’Windows’ defines one of the most important entities used in StatsMiner, which is
a window. Apart from the definition, different algorithms for preparing windows
are presented. One of them was implemented.

4.4 ’Storing the discovered rules’ addresses the issue of keeping the discovered rules in
RAM as it was found to be crucial for the performance of the tool.

4.5 ’Types of correlations’ introduces a division of correlations’ discovery algorithms.

4.6 – 4.8 ’Global inter algorithms’ ’Local inter algorithms’, ’Intra algorithms’ describe the
specific mining algorithms, divided into the categories presented in Par. 4.5. Note
that not all the concepts have been implemented (especially none of the local inter
algorithms have) albeit all of them are discussed to build a comprehensive image
of the possible features of StatsMiner.

4.1. General overview

The correlations miner, named StatsMiner, is a data-mining tool created as part of the
research described in the thesis and was used for searching for correlations between
statistics. It was created as a tool to be run on developers’ machines, at least in the
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experimental phase of the entire project. Depending on the resources’ consumption,
part of it or the entire application may be merged into StatsCompressor during the
productization (see Par. 5.10.4). The code of StatsMiner was written in a manner which
enables fast productization – it adhered to the coding standards and good practices, was
object-oriented etc.

The tool reads database files (see Par. 2.3.2), splits loaded sequences of samples of
statistics into several Windows (see Par. 4.3), discovers some types of correlations and
creates rules, assesses the quality of the rules and outputs CSV file containing rules.

4.1.1. Problem statement

Any correlation between statistics can be described using an equation. It is believed that
almost all relationships among analyzed statistics can be described with linear equations
(although finite differences – defined in Chapter 3 – of statistics are allowed as well).
This assumption is based on the expert-knowledge of HYDRAstor developers who do
not expect other genres of correlations (ie. quadratic) to appear. Linear algebra deliv-
ers some tools for discovering linear dependences (for example Gaussian Elimination),
although they have two flaws – first of all, they require that the number of analyzed
statistics is the same as the number of samples of every statistic. If there are 50 000
statistics and finite difference of each of them is included, it mean that there are 100 000
sequences of samples to be analyzed so each sequence should consist of 100 000 samples.
Normally, statistics are being gathered every 20 seconds, so samples from 23 days of
gathering would be needed! The second problem with this approach is that Gaussian
Elimination has complexity of O(n3) so in the case of usage of 100 000 statistics the
time of computations would be unacceptably high. Another constraint is laid down by
the memory consumption – storing a matrix of size 100 000× 100 000 containing C++’s
doubles would consume 75 gigabytes of memory!

As mining for linear dependencies is impossible, some requirements imposed on the
results should be weakened to make the problem easier and thus solvable. First of all,
it seems quite obvious that coefficients of correlations will be integers – this observation
comes from the nature of statistics which are describing a discrete space of events.
Unfortunately, searching for linear dependencies having integer coefficients is an NP-hard
problem – there is a simple reduction from the subset-sum problem. As the researched
problem cannot be limited to a more constrained one, another approach has been chosen.
There would be plenty of simple algorithms run on input data, each of them discovering
another kind of precisely defined relationship between statistics. The result of this
approach will be some subset of results that would be gained from a true search for
linear correlations but computing the aforementioned subset is achievable.

4.1.2. Phases

The main function of StatsMiner is to dig up the correlation in the statistics. A few first
runs of the tool have proved that it can find even billions of correlations, so soon the need
of precise quantitative information about the correlations became apparent. Moreover,
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as the amount of data to be searched was very large (100 000 statistics at a time), some
heuristics for speeding up the process of mining were engaged. The most important one
was that if a kind of correlation on a few statistics is found, these statistics are removed
from the working set before the search for the other kinds of correlations. This issue
will be described in detail when dealing with specific algorithms but one of the effects
of this approach is that lightweight correlations can hide the heavier ones.

To deal with such situations, the work of the tool has been split into two phases. The
first phase is mining phase (Fig. 4.1) during which correlations in the set of statistics
are dug from scratch. Naturally, it is a time-consuming process. For example, mining
on 100 000 statistics, each having 20 samples, takes about 300 seconds. Naturally, all
the acceleration heuristics are used. The second phase is verification phase (Fig. 4.2).
During this phase, the tool searches for occurrences of the correlations discovered before
(or loaded from a file) and only checks whether the correlation applies or not to the
working set. On the same set of data as presented before, it takes about 30 seconds.

The division into phases results in the possibility of better parallelization of the
computations. The map-reduce paradigm fits best for the tool’s usage pattern. In the
case of mining and verification phases, the set of database files to be researched can be
spread through a number of machines (map step) and in the reduce step, files containing
generated rules can be easily merged into one.

In fact, the miner and the verificator can be two different programs. This approach
may result in better performance of both (as they could be more specific and tuned) at
the price of higher development and maintenance costs.

4.1.3. Choice of programming language

The program can be run on Linux, as the whole HYDRAstor software does, and is
written in C++. The choice of the language was forced by a number of reasons. The
pragmatic one was that developers of HYDRAstor use C++ and Python so choosing
one of these two would make the development easier due to the possibility of using the
existing code database and asking other programmers for help. Furthermore, the pro-
gram was expected to consume much CPU and memory. Although the first requirement
may be satisfied by usage of Python (C++ is naturally faster but the development pro-
cess is much slower) but the second one caused the choice of C++. This was a good
decision because the assumptions proved to be right. StatsMiner, run with the standard
configuration, uses a few gigabytes of RAM and if the software was written in Python,
this would make the application unusable due to poor garbage collection in Python.

4.2. Testbed

4.2.1. Testing data

All the tests of StatsMiner were carried out on the following sets of data:

1. LRT_A — 50 randomly selected Zstat files (from 5327 available files) from Long
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Figure 4.1: Schema of mining in StatsMiner.
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Figure 4.2: Schema of verifying in StatsMiner.
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Running Test on H4 (there was 1 HN and 4 SNs). This test lasted for about two
weeks and its aim was to simulate both normal usage of HYDRAstor and some
corner cases too. The aforementioned files have been converted into the Database
format. Each file consisted of about 50 000 statistics, each having 60 to 100 samples
(although all the statistics in one file have about the same number of samples).

2. CL — 30 randomly chosen XML files from among files received from real users
(customers) of HYDRAstor. The files were generated by various versions of HY-
DRAstor system having various patches and updates installed. Only the files of
the size 2 MB to 4 MB and generated by SNs were approved for this test. The
selected files have been converted into the database format. They contained about
50.000 statistics, each having 140 – 240 samples (although all the statistics in one
file had about the same number of samples).

CL and LRT_A test sets contain a different number of files (30 and 50), because
usage of 50 files in the case of the CL set resulted in the shortage of RAM due to
a large number of found rules and experiments could not be accomplished success-
fully.

4.2.2. Measuring performance

All the tests were run on the development machine with two Intel Xeons 5645 CPUs and
48 GB of RAM. The time and memory was measured using the time program, run with
parameters %U (Total number of CPU-seconds that the process spent in user mode)
and %M (Maximum resident set size of the process during its lifetime). The memory
consumption results were corrected so they are not affected by the well-known counting
bug in time [com13].

4.3. Windows

The window is the central concept in StatsMiner and can be described as a set of com-
parable, same-length sequences of samples of all available statistics. The length of the
window is the number of samples in an individual sequence. The width of the window is
the number of statistics. In fact, the window is a matrix. Note that the window does not
contain any information about the time of gathering of any of the samples it contains –
it is an assumption that simplifies the usage of windows.

Figure 4.3 presents an example window having length 10 and width 7. A single file
can be chopped into many windows (compare Fig. 2.1, presenting an example Zstat file,
with Fig. 4.3 showing one window generated from the part of data from the mentioned
file). Each algorithm searching for correlations expects a window as an input. Thanks
to the windows properties (same number of samples of each statistic), implementation of
the mining algorithms has been simplified. Another benefit of windows usage are clear
criteria for results comparison – rules always apply to the specific number of well-defined
windows. On the other hand, files analyzed by the tool can contain a different number of
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stat_alpha 10 20 10 15 12 13 14 16 15 14
stat_beta 10 20 10 15 12 13 14 16 15 14
stat_gamma 10 30 40 55 67 80 94 110 125 139
stat_delta 19 22 27 -1 17 11 13 13 20 5
stat_epsilon 15 16 11 12 13 14 15 15 15 10
stat_zeta 4 10 26 13 17 14 12 10 15 10
stat_eta 7 7 7 7 7 7 7 7 7 7

Figure 4.3: Example window having length 10 and width 7. It is built up from samples
of 7 statistics: stat_alpha, stat_beta etc., each having exactly 10 samples. The window
was generated from the example Zstat file from the Fig. 2.1. Please note that the window
does not contain all the samples from the mentioned file.

samples of each statistic, so stating that ’rule was found in 3 files’ is much more imprecise
than saying ’rule was found in 3 windows’. The concept of a window is extensively used
during verification – having a rule describing a correlation and a window, two facts are
checked and then saved for each rule (see Fig. 4.2): if the correlation can be applied to the
window (all the expected statistics exist) and if the samples really fulfill the correlation.

The content of a window, as an input for mining algorithms, has a significant impact
on the number and the type of the correlations found. Two independent issues are
important – the size of a window and the algorithm for generating it (making a window
out of statistics loaded from the database file).

Window generating seems to be trivial but some problems need to be faced during
this process, making it quite complicated. As it was mentioned before, in HYDRAstor
statistics can be gathered with different frequencies, the process of gathering is asyn-
chronous at units’ level, statistics may appear or disappear in every moment and finally
samples are being stored in variable-length files (Zstat). Two algorithms for generating
windows will be presented in the next section.

The size of the window has huge impact on the number and quality of correlations
found in the given database file. As experiments have proved that too small windows can
be misleading because correlations found can be just occasional but in excessively long
windows many correlations may be missed because an asynchronous nature of statistics
gathering process disturbs the samples in the way that strict correlations vanish. Strict-
correlations are interesting because looking for them is much easier than searching for
weak ones (see Par. 4.7.5).

The metric of the quality of correlation is its level of significance. For the correlation
C it is defined as

significance(C) = applies (C)
appears(C) (4.1)
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where

applies(C) = the number of windows to which correlation C
strictly applies

appears(C) = the number of windows in which all the statistics
expected by correlation C appear.

Plots of significance of the different correlations types will be presented in Par. 4.9.
If it is not explicitly stated, all rules described in the thesis have been generated on

windows having length of 10 to 20 samples.
Note that each window contains also finite differences of all its statistics – it is

believed that if f and g are statistics, there can be some correlations like ∆f = g. This
assumption is based on the fact that there are some ’recent’ statistics, which measure
the change of some parameters in the last few seconds.

4.3.1. Windows generating algorithms

Window generation is a preparation of data for the mining algorithms – samples of
statistics loaded from the database have to be divided into windows as all the algorithms
searching for the correlations work on windows.

In this subsection three approaches to creating windows will be described – two
replaceable algorithms (Greedy and Timestamps-aware) and one idea of a higher level
source of windows (random windows). However, only the greedy algorithm has been
implemented and described in detail. The remaining two are presented as possible
extensions if Greedy Algorithm was not performing well (although it did).

Greedy Algorithm

The Greedy Algorithm for window generating was the first one implemented. The idea
of the algorithm is in general quite simple – for each statistic the algorithm loads samples
from the database file and puts these data into the internal samples’ queue of unlimited
size. Each statistic has its own samples’ queue. If the sizes of all statistics’ samples’
queues (except for empty ones) at least equal the minimal window length (M), first M
samples of each statistic are being moved from the queues to the new window. Naturally,
a window cannot be longer than the desired maximal length. However, if one of the
queues contains fewer samples (N) than the minimal window length, more samples are
loaded from the database. If there are no more samples in the database, that number of
first samples (N) is being dropped from all the buffers.

The algorithm is called ’greedy’ to depict the fact that it does not make use of
timestamps of samples. It can lead to an error-prone situation when a window is created
but there is a shift in timestamps of samples so they are theoretically not comparable in
a column anymore (so if there are two statistics, f and g, and i− th sample is analyzed,
f(i) cannot be compared to g(i)). Luckily, it concerns the inter-unit correlations only
because i − th samples of the statistics of one unit always have the same timestamps.
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Naturally, mining algorithms can find some improper correlations between two units if
timestamps of samples are not being taken into consideration, but such correlations will
get low grade in the verification phase. Another problem with this algorithm occurs if
there are many statistics which appear or disappear at the same time, because it might
be impossible to create any window.

The flaws of the algorithm are balanced by its advantages, mainly by speed. If
n is the total number of samples to be used in computations, the complexity of the
algorithm is O(n). The ease of use of correlations generated in this way is another
upside of the algorithm because if StatsMiner does not use timestamps, StatsCompressor
does not need them either, making that tool much faster and simpler – it can just
take a few sequences of samples and try to apply fitting correlations to them. Finally,
implementation of this algorithm was very fast and it is quite usable, as the number of
correlations found is sufficiently large.

Timestamps-aware Algorithm

The main problem with the Greedy Algorithm is that it does not take into consideration
timestamps of the samples. To address this problem, a Timestamps-aware Algorithm
was planned to be designed. However, in the meantime, the generator of files in the
database format had been improved in a way that the Greedy Algorithm performed
better (created more windows) than before. Moreover, good compression ratios achieved
by StatsCompressor while working with the rules dug in the windows generated in the
greedy way proved that using timestamps while generating windows is not as crucial as
it seemed previously. Due to that Timestamps-aware Algorithm was not created and
thus timestamps of the samples are not described in detail in the thesis, as they are not
being used by any of the implemented algorithms.

Random windows

Random windows are an idea to reuse (or rather ’recycle’) windows generated by the
algorithms described before. As it was mentioned, the StatsGather process is asyn-
chronous so even if a correlation between statistics from two units objectively exists,
there is still a chance that it will never be found due to slight deviations between com-
pared samples. Such a phenomenon is not just theoretical – it had been observed in real
data (while searching for a bug in StatsMiner). The size of a window was set to be 10
to 20 samples and two evidently identical statistics had deviations with probability of
10%. Sadly, there was at least one deviation in each generated window so a correlation
was never found. Random windows address this issue.

The idea is to create a window from a few columns of samples taken randomly from
windows generated in the classical way, for example all 4th, 6th an 7th samples from the
first window and 1th, 6th and 8th samples from the second window will be transferred
into a new random window. This new window will naturally satisfy all the expectations
from the definition of a window, although the samples will not be consecutive anymore.
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Depending on the total length of windows from which the sets of samples will be
taken, the random window concept will help to fight with deviations in the samples.
Naturally, the probability of deviation stays the same but it is possible to generate
much more random windows than normal windows from one database file, and the
more random windows are generated, the higher is the probability of getting random
window having no deviations, thus containing strict correlation which was hidden before.
Moreover, generating a random window is very cheap because all the samples are already
stored in the memory (there is no need to read data from a database file) and can be
programmed in the manner that no samples will be copied between old windows and a
new, random one.

The algorithm has not been implemented due to the lack of time, although it seems
to be an easy and efficient extension of StatsMiner.

4.3.2. Summary

A window is a convenient container for statistics and their samples and it makes the
implementation of the mining algorithm much easier. The way windows are created
has significant impact on the rules discovered by StatsMiner. One parameter is window
length (as its width depends on the data loaded from the database), another is an
algorithm used for inserting samples into windows. The Greedy Algorithm is the only one
implemented among concepts presented in this section. In practice it performed well (as
many rules were found in the windows made this way), although usage of Timestamps-
aware Algorithm may lead to obtaining more realistic correlations. On the other hand,
random windows is a means to walk round the limitation of the vast mining algorithms
– impossibility of discovering weak correlations.

4.4. Storing the discovered rules

StatsMiner discovers correlations between statistics and creates rules to save the obtained
knowledge. These rules should be stored somehow in memory and then on hard drive.
There are two opposite methods to do it in a simple way (combinational and abstract-
classes based approaches) and one complex method based on the best ideas from the
simpler ones (by using a tree). In this section, f , g etc. represent different statistics.

In the combinational method of storing rules, each correlation of specific statistics is
being stored separately. For example, if there is a correlation f = g, a rule describing
the identity of f and g is being stored. However, to save the correlation f1 = g1 = h1,
there is a need to use three identity rules, each describing the relationship between two
specific statistics. In the abstract-class method, there is a need to use one rule to store
a correlation f = g and also one rule only to store the correlation f1 = g1 = h1.

Usage of the combinational method results in higher memory consumption, for ex-
ample when dealing with a simple sum p = q + r, if p = p1 and q = q1 = q2 and
r = r1 = r2 = r3, 24 rules will be created to store all correlations! In the abstract-
class method, only 4 rules will be created – one per each abstraction class and one for
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a simple sum. The question is, whether to save p = q = r and use these rule in the
context of other rules describing abstraction classes of p, q and r, or to save the sum as
((p = p1) = (q = q1 = q2) + (r = r1 = r2 = r3)). To sum up, from the point of view of
memory consumption, the abstraction-class based approach seems to be definitely better
but the situation becomes more complicated when dealing with multiple windows.

Let us assume that in the window W1 a correlation described before was found (the
sum). However, in the window W2 were similar but not the same correlations: p = p1
and q = q1 = q2 and r1 = r2 = r3 (r 6= r1). If the combinational method was used, this
change would not involve creation of new rules – it is enough to update usage counters
(used for computing significance) of the existing rules. At the same time, there is no
good solution for the abstract-class approach. One idea is to add new rules to describe
the class r1 = r2 = r3 (or (p = p1) = (q = q1 = q2) + (r1 = r2 = r3)), but what to
do with the rule p = q = r – should a rule p = q = r1 be added? If yes, than in the
case of W1 the same correlation will be represented (and thus counted in the verification
phase) two times. This problem may be solved by splitting the rule (p = p1) = (q =
q1 = q2) + (r = r1 = r2 = r3) into two rules: (p = p1) = (q = q1 = q2) + (r1 = r2 = r3)
and (p = p1) = (q = q1 = q2) + (r). This will solve the problem of wrong values of usage
counters but the total count of rules can explode exponentially as every combination of
subsets of (p, p1), (q, q1, q2), (r, r1, r2, r3) can occur. Alternatively, the rule p = q = r may
be used, as there is a class r1 = r and a notion of transitive closure may be leveraged.
However, in this case every rule may apply soon to every window, as the number and
size of the abstraction classes will grow – consequently the rules usage counters will be
totally misleading.

Summing up, the abstraction-class based approach is a trade-off between the memory
consumption and accuracy of usage counters. Besides, in the combinational approach the
number of rules before and after verification is the same, albeit in the case of abstraction-
class method, if splitting rules have been chosen as remedy for the counters problem,
the number of rules after verification may increase dramatically.

Joining the advantages of both methods leads to storing each rule as a tree so all
the rules create a forest. The thesis contains only a draft of this approach. The root of
a tree contains the most general form of correlation (for example (p = p1) = (q = q1 =
q2) + (r = r1 = r2 = r3) – see Fig. 4.4), the inner nodes contain the list of information
about splits of abstraction classes (for example ∅ and r), and leaves have usage counters.
During the walk from the root to the leaf one can determine what is the value of usage
counters of the set of correlations created by applying cuts from visited inner-nodes
to the rule existing in the root. This representation uses at least the same amount of
memory that the abstract-class method does (if there are no inner-nodes) and no more
than the combinational method (with respect to the details of implementation of the
tree) if only singleton abstraction classes exist. The complexity of this data structure is
a cost for its memory effectiveness. This is only a draft of the approach that has not
been tested in practice.

In the designed solution, the combinational method has been chosen as being simpler
in implementation, faster in action (splits of abstraction classes seem to be expensive),
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Figure 4.4: Representation of the following rules as a tree: (p = p1) = (q = q1 = q2) +
(r = r1 = r2 = r3) with usage counter 5, and (p = p1) = (q = q1 = q2) + (r1 = r2 = r3)
having usage counter 3.

fully accurate and having predictable (although high) memory consumption. Further-
more, the rules stored in the combinational manner are easy to visualize or sum up –
it is enough to make some operations on counters. When rules are dumped on a hard
drive, they are stored in the CSV format so it is easy to manipulate them using tools
like LibreOffice, Microsoft Excel or just bash scripts.

The abstraction-classes based approach may be a way of reducing the size of the
rules when storing them at the consumer’s site – all the mining can be done using the
combinational approach and then data actually sent to clients may be converted into the
abstraction-class form (especially if there were no need to have usage counters at that
time). This can be perceived as a kind of lossless compression of rules files.

4.5. Types of correlations

Correlations can be divided into two main categories – inter and intra. The most inter-
esting are inter correlations, which depict relationship between two different statistics.
The basic example of this type is identity (f = g, where f and g are two statistics).
Intra correlations are totally different, as they affect a singular statistic and describe
some repeatable characteristic of it. The simplest example of an intra correlation is a
constant.

Another division of correlations is connected with the technical restrictions of mining
algorithms – the ability to search for correlations in large sets of statistics. Search for the
most types of simple correlations (like identities) can be carried out in the sets containing
all available statistics (70 000 after removing constant statistics). Such correlations (and
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thus mining algorithms) are called global correlations. On the other hand, more subtle
correlations like linear combinations cannot be effectively found between many statistics
at once (for example no more than 1000 at a time) – such correlations (and algorithms
as well) will be called local correlations. Usage of local mining algorithms requires
selecting first a subset of all the available statistics on which such an algorithm will be
run – this constitutes the main difference between global and local mining algorithms.

From the compression point of view, inter correlations are the most valuable ones.
The distinction between global or local makes no difference, although it is hoped that
the number of global correlations is greater than that of local ones. On the contrary,
mining for global correlations seems to be simpler and cheaper and this kind of analysis
might be done at the customer’s site if CPU and memory consumption will stay at an
acceptable level.

Please note that in Chapter 3 a distinction between strict correlations and weak
correlations was introduced. However, in general, all the correlations discussed in the
thesis are strict.

4.6. Global inter algorithms

As it was stated before, searching for regular linear combinations is too costly, however it
is possible to easily find some classes of linear combinations. Inter algorithms are looking
for these special kind of relationships between different statistics in the window. In this
and the following section n will be the number of statistics in the window (window’s
width) and k will be the number of samples of each statistic (window’s length).

Note that only some of the presented algorithms have been implemented and assessed
in practice: a Sorting Algorithm for identities discovery and a Brute Algorithm for simple
sums discovery. Other algorithms should be treated as alternatives if the performance
was not satisfying. Some algorithms have some possible extensions described. These
extensions may increase the number of rules found.

4.6.1. Mining for identities

Identity is the most basic example of inter-correlation. It is believed that the number of
identities will be quite high due to the fact that the same event is often logged in different
layers of the system independently, for example the number of messages received or sent.

Algorithms searching for identities discover abstraction classes of the vectors of sam-
ples in the window. To cut down the time of running of the subsequent mining algorithms
(see Fig. 4.1), only one representative of each abstraction class is left in the window and
the rest of the members are removed. On average, IdentityMiner gets windows con-
taining 20 366 statistics as an input and it outputs windows containing 12 236 statistics
(both values computed for the LRT_A dataset).
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Sorting Algorithm for identities discovery

Description The idea of this algorithm is quite simple – each statistic can be treated
as a vector of samples so statistics can be sorted using lexicographical comparator of
samples’ values. This step of algorithm has a complexity of O(kn logn) when using
standard algorithms, like Merge Sort. The lower bound of complexity (ω(nk + n logn))
comes from decision trees analysis [Knu98] and this complexity has been achieved by the
algorithm described in [FG05]. However, as the vectors of samples are being accessed
in StatsMiner by pointers, the authors of the aforementioned article suggest that also a
classical Quick Sort can have the complexity of O(nk + n logn).

After sorting vectors of samples, it takes O(nk) time to check whether subsequent
vectors are the same so the identity correlation can be registered. To summarize, the
implemented algorithm has a complexity of O(nk logn), although the optimal-case com-
plexity of O(nk + n logn) is theoretically achievable but requires more effort.

Naturally, if two statistics f and g are identical in a window, their finite differences
are also identical (∆f = ∆g). However, there is no opposite implication (∆f = g 6=⇒
f = g). The aim of StatsMiner is to produce rules for StatsCompressor so saving a rule
f = g is sufficient. Due to practical performance reasons, rules ∆f = ∆g are never
created – it is a heuristic build upon an assumption that there are not many examples
of (∆f = ∆g and f 6= g).

Test results The algorithm is fast (although theoretically not optimal) and produces
many rules. In the example window (Fig. 4.3) the following rules will be created:

1. stat_alpha = stat_beta.

2. stat_beta = ∆stat_gamma.

3. stat_alpha = ∆stat_gamma.

Some identities found in true HYDRAstor’s statistics (the meaning of their names
will not be explained because it would require a precise description of the internals of
the system):

1. DISK::sdb8::readsMergedPerSec = DISK::sdb8::readsPerSec

2. METRIC::Aio: :aioCtx-shred::AioStat::numberReqsStarted = METRIC::Aio:
:aioCtx-shred::AioStat::numberReqsCompleted

3. METRIC::transaction::FP::05DM::tl::syncs::req::NumStarted = METRIC:
:transaction::FP::05DM::tl::creations::req::NumStarted

Running the algorithm on the Customers’ Logs took (in total) 21 seconds and 776 814
rules were generated (on average 57 210 rules per analyzed window). (Note that one rule
may be discovered in many windows, so it influences the ’average number of rules per
analyzed window’ in the case of each window separately, but the rule is counted only
once when discussing the ’total’ number of generated rules.) The analysis on LRT_A
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data resulted in digging up 561 560 rules in the cumulative time of 54 seconds (on average
29 026 rules per analyzed window). The discussion of the results can be found in Par. 4.9.
The significance of the discovered rules will be discussed in Par. 4.9.

Hashing Algorithm for identities discovery

Description The main problem with the previous algorithm is that, in the worst-case
scenario values of all samples in each vector should be compared to make an order over a
set of vectors. One of the simplest ways to improve the speed of Sorting Algorithm is to
compare the hashes of the vectors first – and to fall back to the vector’s values comparison
only in the case of the hashes being equal. The rest of the previous algorithm remains
unchanged. The hashing method can be freely chosen.

The worst-case complexity of the algorithm still remains O(nk logn) but the average-
case complexity is O(nk + n logn). What is important, upgrade of the regular Sorting
Algorithm to its hashing version should be quite simple if hashing of the vectors is
already implemented.

As the sorting algorithm for identities discovery performed well, the hashing version
has not been implemented.

4.6.2. Mining for simple sums

A simple sum is a sum of statistics with all the coefficients equal to one: f = g +
h + . . . ). This kind of relationship seems to be very common among the statistics,
because there are often both a counter representing the quantity of a class of events
and some other counters presenting the number of subclass events. To be more specific,
an example from HYDRAstor is METRIC::transaction::FI::State::opened::NumStarted
= METRIC::transaction::FI::State::opened::NumOutstanding + METRIC::transaction:
:FI::State::opened::NumFinished.

The more elements a sum has, the higher complexity has an algorithm. Algorithms
presented below were designed to search for sums of two statistics (f = g + h) because
otherwise their theoretical complexity was too high. In practice they could be used
to mine for sums of more elements if their performance is acceptable because the only
known substitute for them is a search for full linear combinations (see Par. 4.7.4), which
is costly too but merely a local method.

Mining for simple sums is very expensive so any kind of useless work should be
avoided at this point. If mining for sums is run together with mining for identities, all
the abstraction classes discovered by algorithm mining for identities in the window can be
reduced to one representative only – if this representative appears in any sum, then each
member of its abstraction class can appear in the same place. As it was described before,
StatsMiner stores rules in memory in the combinational form. Due to that, finding a
rule in which a representative of one of the abstraction classes appears, results in adding
many new rules to the database. Owing to it, StatsMiner can use huge amounts of
memory (many gigabytes) and, moreover, a performance slowdown is observed (because
of traversing through data structures). Naturally, generally speaking, it is good that so
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many sum rules are being created, but from the point of view of compression, identity
rules are preferred over sum ones and creating too many sum rules is just a waste of
resources, as they are useless in practice. To slightly cut down on memory consumption,
it was decided not to look for sums consisting of finite differences only (they are found
but dropped). It was believed that this kind of relationship is not common in reality
but may often appear occasionally. This decision proved to be very fortunate as the
performance of StatsMiner improved substantially – it was possible to end mining in
the LRT_A set, using about 30GB of memory, whereas earlier the developers machine
quickly ran out of memory.

On average, any algorithm of the class described in this section gets windows con-
taining 12 236 statistics as an input (for the LRT_A set).

Brute Algorithm for simple sums discovery

Description A Brute Algorithm is not very sophisticated – samples of each two statis-
tics are summed and then it is checked whether the result equals any existing statistics.
The cost of the algorithm is O(kn2 + kn2 logn) = O(kn2 logn) because there are n(n−1)

2
pairs of statistics to be summed, summing one pair is linear to k and checking whether
the result equals the existing statistic means a binary search in the sorted set of statistics,
having the complexity of O(k logn).

The model of summing presented above assumes that addition is commutative. For
floating-point numbers it cannot be true in the case of summing of a sequence of more
than two elements if their representation uses different exponents. Moreover, rounding
of results (numerical-errors) was a real problem in the implementation of this algorithm,
even though the sums of only two elements were searched for. As a solution, long doubles
are used for storing samples (instead of regular doubles).

Tests results The algorithm created (in total) 25 803 555 rules for Customer Logs,
working for 6137 seconds (on average 4 601 590 rules per analyzed window). Mining in
LRT resulted in discovering (in total) 13 738 732 rules in 20 402 seconds (340 minutes),
on average generated 431 324 rules per analyzed window. The long time of running
the algorithm was caused by updating the database of rules due to the usage of the
combinational form of storing rules. The discussion of the results can be found in
Par. 4.9. The significance of the rules that were found is discussed in Par. 4.9.

The algorithm would find the following rule in the example window (Fig. 4.3):
stat_delta = stat_epsilon+ ∆stat_zeta.

Some sum rules found in true HYDRAstor’s statistics (the meaning of their names
will not be explained because it would require a precise description of the internals of
the system):

1. METRIC::dci::NumFinisedGetReqs = METRIC::dci:HintVector@WI:
:NumNegHintHits(finite difference) + METRIC::dci::NumHashArrayGetReqs (fi-
nite difference)

38



2. DISK::sdl2::totalBandwidth = DISK::sdl::writeBandwidth + DISK::sdl:
:readBandwidth

3. DISK::sdb6::writesMergedPerSec = DISK::sdb12::readsMergedPerSec + METRIC:
:ackCollector::dataLocs::dataLocCacheSize::RecentAvg

Possible extensions This naive algorithm is very costly and mining for sums of three
elements seems not to be a good idea at all. On the other hand, simple heuristic can be
implemented to make it reasonable. After discovering that some statistics (called lhss –
left-hand sides) are equal to the sum of some other statistics, one could try to sum lhss
and check whether the results are not the same as any other existing statistics. The idea
is based on the belief that a hierarchy of counters often exists – there are some zero-
level counters informing about the quantity of some events and there are some first-level
counters being a sum of zero-level counters, etc.

Hashing Algorithm for simple sums discovery

Additive hashing Hashing, as a method of decreasing CPU consumption of StatsMiner,
was already suggested while discussing Hashing Algorithm for identities discovery (see
Par. 4.6.1). The process of discovering sums can also take advantage of this approach,
although a special hash function should be used – an additive one.

An additive hashing function should have the following property:

H(~f + ~g) = H(~f) +H(~g) (4.2)

where

~f,~g : vectors of samples of statistics
H : a hashing function Qn 7−→ N

In fact, such a function is a kind of a ’weakened’ linear functional from the point of view
of linear algebra (only additivity – not full linearity – is needed).

A good hashing function should have two properties (according to [Knu98]):

1. the computing hash value should be fast,

2. the number of collisions should be minimized.

The following function satisfies all the criteria mentioned in this section (it is a ’good
hashing function’ and it is linear too):

H(~f) = (
∑

i

f [i] · c[i]) mod b (4.3)
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where

~f : vectors of samples of statistics
~c : vector of not too small prime numbers
b : big natural number

The function H as defined above is additive because all the operations it uses are
additive. It can be computed fast, especially that SIMD instructions can be used for
increasing the speed of computations (it is easy to implement this function in the way
enabling the compiler to automatically vectorize it). There was a prototype implementa-
tion of this function and it proved that the number of collisions is at an acceptable level,
if b is as big as possible (a prime number is preferred, although 264 is more practical
on 64-bits machines) and ~c contains prime numbers big enough, so f [i] · c[i] > f [i] · c[i]
mod b for most of the values of~[f ]. On the other hand, H represents a kind of modular
hashing function and such functions are believed to have good properties (according
to [Knu98]).

The described function has been tentatively implemented (as the whole algorithm),
although further work (and experiments) has been ceased due to impossibility of hashing
float values in this manner while working on IEEE-754 floating points (rounding makes
the whole idea unusable). The use of fixed point arithmetics would solve the problem,
although it has not been finally implemented. Due to that, the algorithm worked well
only for integer values.

Description The Hashing Algorithm resembles the brute one but it uses an improved
method of summing and comparing. Thanks to the additive hashing, it was possible to
remove the k factor from the complexity of the naive algorithm so the hashing one will
have the average-time complexity of O(kn + n2 + n2 logn) = O(kn + n2 logn). The k
factor in the complexity of the Brute Algorithm comes from comparing and summing
of the samples, whereas when using the described hashing method, both operations can
be conducted in (O(1)) time. Naturally, hashes of all the statistics should be computed
first and this step has a complexity of (O(kn)) but, on the other hand, loading data into
memory has the same complexity so in practice this cost can be neglected.

Tests results No performance experiments were carried out on this algorithm because
it was only partially implemented, not tuned enough and, as it was already mentioned,
it does not work properly with floating point samples.

Possible extensions Naturally, the heuristic described while presenting the Brute
Algorithm can also be used with the hashing one. What is worth mentioning, the
phenomena of hierarchy of counters is expected to appear with integer-values counters
only, so even a weak method of hashing (having no support for fractional values) will be
enough here. According to it, a hybrid approach is possible – the Brute Algorithm can
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be used to find out a first-level counters and higher-level counters can be found using the
hashing one. The belief that hierarchy of counters can appear on integer-values statistics
is based on the assumption that fractional-values statistics are commonly used to describe
time periods and they are not so frequently summed together. What is more, if there
are fractional-values higher-level counters, they are probably already contaminated with
some numerical errors derived from the nature of float numbers so finding such sums
can be extremely difficult.

4.6.3. Summary

Global inter algorithms are the most important source of the rules for StatsMiner.
Among the presented conceptions, the Sorting Algorithm for identities discovery and
the Brute Algorithm for simple sums discovery have been fully implemented, (func-
tionally) tested and assessed. It turned out that they can discover a huge number of
correlations and the way rules are stored is their main problem.

4.7. Local inter algorithms

The algorithms described in this section cannot be run on the whole window due to
their characteristics or complexity. Unfortunately, none of the ideas presented here have
been implemented in the described software because of the time constraints put on the
project so they should be treated as the draft for future work.

4.7.1. Limiting the window width

Random choice

The simplest method of limiting the width of the window (such window will be called
a reduced window) is to choose the desired number of statistics randomly. It may be a
good idea provided that the mining algorithms will be able to work well on the sets that
are big enough. For example, in the case of mining on the LRT_A set, there are about
15 000 of statistics in the window at a time, when local inter algorithms are planned to
be run (see Fig. 4.1). If the local inter algorithms accept windows cut down to the size
of a 1000 statistics, choosing the content of these windows randomly seems to be quite a
good idea, although it should be tested in practice. On the other hand, if the algorithms
might work on the windows containing 30 statistics only (which is more probable), a
method of choosing the statistics based on some knowledge should be taken into account
so the statistics in the windows will be in a relationship with higher probability.

4.7.2. Choice based on some knowledge

In data mining, the classical approach for grouping similar objects is clustering. There is
much research in this field so various methods of clustering have been proposed. [Sch07]
summarizes the current state-of-the-art. Before some suggestions for choosing the best
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algorithm are presented, the problem of choosing the possibly correlated statistics should
be transformed into the language of clustering.

Graph of statistics

Clustering algorithms require a weighted graph as an input. In the case of statistics
clustering, the vertexes will represent statistics and weight of edges will describe the
similarity of the statistics at their ends. It is hard to say at this point whether the graph
should be directed or not. The directed graph contains two times more edges than the
undirected one so clustering becomes slower but it can also store more information. The
question is if the aforementioned property of the directed graph can be efficiently used in
terms of the number of true correlations found in the cluster. It seems that this should
be checked experimentally. All the heuristics evaluating the similarity of statistics can
be applied to both versions of the graph.

Determining the weight of edges

The weight of an edge should represent the similarity of vertexes (representing statistics)
it connects. Each of the heuristics for evaluating similarity, which will be proposed
shortly, should return a floating point value from the range [0; 1]. The problem is, what
should be the weight of the edge if some heuristics return different values. There are
two main approaches, which can be combined to some extent:

1. the weighted mean of the values returned by the heuristics,

2. choosing the minimum or maximum among the values returned by the heuristics.

The decision how to determine the weight of the edges should be based on the results of
some experiments.

4.7.3. Heuristics of similarity

The heuristics proposed in this chapter should asses the similarity of two statistics,
given them as the input. Performance is a critical requirement because preparing a set
of statistics for analysis should rather not take more time than the analysis itself. Only
the concepts of heuristics will be presented here.

The heuristics can be divided into two antagonistic categories – static and dynamic.
Static heuristics, contrary to the dynamic ones, does not use the real values of samples
of the assessed statistics. They mainly analyze the names of statistics, trying to recover
some knowledge that developers had left in them. This approach is based on the belief
that humans name things in an organized manner and there are only a few ways for
naming similar entities. On the other hand, dynamic heuristics base on the values of
statistics, trying to discover similarity that exists in the current window.

Both kind of heuristics should be used to get a comprehensive image of the similarities
among statistics in the window, because each kind of heuristics has some flaws that are
mitigated (to some extent) by the other kind. Static heuristics aggregate some general
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knowledge, which in fact cannot be applied to the specific situation, whereas dynamic
heuristics add some local point of view into the results. On the other hand, dynamic
statistics are much biased by the accidental similarities of statistics that have nothing
in common but this second fact can be discovered by the static heuristics only.

Static heuristics

Same prefixes Names of statistics in HYDRAstor consist of a list of terms which
appear in the general-to-specific order. In fact, the names of statistics form a tree (see
Par. 2.3.2. The shorter a path in a name-tree statistics is (the longer their common
prefix is), the more similar they are. An example of very similar statistics is METRIC:
:DataSynch::SynchronizerTask::SCC_RECONSTRUCTION::numTasksStarted and
METRIC::DataSynch::SynchronizerTask::SCC_RECONSTRUCTION::numTasksFin-
ished.

Same stems As it was already stated, names of statistics consist of lists of terms.
Moreover, each of these terms is built up from words (called stems), written in CamelCase
notation, so the single stem can be easily extracted from a long name. Natural language
seems to be very flexible when it comes to giving names but there is a limited set of words
that can be used for naming similar things, for example METRIC::DataSynch::SccCache:
:SccChunksCount and METRIC::memory::PerClass::DataSynch::SingleSccCache::SUM
have a slightly different names but in reality they represent the same thing and, moreover,
their names share many similar stems. This observation can be used to build a smart
heuristic for discovering similar statistics – similar statistics have many common stems
in their names.

Same sender Zstat files contain information about the unit from which the statistics
have been gathered (sender of the statistics). It can be a base for the following heuristic:
statistics from the same unit are more similar than those from different ones. This
approach comes from the observation that a unit has a precisely defined, narrow range
of functionality so there is a higher chance that two statistics measure correlated events.
On the other hand, relationships between statistics from different units seem to be much
more interesting (from the theoretical point of view, as they can reveal some unexpected
dependencies in HYDRAstor) but they would be poorly assessed by this heuristic.

Same type Zstat files contain information about the type (float, percentage, counter,
etc.) of the statistics. Generally, correlations can appear rather between the statistics
of the same type, although some exceptions are known (especially when it comes to the
timers measuring the number of events per second, for example METRIC::flowControl:
:node::SlotsComputer::Bandwidth::duplicateWriteCountPerSec).
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Dynamic heuristics

Correlation Statistics being already correlated in the window should be treated as
very similar. In the case of identity, the vertexes could even be merged but there would
be a problem of different weights of the edges linking merged vertexes with the other
ones. Due to this, an edge with a weight meaning ’full similarity’ should be preferred. On
the other hand, the more statistics are involved in the correlation, the lesser is similarity
between them (for example, if there are correlations f0 = f1 + f2 and g0 = g1 + g2 + g3,
then f0, f1, f2 are more similar to each other than g0, g1, g2, g3).

Same number of values changes Not all the statistics change their values each
time they are sampled. Assuming that one of the statistics is a sum of a few others
(f = g + h + k), f will change its value at most the same number of times that g, h, k
together do. Naturally, f can never change its value (if there is g = −h and k = const)
but it is believed that such situation rarely occurs.
The described heuristic can be extended by assuming that f can change the value of some
of its samples only at the same time as the samples of g, h or k changes. Unfortunately, as
the statistics are being gathered asynchronously, there could be some time shifts, making
the whole concept unusable in practice. However, this statement should be checked in
an experiment.

Clustering algorithms

Survey [Sch07] contains a comprehensive discussion of available general-purpose cluster-
ing algorithms. The selected algorithm should have the following properties:

1. It should be possible to control the maximal size of a cluster.

2. Single vertex can appear in many clusters (clusters are overlaying).

3. The algorithm should be fast and not consume much memory.

It seems that the expectation (3) is crucial because if the clustering algorithm is too
slow, it will make the process of limiting the windows’ size useless. Due to this, the
selection of an algorithm should be based on some performance experiments so the
process of building the graph and choosing clusters is sufficiently fast. The simplest
possible algorithm applicable to the described requirements is to create as many reduced
windows as the number of statistics that remained at this point – exactly one reduced
window per statistic. Such a window created for the statistic f will contain the defined
number of the nearest neighbors of the vertex f .

4.7.4. Linear combinations

Linear combinations are the most general and thus most interesting kind of relation-
ship searched for among statistics. Having a window, linearly dependent statistics are
computed using methods of linear algebra. In the language of this theory, a window
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can be represented as a matrix W ∈ Qm×n, where m is the window’s length (the num-
ber of samples) and n is the window’s width (the number of statistics) – note that the
window is transposed here. It is expected that m = n, otherwise there will be at least
|m − n| dependent vectors and, moreover, a problem with interpretation of results will
occur. The aforementioned requirement is the most important reason for not running
mining of linear combinations on the whole window, as fulfilling this expectation may
be impossible due to the large quantity of samples needed.

The classical method of determining which vectors from W are linearly dependent is
Gaussian Elimination. The described problem can be expressed in the form A · ~x = ~0 so
any algorithm for solving linear equations can be applied to it. Nontrivial ~x means that
some vectors (statistics) are linearly dependent, although getting the coefficients from ~x
may be confusing and the reduced column echelon form is needed.

Manually-coded Gaussian Elimination can be inefficient (from the point of view of
cache usage etc.) and biased by numerical errors, so usage of linear algebra libraries
is preferred here. In fact, such software provides computations using for example LU
decomposition instead of pure Gaussian Elimination.

The complexity of finding linear combinations among statistics in a given window,
regardless of choosing Gaussian Elimination or any other popular decomposition method,
is (O(n3)).

4.7.5. Regression

Linear combination is the most powerful kind of relationship that StatsMiner looks for.
However, StatsCompressor is flexible enough to make use of weak correlations. This
feature was introduced to mitigate the problem of asynchronous gathering of statistics,
and it allows StatsCompressor to use rules that do not fully apply even at the mining
phase. Such rules can be found using multidimensional regression analysis, which is
briefly presented in [SE02]. In fact, much research has been done in this field so choosing
the optimal method for mining regression rules would require further investigation. At
this moment it is already known that any algorithm of this kind should be run on reduced
windows due to its high complexity ((O(n3) or worse).

4.7.6. Summary

None of the ideas presented in this section has been implemented due to the lack of
time – elaborating existing algorithms seemed to be more important than introducing
some new, poorly tested ones, especially that much work with clustering should be done
first. On the other hand, the ability of discovering linear combinations (both strict and
regression-based weak ones) among statistics may much improve the compression ratios
achieved by StatsCompressor. It may be also important for anomaly detection.
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4.8. Intra algorithms

Intra algorithms search for the repeatable property of a statistic. As there is no need to
compare samples between different statistics, this kind of algorithms can be run on all
the samples of the statistic – dividing samples into windows may be superfluous. This
characteristic of the intra algorithms make them perfect candidates to become the source
of knowledge for heuristics reducing the search space for inter algorithms.

4.8.1. Discovering constants

The constant function is the simplest example of intra correlation (and of any other
correlation as well). Surprisingly, many HYDRAstor statistics stay constant for long
periods of time – on average a Zstat file from LRT (having about 83 samples) contains
about 48 940 statistics and 11 860 do not change their values at all (about 25%).

Discovering constants is a simple procedure – it is enough to check whether all the
samples of the given statistic have the same numerical value. The search is done for
statistics in each window separately – it is an exception from an assumption that looking
for intra algorithms is reasonable only for the samples not divided into windows. In fact,
constants are discovered by StatsMiner but such rules are not loaded from the rules file
by StatsCompressor – StatsCompressor discovers constants on its own (see Par. 5.8.1).

Discovering correlations between constant statistics (for example sums) is a much
simpler task than it is in the case of statistics changing value but such inter correlations
are rather useless from the compression point of view. Moreover, there would be a
huge quantity of rules describing correlations between constant statistics. Owing to it,
StatsMiner discovers constant statistics directly after generation of a window and such
statistics are not used in further mining on this window.

In the example window (Fig. 4.3) one constant would be found: stat_eta.
The algorithm created (in total) 154 023 rules for Customer Logs, working for 8

seconds (on average 33 152 rules per analyzed window). Mining in LRT resulted in
discovering of (in total) 117 310 rules in 38 seconds, on average generated 36 633 rules
per analyzed window. The discussion of the results can be found in Par. 4.9. The
significance of the rules which were found is discussed in in Par. 4.9.

4.8.2. Discovering common subsequences

In some statistics, the same subsequences of samples can appear regularly and they are
good candidates for compression. On the other hand, this kind of analysis is already done
by every general-purpose compressor, such as gzip, bzip2 or xz, so from the point of view
of compression, there is no sense in digging up this kind of relationships in StatsMiner.
On the other hand, if rules were to be used for other means than compression, it may
be worth searching for common subsequences. It can be done by using a dictionary, as
the mentioned compressors do (LZ77, LZMA algorithms).
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LRT_A CL
total avg. per window total avg. per window

Number of databases 50 - 30 -
Number of windows 202 - 43 -
Number of statistics - 46 610 - 44 890
Consts rules 117 310 36 633 154 023 33 152
Identity rules 561 560 29 026 776 814 57 210
Sums rules 13 738 732 431 324 25 803 555 4 601 580
All rules 14 417 602 - 26 734 292 -
Consts mining time [s] 38 <1 8 <1
Identity mining time [s] 54 <1 21 <1
Sums mining time [s] 204 202 1010 6137 143
Mining time [s] 144 177 713 11 167 260
Verifying time [s] 51 936 257 8358 194
CPU time [s] 84 536 - 24768 -
memory [MB] 9471 - 27681 -

Table 4.1: Results of StatsMiner.

4.8.3. Summary

Intra algorithms are not much discussed in the thesis, unlike the intra ones. However,
discovering constants is crucial for fast and efficient work of algorithms searching for
inter correlations.

4.9. Summary

Table 4.1 gathers mining and performance results of StatsMiner.
Please note that, while analyzing the CL set, about 249 windows could be generated

but then the discovered rules would use all the available memory. This was the reason
why only 30 databases were used (instead of 50 planned) – while analyzing the 33-th
database, the machine’s memory (48 GB) got swapped and StatsMiner was killed.

The number of rules created for the CL set was 2 times bigger than for the LRT_A set,
although the number of analyzed windows was 5 times smaller. The reasons for this be-
havior seem to be complex. First of all, the LRT_A set was built upon statistics created
during a test, which should simulate a normal HYDRAstor run. However, the CL set
comprises real data from customers and their systems may behave differently. Moreover,
each customer has his own pattern of HYDRAstor usage, so even if there are two similar
installations, there could be a large group of correlations that are unique. Nevertheless,
the CL set contains statistics gathered by different versions of HYDRAstor, with var-
ious patches installed. From this point of view, results for the LRT_A set show how
StatsMiner behaves when analyzing statistics from the specific version of HYDRAstor,
whereas experiments on the CL set correspond to discovering correlations on different
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versions of the system.
It is interesting that the number of identity rules created per window in the CL set is

twice as big as in the case of LRT_A. What is more, if the number of analyzed windows
was the same in both sets, then discovering identities in the CL set would take about
100 seconds, so two times more than on the LRT_A set. It is hard to say why so many
identities were found in the CL set. Maybe the real way of using HYDRAstor is only
a small subset of behaviors simulated by the Long Running Test? Fortunately, a large
quantity of identities is definitely positive, because compression of identities is the most
effective (see Par. 5.9.3).

The quantity of sum rules is much bigger than of other correlations put together. It
is however an illusion – a consequence of using the combinational form of saving rules.
The more identities are found in the window, the more sum rules are created. This
implication can be clearly seen in the CL set.

To make the analysis of the discovered rules complete, Figure 4.5 should be described.
The plot shows the minimal significance of different types of rules – the X axis presents a
minimal significance (see Par. 4.3 for definition) and the Y axis – the percentage of rules
having a given minimal significance. The plot should be understood in the following
way: if there is a point having minimal significance of 0.3 and 40% rule, it means that
40% of the discovered rules have significances ∈ [0.3, 1]. Such information is very useful,
if the rules with the highest significances only may be transferred to the customer’s site
(see 1).

Generally, Figure 4.5 proves that the approach researched in the thesis is reason-
able, as the significance decreases slowly, so there are indeed many correlations between
statistics of the HYDRAstor system and they are not occasional. The significance of
constant rules drops the slowest and it is not surprising – many statistics change their
values occasionally only (for example during a rare deletion). The poorer result for rules
from the LRT_A set (in the case of constants and other types too) are connected with
the fact that LRT was an intensive test, checking different scenarios of the HYDRAstor
usage. The most optimistic result found in the plot is that the significance of identity
and sum rules from the CL set is very similar and, moreover, they have high values.
It is very fortunate, because rules discovered in the files received from customers will
be (probably) of high quality. Please note that the CL set contained files generated
by a different version of HYDRAstor and it did not help to obtain such a good result.
Unfortunately, the significance of identity and sum rules discovered in the LRT_A set
does not have the same properties as identities discovered in the CL set have and thus
they seem to be not so useful from the compression point of view.

Finally, when it comes to the performance of StatsMiner, verification is always faster
than mining – it is a welcome development as the introduction of this phase was based on
such an assumption. Mining time to verification time ratio is higher for the LRT_A set
than for the CL set because verification starts with full database of rules and mining does
not. On the other hand, both mining and verification time per window is smaller for the
CL set albeit the number of rules finally saved is much bigger than for the LRT_A set.
It can be explained by the fact that there are many more unique statistics (in the sense
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Figure 4.5: Plot of the minimal significance of rules discovered in LRT_A and CL sets.
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of their names) among the databases of the CL set (because of different versions of
HYDRAstor etc.) than among files from the LRT_A set. This conclusion may be
proved by the average number of applicable correlations per file during the verification
phase – applicable means that all the statistics expected by the correlation exist in the
file. The value for the LRT_A set is 8 599 140 and for CL only 6 774 390 (21% less).

The performance of StatsMiner (as a whole) is currently below expectations (both
when it comes to CPU and memory usage) but the software was not profiled or even
sufficiently tuned. The main bottleneck is the way in which rules are saved – usage of
the combinational approach means storing billions of rules in memory. Unfortunately,
internal data structures proved not to be efficient enough. StatsMiner was prepared as
semi-prototype software so its problems should not be surprising.

To sum up, StatsMiner has lived up to expectations. Despite the fact that only a
small subset of the designed mining algorithms has been implemented, the number and
significance of the rules prove that the concept of the tool is right. What is interesting,
memory is a bottleneck for StatsMiner. At present, in order to avoid hitting these
limitations, analysis should be done on statistics gathered by one version of HYDRAstor.
Moreover, mining for correlations between statistics of each customer separately may
provide the best results but it will naturally require many resources and thus is not
realistic. Memory consumption can be also lowered by introducing a better method
of storing the rules – it seems that this problem should be solved before widening the
functionality of the tool by making it able to discover other new types of correlations or
introducing the concept of random windows.
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Chapter 5

Compressor

This chapter contains a description and evaluation of StatsCompressor, which is a tool
for compressing files containing statistics generated by the HYDRAstor system, using
the correlation-based approach and domain-knowledge.
The chapter consists of the following sections:

5.1 ’General overview’ presents the general concepts and assumptions of StatsCom-
pressor.

5.2 ’Testbed’ describes test data and test methods used in this chapter. It is important,
because numerous results of experiments will be presented.

5.3 ’Base results of StatsCompressor’ presents best results that are possible to achieve
using StatsCompressor on the test data. They will be base results, against which
results of other experiments will be compared.

5.4 ’External compressors’ compares the tools which may be used for further com-
pression of the files generated by StatsCompressor. StatsCompressor itself only
does correlation-based compression and the size of result files can be still much
decreased using general-purpose compressors. Section presents performance and
compression ratios achieved by some of the popular Linux tools.

5.5–5.9 – these sections contain descriptions and assessments of the compression methods
used by StatsCompressor.

5.10 ’Other models of usage of correlation-based compression’ briefly presents the ways
of cooperation of StatsMiner and StatsCompressor. Its aim is to enable usage of one
set of rules for compressing statistics gathered by different versions of HYDRAstor.
It both discusses the policies that could be used in the model touched-upon in
Chapter 3 and introduces certain new approaches.
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5.1. General overview
The designed and implemented compressor, named StatsCompressor, is a tool for lossless
compressing Zstat files (see Par. 2.3.2), created as a part of the described research. It
gets a regular Zstat file as an input and produces a Zplus file as an output. Zplus files
are very similar to the Zstat ones which makes them both comparable. Compression
done by the tool is high-level – no byte-level methods are used – and is based on some
domain-knowledge (mainly on correlations between statistics) and a few simple text
transformations of the compressed file. Having multiple methods for compression of
the statistic, the tool selects the most promising one. Correlations are loaded from the
given rules file, but the tool also discovers some simple types of correlations on it own.
Created Zplus files should be further compressed with some general-purpose external
compressors.

The tool was written in C++ and can be run under Linux operating system. Usage
of C++ resulted from the high performance expectations as the compressor will be run
on normally-operating, customers’ machines (operating under Linux operating system).
In particular, it may be run during writing of backup data into the system so its CPU
and memory consumption should be minimized. On the other hand, it is hard to prepare
highly-effective software during research so the code was treated as a prototype from the
beginning and it should be rewritten (practically from scratch) during the productization
phase. This approach – preparing a prototype in C++ – made it possible to measure
the maximum achievable compression ratios in the context of maximal use of resources.
All the presented results of experiments should be assessed from the point of view of
this assumption.

5.2. Testbed

5.2.1. Testing data

All the performance tests of StatsCompressor were carried out on the following sets of
data (similar as in the case of StatsMiner):

1. LRT_A — 50 randomly chosen Zstat files from Long Running Test on the H4
version.

2. LRT_B — 50 randomly chosen Zstat files from Long Running Test on the H4
version. There is LRT_A ∩ LRT_B = ∅.

LRT is an abbreviation from Long Running Test, which took about 2 weeks and sim-
ulated both normal and corner-case usage of HYDRAstor. The system was in the H4
version and consisted of 1 HN and 4 SNs. This source of data has been selected, as
there are no statistics from customers using the H4 version yet and, moreover, these
Zstat files can be treated as snapshots of the model version of HYDRAstor. The results
for randomly chosen statistics files obtained from customers, using previous versions of
HYDRAstor, are demonstrated in Chapter 6.
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Full files
compressor max [%] min [%] avg σ

bzip2 -6 52.6 43.8 47.96 1.85
bzip2 -9 52.7 43.8 47.78 1.85
gzip -6 57.1 50.0 53.72 1.68
gzip -9 57.9 51.0 54.34 1.71
xz -6 70.6 62.7 67.4 1.81
xz -9 70.6 62.7 67.39 1.81
noComp 74.3 58.8 64.44 3.61

Only bodies
compressor max [%] min [%] avg [%] σ [%]
bzip2 -6 47.9 33.4 42.99 2.46
bzip2 -9 47.7 33.4 42.72 2.46
gzip -6 52.4 38.0 48.27 2.63
gzip -9 52.5 38.1 48.34 2.63
xz -6 68.0 52.8 63.53 2.93
xz -9 68.0 52.8 63.53 2.93
noComp 34.0 21.6 30.61 1.99

Performance
category max min avg σ

CPU time [s] 1134.73 631.44 911.26 95.37
memory [MB] 4245 2759 3820 304

Table 5.1: StatsCompressor’s Compression Ratios for compression of the LRT_A set
using the rules discovered in LRT_A (full LRT_A/LRT_A).

5.2.2. Performance measuring

Tests of StatsCompressor have been carried out on the same machine and in the same
way as tests of StatsMiner (see Par. 4.2.2).

5.3. Base results of StatsCompressor

Table 5.1 contains best-achievable, average StatsCompressor’s Compression Ratios (de-
fined below) and performance results of StatsCompressor. The results were gathered
by compressing each Zstat file from the LRT_A set using rules generated before for
the whole LRT_A set. StatsCompressor worked with all the algorithms enabled, so the
results presented here are the best achievable.

In the thesis, StatsCompressor’s Compression Ratios (ScCR) and supporting space
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saving are computed in the following way:

ScCR(Compressor, Zstat) = size of Compressor(Zplus)
size of Compressor(Zstat) · 100% (5.1)

Space saving(Compressor, Zstat) = 1− ScCR(Compressor, Zstat) (5.2)

where

size of Compressor(Zplus) = size of the Zstat file compressed by StatsCompressor
and then compressed by Compressor

size of Compressor(Zstat) = size of the Zstat file compressed by Compressor only
(normal HYDRAstor practice)

The StatsCompressor’s Compression Ratio provides information about the compres-
sion quality of StatsCompressor. It is not just an artificial measure, because it can be
used to determine how much bigger the Zstat file can be when using the proposed tool
to finally obtain the compressed file of the same size as if StatsCompressor was not used.
On the other hand, space saving informs how smaller are packages downloaded from
customers if the designed solution is used. In practice it informs, how much longer the
gathering period can be for the statistics downloaded from customers if StatsCompressor
is used.

Compressor ’noComp’ stands for no external compressor usage – this shows how
well StatsCompressor performs on its own. The section ’Only bodies’ shows results of
compression of the Zstat file that contains lines with samples only. As it is described in
Par. 2.3.2, half of each Zstat file lines contain names and metadata of existing statistics.
The designed solution focuses on the compression of samples only, as the problem of
efficient representation of metadata has been already solved (see Par. 2.3.2). The section
’Only bodies’ provides information on factual performance of StatsCompressor (although
it should be kept in mind that, even though StatsCompressor does not explicitly compress
metadata, it can dump it in a slightly different order and some changes of the statistics’
identifiers can be made (see Par. 5.7.1).

The best StatsCompressor’s Compression Ratios are achieved for the bzip2 compres-
sor run with -9 parameter – it is, on average, 47.78% for full Zstat files (space saving
amounts to 52.22%) and 42.72% for only bodies (space saving amounts to 57.28%). The
best results are 43.8% (space saving amounts to 56.2%) for full files and 33.4% (space sav-
ing is 66.6%) for bodies only. The presented results inform, that if the designed solution
is used, the amount of data downloaded from customers decrease by 57.28%. It surpasses
all expectations because while initializing the project, space savings of 20%-30% were
expected.

However, the best StatsCompressors’s Compression Ratios are achieved when using
bzip2 as an external compressor, the smallest files are outputed by the combination of
StatsMiner and the xz compressor (see Table 5.2).

On the other hand, CPU and memory usage is currently much too large to really
run StatsCompressor at customers’ sites. The ways of improving the performance will
be discussed later in the chapter.
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Compression ratios, while no external compressor was used (rows ’noComp’), are very
interesting. In the case of full files, the average compression ratio is 64.44% (space saving
amounts to 35.56%) – this result seems to be quite good, especially that StatsCompressor
does not provide any compression on the bit level, and both Zstat and Zplus file formats
use verbose text representation. This effect is even stronger for compression of bodies
only – the average compression ratio is 30.61% (space saving amounts to 69.39%).

For the results of full files, the following phenomena for average compression ratios
occurred:

bzip2 < gzip < noComp < xz (5.3)

It can be interpreted as a hint that StatsCompressor compresses parts of the Zstat file
in a way unaccessible for gzip or bzip2, as space saving is higher after compressing the
Zplus file with bzip2 or gzip. On the other hand, in the case of xz, it is suspected that
xz can independently convey some transformations which StatsCompressor does. How-
ever, as Table 5.2 indicates, using xz on Zplus files gives the smallest compressed Zplus
files possible, although the difference between xz and bzip2 is statistically insignificant.
When analyzing the same relationship in the case of only bodies compression, inequality
has the following form:

noComp < bzip2 < gzip << xz (5.4)

It means that, in fact, StatsCompressor repeats some steps that all other external com-
pressors do but compression of metadata, which exist in full files only, strongly degen-
erates the abilities of bzip2 and gzip.

The standard deviation of StatsCompressor’s Compression Ratios is quite small both
in the case of compressing full files and bodies only. This is very good news because
it means that the behavior of the developed software is predictable. It is especially
important in the case of full files, as if the solution was used at the customer’s site, it
would be possible to precisely select the size of the inputed Zstat file to have a Zplus file
of the desired size.

The described results will be referenced in the following sections (as model ones, base
ones or ’full LRT_A/LRT_A’), to compare them with the results gathered after dis-
abling some of the algorithms built into StatsCompressor – this will show how important
(in a sense of StatsCompressor’s Compression Ratio) the specific algorithm is.

5.4. External compressors
It was decided that StatsCompressor will be supported by an external compressor to
focus the development of the tool on the usage of correlations only. Data compression, a
mixture of algorithmics and information theory, has been studied for years and nowadays
offers a vast number of data compression methods. The most practical ones have been
implemented in the popular tools. In Linux they are gzip and bzip2, however there
is a variety of other tools, as [Vei13] and [Jr13] indicate. It was decided to test the xz
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Full files
compressor max [%] min [%] avg σ

bzip2 -6 8.60 4.90 7.47 0.76
bzip2 -9 8.60 4.90 7.50 0.76
gzip -6 9.90 6.20 8.78 0.76
gzip -9 9.70 6.0 8.61 0.76
xz -6 8.2 4.9 7.19 0.67
xz -9 8.2 4.9 7.19 0.67
noComp 74.3 58.8 64.44 3.61

Only bodies
compressor max [%] min [%] avg [%] σ [%]
bzip2 -6 12.7 7.5 11.31 0.86
bzip2 -9 12.7 7.6 11.33 0.84
gzip -6 13.6 7.9 12.07 0.96
gzip -9 13.5 7.9 12.00 0.95
xz -6 11.5 6.7 10.25 0.83
xz -9 11.5 6.7 10.25 0.83
noComp 34.0 21.6 30.61 1.99

Table 5.2: Absolute compression ratios (uncompressed Zstat to fully compressed Zplus)
from the LRT_A set using rules discovered in LRT_A.

compressor which is an improved version of the 7za tool and is gaining increasing popu-
larity in the Linux community. It was checked how xz will perform in the HYDRAstor
environment – up to now gzip and bzip2 have been successfully used.

5.4.1. Comparison

Table 5.2 presents the absolute compression ratios ( sizeof(fully compressed Zplus)
sizeof(uncompressed Zstat) . The val-

ues in the row StatsCompressor only prove that the usage of external compressor is
obligatory. Table 5.3 shows the compression ratios and performance of the considered
external compressors while compressing raw Zstat file from the LRT_A set – these are
normal results, if StatsCompressor is not used.

Table 5.3 presents the performance of the external compressors. First of all, the
xz tool offers the best compression ratio and its superiority is overwhelming. However,
it is achieved with an extremely high consumption of memory and it can be the main
obstacle against using it in HYDRAstor, as memory is a valuable resource. On the other
hand, gzip is the poorest tool (although its usage is cheap). In this experiment, there
is an insignificant difference between compression ratios achieved by gzip and bzip2,
although the differences are much bigger when Zplus files are being compressed (compare
with Table 5.2). From this point of view, the best choice for the external compressor
seems to be bzip2, as xz is too expensive and gzip offers unsatisfactory compression
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Compressor avg. compression ratio σ of compression ratio Time [s] Memory [MB]
bzip2 -6 15.71 1.62 2.24 5
bzip2 -9 15.82 1.61 2.39 6
gzip -6 16.47 1.47 0.66 <1
gzip -9 15.99 1.51 1.22 <1
xz -6 10.73 0.92 5.18 92
xz -9 10.73 0.91 5.17 158
xz -9 -e 10.31 1.0 11.04 158

Table 5.3: Compression ratios and performance of external compressors while compress-
ing Zstat files from the LRT_A set.

ratios. Note the interesting fact that, on average, bzip2 -9 is worse than bzip2 -6,
although flag -9 instructs bzip2 to use the best compression method it has.

5.5. Schema of StatsCompressor

Picture Fig. 5.1 presents a diagram of StatsCompressor. Each part of the software
will be comprehensively described in the following sections and this picture shows the
sequence of actions carried out on a single Zstat file. The usage of the components can
be controlled by the program arguments or limiting the rules file (for example usage of
identity correlations only).

The described picture contains a notion of cost. In this chapter, cost refers to the
number of bytes needed to save the specific information, using a specific method, in a
Zplus file not compressed yet by an external compressor. For example, if a sample has
a value of ’12345’ and no method of compressing it had been chosen, the cost of this
sample is 5 (as the sample will be dumped in the human-readable form as ’12345’). This
method of counting the cost has one general drawback – it does not take into account the
fact that the Zplus file will be compressed with an external, general-purpose compressor.
Unfortunately, the final (after external compression) cost of dumping any information
cannot be determined in StatsCompressor because the compression ratio achieved by
an external compressor for a specific data is always determined by the context data.
To sum up, StatsCompressor is built on the assumption that the external compressor
will rarely compress a bigger representation of data (for example ’1_2_3_4_5’) into a
smaller number of bits than it does for a smaller representation (’12345’) (it is assumed
that the algorithms of the external compressors are monotonic).

The process of compression consists of three phases:

1. Trying various methods of compressing statistics (see Par. 5.8 and 5.9).

2. Choosing best methods for compressing the statistics (see Par. 5.6).

3. Optimizing the encoding (see Par. 5.7).
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Figure 5.1: Schema of compressing with StatsCompressor.
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5.6. Correlation-based compression

The most important part of StatsCompressor is its algorithm for choosing rules to be
used for compression. It gets two types of rules – these loaded from the file containing
the discovered rules (see Par. 5.9) and those discovered by StatsCompressor on its own
(see Par. 5.8). The implemented algorithm is one of the simplest ones and consists of
two steps: scoring the rules and then choosing which of the scored rules will be used in
the compression.

5.6.1. Scoring the rules

The very first step of scoring the rules is choosing the best so called transformat to
be applied to each statistic. Transformats are in fact intra correlations, discovered by
StatsCompressor on its own (see Par. 5.8.2). To be coherent, writing samples of statistic
explicitly – without the use of any method of compressing them – will be called a 0-
transformat. Only one transformat – this having the minimal cost – may be applied to
a statistic in the Zplus file.

The next step is to compute the cost of each inter correlation and give them scores.
The score is a numeric value used for introducing a linear order among all the rules
possessed. Usage of any inter correlation for compression of a given statistic is natu-
rally reasonable only if the cost of this correlation is smaller than the cost of the best
transformat. If this condition is met, the rule should be scored. There are two possible
approaches that will be presented shortly. To make the description clearer, let us assume
that there are two rules – r1 and r2 – each compressing different statistic and

10 = cost(r1), cost(t1) = 15, cost(r1) < cost(t1) (5.5)
12 = cost(r2), cost(t2) = 30, cost(r2) < cost(t2) (5.6)

(5.7)

where t1 and t2 are transformats applied to the same statistics as corresponding r1 and
r2 are.

The absolute cost method of scoring the rule The score of a rule is

score(ri) = cost(ri) (5.8)

In the case of the example defined above, it will be score(r1) = 10 and score(r2) = 12.
These scores introduce the following order: r1 ≺ r2.

The relative cost method of scoring the rule The score of a rule is

score(ri) = cost(ri)
cost(ti)

(5.9)
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where ti is a transformat of the same statistic that ri tries to compress. In the case
of the example defined above, it will be score(r1) = 0.625 and score(r2) = 0.4. These
scores introduce the following order: r1 � r2.

As the experiments have proved, the relative cost method performs slightly better,
offering average StatsCompressor’s Compression Ratios higher by 0.3-0.6 percentage
points depending on the external compressor used.

Scoring the rules took on average 593 seconds (in the model LRT_A/LRT_A exper-
iment). The length of the process was caused by the large number of rules that should
be scored – 27 095 900 rules were checked on average per Zstat (see Table 5.10). Note
that a correlation f = g + h appears in three forms (as three different directed rules):
f = g + h, g = h − f and h = g − f . Among all the directed rules that were checked,
4 523 420 (avg. per Zstat) had a lower cost than the cost of the corresponding trans-
format (so that many rules got fully scored). It means that only about 17% of rules
that could be applied (because all the expected statistics appear in the Zstat file) can
be used for compression. More results can be found in Table 5.10, which is discussed
in Par. 5.9.2. The ways of minimizing the resource usage of StatsCompressor will be
further investigated in Par. 5.9.4 and Par. 5.10.

5.6.2. Choosing scored rules to be used

At first glance, this step seems to be very simple – if there is a set of scored rules, for each
statistic a rule with the lowest score should be taken. If no rule applies to the specific
statistic, a transformat – at least 0-transformat – should be used. However, there is a
trap in this approach: what if f = g, g = h and h = f are selected? In this case the
values of the samples of all statistics will be gone (samples of f are not saved because f
= g etc.) – only the information about the correlation remains.

StatsCompressor uses a more subtle version of the approach presented above. It
examines all the rules, starting from this of the smallest score (it is possible because
linear order on scores exists). The rule, in order to be used, has to satisfy the following
criteria:

1. Left hand side of the directed rule (the statistic that can be compressed using this
specific rule) has not been already compressed by another rule (having a smaller
score).

2. Usage of the rule will not introduce a cycle into the directed graph of applied rules.
Vertexes of the graph are statistics and edges represent dependencies between
statistics, for example if a rule f = g was used, there will be an edge f ← g in
the graph. Consequently, usage of sum rule p = q+ r, introduces edges p← q and
p ← r. The graph is kept in memory and existence of the cycle is being detected
using the Depth First Search algorithm.

The described algorithm is greedy. As the experiments have proved, it offers an
acceptable level of compression, although it is quite easy to construct an example in
which it does not perform well. Some more work in the future should be spent on
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discovering a better algorithm for this purpose (or adding some heuristics to the existing
one). It is suspected that the problem may be NP-complete, although no proof has
been constructed as expressing these problems in the graph-theoretic language is hard
enough. One trial is: there is a weighted multigraph G. Remove some edges from G
(according to the given list of possibilities), so G′ will be acyclic, has no multiple edges,
is connected and the sum of weights of edges is minimal. Note that some edges cannot be
removed separately (because a sum correlation should be used as a whole and it implies
existence of at least 2 edges). Graph G will have one artificial vertex so edges from it
to all the other vertexes will have weights equal to the cost of transformats of target
vertexes (representing statistics naturally).

Execution of the implemented greedy algorithm took, on average, 18 seconds per
Zstat file so this step is much faster than evaluation of rules.

5.7. Postprocessing of the selected correlations

5.7.1. Renumbering

Renumbering is a process of exchanging identifiers used by the statistics inside a Zplus
file to improve the compression ratio. According to Fig. 5.1, it is the last phase of
compression, although it will be described before touching upon the problem of flattening
abstraction classes, as flattening was introduced to improve the renumbering.

Each statistic in the Zstat file (and Zplus too) has its unique identifier – a natural
number. In a Zstat file each identifier is used exactly twice (to map the statistic’s
name to its samples). In Zplus files identifiers are used while saving correlations so
some of them will appear more frequently. The aim of the renumbering is to give the
frequently appearing statistics the shorter identifiers (thus having lower cost). In the
case of LRT_A, the most frequent statistic identifier was being dumped (on average)
25 678 times. The time of renumbering was not measured but it has a negligible impact
on the performance because the complexity of this step is O(n log(n)), where n is the
number of statistics.

Table 5.4 shows results of compressing the LRT_A set using rules mined on LRT_A
with renumbering disabled. According to it, renumbering is a very important step be-
cause the lack of it causes a significant drop in StatsCompressor’s Compression Ratio
(at least 11 percentage points). As always, xz is the least afflicted with this issue. In the
case of only bodies compression the problem is obscured by the fact that there are no
rows with statistics names. It is surprising that the average CPU utilization is slightly
bigger when renumbering is disabled – it is hard to explain this.

In fact, this step is one of the two that cannot be reversed during decompression
because the Zplus file does not contain a dictionary of mapping of the old identifiers to
the new ones (there was no need for it). However, in order to make Zstat comparable
with Zplus, new identifiers are chosen from among the old identifiers already used in the
Zstat file. It is interesting that the smallest identifier in all Zstat files was 568 at most.
In the production version of StatsCompression new identifiers should start from 1.
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Full files
compressor max [%] min [%] avg σ

bzip2 -6 69.8 (17.2) 56.3 (12.5) 59.34 (11.38) 3.43 (1.58)
bzip2 -9 69.6 (16.9) 56.1 (12.3) 59.31 (11.53) 3.44 (1.59)

gzip -6 79.1 (22.0) 63.1 (13.1) 67.83 (14.11) 3.42 (1.74)
gzip -9 78.4 (20.5) 62.4 (11.4) 67.18 (12.84) 3.41 (1.7)

xz -6 85.9 (15.3) 73.3 (10.6) 78.45 (11.05) 2.36 (0.55)
xz -9 85.9 (15.3) 73.2 (10.5) 78.45 (11.06) 2.36 (0.55)

noComp 81.3 (7.0) 63.2 (4.4) 69.74 (5.3) 4.24 (0.63)

Only bodies
compressor max [%] min [%] avg [%] σ [%]
bzip2 -6 60.3 (12.4) 49.0 (15.6) 51.81 (8.82) 2.8 (0.34)
bzip2 -9 60.6 (12.9) 48.7 (15.3) 51.82 (9.1) 2.9 (0.44)

gzip -6 67.4 (15.0) 54.0 (16.0) 58.17 (9.9) 2.75 (0.12)
gzip -9 67.8 (15.3) 54.1 (16.0) 58.34 (10.0) 2.81 (0.18)

xz -6 77.7 (9.7) 66.5 (13.7) 71.52 (7.99) 2.33 (-0.6)
xz -9 77.7 (9.7) 66.5 (13.7) 71.52 (7.99) 2.33 (-0.6)

noComp 47.1 (13.1) 37.5 (15.9) 40.19 (9.58) 2.23 (0.24)

Performance
category max min avg σ

cpu time [s] 1124.19 (-10.54) 629.22 (-2.22) 916.73 (5.47) 91.96 (-3.41)

memory [MB] 4241 (-4) 2753 (-5) 3815 (-4) 304 (<1)

Table 5.4: StatsCompressor’s Compression Ratios for compression of the LRT_A set
using rules discovered in the LRT_A set (full LRT_A/LRT_A) with renumbering dis-
abled. The values in brackets are value of( this field) − value of( the same field in full
LRT_A/LRT_A).
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5.7.2. Flattening of abstraction classes

Description of the aim of flattening of the abstraction classes requires introducing a new
notation. Let us f, g, . . . represent different statistics. id(f) = x will mean that statistics
f will get an identifier x in the Zplus file.

The way the algorithm for selecting scored rules (see Par. 5.6.2) works implies that,
for example, compression of abstraction class A = f0, f1, f2, f3, the following rules can
be selected: f1 = f0, f2 = f1, f3 = f2. However, it is not optimal, because at least three
different identifiers should be used – x, y, z and x = id(f0), y = id(f1), z = id(f2) =
id(f3). The optimal approach is to code the whole abstraction class as follows: f1 =
f0, f2 = f0, f3 = f0 because only one identifier, t = id(f0), will be used then. There will
be t = id(f0) = id(f1) = id(f2) = id(f3). Please note that in that case it is impossible
to get the original identifier of the statistics f1, f2 and f3. However, it is not necessary.

The process of optimization of the representation of abstraction classes is called
flattening because its aim is to reduce the height of the tree of rules used for encoding
the abstraction class. The optimal tree height is 1, so each abstraction class has exactly
one representative. A Find-Union Algorithm is used to conduct it. At the beginning each
statistic forms a singleton set. If there is a strict identity between statistics, appropriate
sets (representing abstraction classes of this statistics) are joined. Finally, each of the sets
has only one representative to be used (f0 in the example from the previous paragraph).
In practice, the Boost Disjoint Sets library was used. The complexity was O(mα(n,m ·
n)), where α is the inverse Ackermann’s function, n is the number of statistics, m =
O(1) and depends on the set of rules to be analyzed. In the experiment with full
LRT_A/LRT_A this step took on average 0.7 second.

Table 5.5 shows the results of compressing the LRT_A set using rules discovered
on LRT_A with flattening of abstraction classes disabled. Space saving is very little –
it is on average 2-3 percentage points. It is interesting that enabling flattening is very
important for the xz compressor. Flattening of abstraction classes uses about 14 MB of
RAM, as data structures for Find-Union Algorithm have to be built.

5.8. Internal-knowledge based algorithms

StatsCompressor searches for some kind of correlations on its own – it performs mining
that is sufficiently fast in order not to have negative impact on the performance (which
is crucial for this software).

5.8.1. Compressing constants

About 24% of statistics in all Zstat files are constants. This kind of (intra) correlations
is not put into rules files, so StatsCompressor should find them by itself. The process is
similar to the one described in Par. 4.8.1.

When all the constant statistics are identified, they are grouped into abstraction
classes (basing on their values) – there is, for example, class f = g = h. Each class has
one representative, which is the statistic having the fewest samples (for example f). For
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Full files
compressor max [%] min [%] avg σ

bzip2 -6 55.1 (2.5) 48.2 (4.4) 50.3 (2.34) 1.84 (-0.01)
bzip2 -9 55.2 (2.5) 48.1 (4.3) 50.14 (2.36) 1.83 (-0.02)

gzip -6 60.3 (3.2) 53.7 (3.7) 56.23 (2.51) 1.61 (-0.07)
gzip -9 61.0 (3.1) 53.7 (2.7) 56.66 (2.32) 1.69 (-0.02)

xz -6 73.3 (2.7) 66.3 (3.6) 70.43 (3.03) 1.53 (-0.28)
xz -9 73.3 (2.7) 66.3 (3.6) 70.42 (3.03) 1.54 (-0.27)

noComp 75.1 (0.8) 59.3 (0.5) 65.06 (0.62) 3.68 (0.07)

Only bodies
compressor max [%] min [%] avg [%] σ [%]
bzip2 -6 49.5 (1.6) 37.0 (3.6) 44.74 (1.75) 2.19 (-0.27)
bzip2 -9 49.6 (1.9) 37.1 (3.7) 44.46 (1.74) 2.26 (-0.2)

gzip -6 53.8 (1.4) 41.8 (3.8) 50.07 (1.8) 2.36 (-0.27)
gzip -9 54.0 (1.5) 41.9 (3.8) 50.17 (1.83) 2.37 (-0.26)

xz -6 69.5 (1.5) 57.4 (4.6) 65.57 (2.04) 2.53 (-0.4)
xz -9 69.5 (1.5) 57.4 (4.6) 65.57 (2.04) 2.53 (-0.4)

noComp 34.9 (0.9) 23.6 (2.0) 31.67 (1.06) 1.81 (-0.18)

Performance
category max min avg σ

cpu time [s] 1097.79 (-36.94) 665.44 (34.0) 911.38 (0.12) 84.28 (-11.09)

memory [MB] 4232 (-12) 2742 (-16) 3806 (-13) 304 (0)

Table 5.5: StatsCompressor’s Compression Ratios for compression of the LRT_A set
using rules discovered in the LRT_A set with flattening of abstraction classes dis-
abled. The values in brackets are value of( this field) − value of( the same field in full
LRT_A/LRT_A).
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each member of the abstraction class, an identity rule (same as in the case of identities
loaded form rules file) is created, describing the relationship between the statistic and
the representative of the abstraction class (in the example it is f = g and f = h).
Please note that there are no rules between non-representative statistics (there is not
rule g = h). This approach was used to minimize the number of rules created at this
step (abstraction classes can be quite large, so usage of the real combination method
of storing rules would result in generating of thousands of rules, although only a small
percentage of them would be used).

Discovering of constants took on average 0.61 seconds only but it had a significant
impact on the StatsCompressor’s Compression Ratios – Table 5.6 presents the results of
the experiment with StatsCompressor having only the compression of constants turned
on (no other compression method was used, although postprocessing was active). Space
savings varied from 9.61% to 12.69%, depending on the external compressor used, in the
case of compressing full files and from 6.48% to 8.67% when only bodies were compressed.
It seems that space saving was bigger for full files because of the use of the renumbering
of the statistics as a postprocessor, so the name to identifier mapping from the first
section of the Zplus file contained less entrophy – the number of the different identifiers
was smaller.

5.8.2. Transformats

As it was already mentioned, a method of compressing samples of statistics using an
intra correlation is called a transformat. Such correlations are currently discovered by
StatsCompressor on its own. Each statistic can be compressed using no more than one
transformat – it is done when no other means of compression is accessible – see Par. 5.6.1)
for more details. StatsCompressor always computes all the transformats for each statistic
to determine the best transformat. These computations proved to be extremely fast.

The following notation will be used while describing transformats:

s − the sequence of samples of a statistic
si − the i-th sample from the sequence s

Ti(s) − the result of applying the transformat t to the i-th sample of the sequence s

0-transformat

The 0-transformat was introduced for clarity only, to make the following statement
always true: ’if samples of a statistic should be (explicitly) dumped in the Zplus file,
transformat is used.’ The 0-transformat does not transform samples in any way – their
values are just saved ’as is’, in the same manner as they existed in the Zstat file.

Ti(s) = si (5.10)
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Full files
compressor max [%] min [%] avg σ

bzip2 -6 94.0 81.4 90.3 2.86
bzip2 -9 94.1 81.6 89.98 2.84
gzip -6 91.6 76.7 87.31 3.18
gzip -9 92.4 78.4 88.46 3.04
xz -6 93.4 82.1 90.31 2.39
xz -9 93.4 82.1 90.3 2.4
noComp 96.0 92.2 94.57 0.8

Only bodies
compressor max [%] min [%] avg [%] σ [%]
bzip2 -6 96.2 83.2 92.63 2.67
bzip2 -9 95.9 83.5 92.43 2.63
gzip -6 95.2 80.1 91.33 3.15
gzip -9 95.2 80.3 91.38 3.1
xz -6 96.0 85.5 93.52 2.16
xz -9 96.0 85.5 93.52 2.16
noComp 94.0 80.9 90.16 2.94

Performance
category max min avg σ

cpu time [s] 5.98 3.74 4.09 0.35
memory [MB] 233 194 206 8

Table 5.6: StatsCompressor’s Compression Ratios for compression of the LRT_A set
with all methods of compression disabled except for compression of constants. Postpro-
cessing was however still enabled.
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Difference transformat

The difference transformat is based on the assumption that the values of statistics change
gradually, so saving the difference between the current sample and the previous one can
be cheaper than explicitly saving values of both samples – the difference is often a small
number, having a lower cost. Moreover, the same values may frequently appear as
differences, so they will be efficiently compressed by the external compressors. To be
able to compute differences it is assumed that the value of the sample before the first
samples of a statistic is 0. This approach is leveraged for all computations on finite
differences in StatsCompressor, enabling, for example, the decompression of a statistic
f compressed using the rule ∆f = g when samples of the statistic g are already known.

T0(s) = s0 − 0 = s0

Ti(s) = si − si−1 i > 0

Dominant transformat

The dominant transformat was introduced due to an observation that some statistics
seldom change their values, so it is enough to save the dominant value of these statistics
and the vector of deviations. The latter thing can be done effectively thanks to the usage
of the encoding of the sparse deviations vector (see appendix A). Computation of the
dominant transformat requires reading the samples of the statistic two times – in the
first pass a dominant (the most common value) is found and in the second deviations
are determined. However, as the performance results proved, scanning the sequence two
times does not have a visible impact on the performance of StatsCompressor.

c − the dominant of the sequence – the most common value
in the sequence of the samples of s

Ti(s) = si−1 − c

Evaluation of transformats

Table 5.7 contains StatsCompressor’s Compression Ratios for compressing the LRT_A set
using transformats as the only method of compression. The space savings are impres-
sive: 18.06%-30.89% (depending on the external compressor used) in the case of full
files and 21.91%-36.28% for bodies only. The dominant and difference transformats
proposed in the thesis are very simple methods and it is surprising that none of the
external compressors use the same mechanism in such an efficient manner. Naturally,
the aforementioned tools are tuned to work rather with byte files than with text ones,
but it seems they should be improved in some way, because the potential space saving
is huge and nowadays files containing plain text are becoming more and more popular
(eg. JSON format).
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Full files
compressor max [%] min [%] avg σ

bzip2 -6 76.9 65.2 69.11 3.03
bzip2 -9 76.9 65.9 69.2 2.96
gzip -6 81.1 69.5 73.84 2.18
gzip -9 80.4 68.8 73.27 2.16
xz -6 85.8 76.4 81.94 1.92
xz -9 85.8 76.4 81.94 1.91
noComp 85.2 75.8 78.44 2.52

Only bodies
compressor max [%] min [%] avg [%] σ [%]
bzip2 -6 72.1 58.5 64.38 3.1
bzip2 -9 72.3 58.1 63.72 3.34
gzip -6 72.4 61.5 66.65 2.33
gzip -9 72.8 61.8 66.79 2.38
xz -6 82.5 71.7 78.09 2.68
xz -9 82.5 71.7 78.09 2.68
noComp 62.5 47.9 57.17 2.66

Performance
category max min avg σ

cpu time [s] 3.67 2.7 3.2 0.19
memory [MB] 901 764 792 28

Table 5.7: StatsCompressor’s Compression Ratios for compression of the LRT_A set
with all methods of compression disabled except for usage of transformats. Postprocess-
ing was still enabled but had no impact on the results.

The difference transformat is more frequently used than the dominant one, which
had been already predicted – see Table 5.8. However, the dominant transformat is
surprisingly often the best one, although theoretically it might be used under very similar
conditions as the difference transformat – the better they work the smaller the number
of deviations is. Another interesting fact is that the 0-transformat was hardly ever used
– it means that there are just a few statistics having huge fluctuations.

Both difference and dominant transformats are built in the same manner – there
is a function used for predicting values of the samples and deviations between real and
predicted values have to be saved. Naturally, many other families of functions can be used
for prediction – determining which family of functions (polynomial, exponential, etc.)
should be used may be checked by StatsMiner, whereas StatsCompressor can compute
coefficients of these functions using some numerical methods. In fact, the whole idea
of fitting function to the real samples’ values is not new – it is already used for sound
compression, for example in the Free Lossless Audio Codec (FLAC) [CF13].
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Transformat avg. number of applications among all the transformats
0-transformat 165 <1%
Difference transformat 41 955 86%
Dominant transformat 6820 14%
Total 48 940 100%

Table 5.8: The average number of times when a specific transformat was used for Zstat
files from the LRT_A set (all other methods of compression were disabled).

5.9. Usage of external-knowledge

The rules file is the source of external-knowledge – correlations found by StatsMiner.
This section contains analysis of the usage of these rules – how it impacts performance
of StatsCompressor and what problems have to be solved in the future.

5.9.1. Vectors of deviations

One of the most important features of StatsCompressor is its ability to use correlations
even if they do not numerically fit, so there are some deviations between real values of
samples and the ones predicted by the use of correlation. It means that StatsCompressor
can use weak correlations, although StatsMiner discovers only the strict ones (especially
in the implemented version). The way such deviations are encoded is described in the
Appendix A. Table 5.9 presents the StatsCompressor’s Compression Ratios when usage
of deviations vectors is disabled, so only strict correlations are allowed. In fact, it also
means that transformats are turned off (except for the 0-transformat, naturally), because
they require deviations vectors to work properly. As it can be seen, usage of deviations
vectors is crucial for achieving good compression ratios by StatsCompressor, especially
when external compressors are used. On the other hand, this result also proves that the
idea of correlation-based compression (as described in this thesis) is reasonable, because
space savings are non-zero even if the best external compressor (xz -9) is used – space
savings are 14.9% for full files and 12.68% for bodies. In fact, the second result is more
important because it applies to the part of a Zstat file containing sequences of samples
only, which are the most interesting for StatsCompressor.

The usage of vectors of deviations does not influence CPU consumption very much.
On the contrary, usage of the memory seems to be affected but it is implementation
dependent and can be reduced – in the current version of StatsCompressor deviations
vectors computed while scoring the rules are held in the memory no matter if they are
usable anymore.

5.9.2. Performance of usage of external-knowledge rules

StatsMiner can easily produce millions of rules (see Par. 4.9), so it is interesting to
investigate how well StatsCompressor can use this knowledge. Table 5.10 presents the
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Full files
compressor max [%] min [%] avg σ

bzip2 -6 80.6 (28.0) 70.2 (26.4) 77.28 (29.32) 2.1 (0.25)
bzip2 -9 80.3 (27.6) 70.5 (26.7) 77.01 (29.23) 2.08 (0.23)

gzip -6 84.3 (27.2) 71.9 (21.9) 80.69 (26.97) 2.55 (0.87)
gzip -9 85.4 (27.5) 73.8 (22.8) 81.89 (27.55) 2.38 (0.67)

xz -6 87.6 (17.0) 78.3 (15.6) 85.12 (17.72) 1.97 (0.16)
xz -9 87.5 (16.9) 78.3 (15.6) 85.1 (17.71) 1.98 (0.17)

noComp 83.6 (9.3) 76.5 (17.7) 80.12 (15.68) 1.51 (-2.1)

Only bodies
compressor max [%] min [%] avg [%] σ [%]
bzip2 -6 80.7 (32.8) 69.9 (36.5) 77.82 (34.83) 2.38 (-0.08)
bzip2 -9 79.7 (32.0) 70.3 (36.9) 77.38 (34.66) 2.11 (-0.35)

gzip -6 87.3 (34.9) 73.7 (35.7) 83.5 (35.23) 2.63
gzip -9 87.3 (34.8) 73.8 (35.7) 83.54 (35.2) 2.6 (-0.03)

xz -6 89.6 (21.6) 79.8 (27.0) 87.32 (23.79) 1.93 (-1.0)
xz -9 89.6 (21.6) 79.8 (27.0) 87.32 (23.79) 1.93 (-1.0)

noComp 64.6 (30.6) 51.0 (29.4) 61.65 (31.04) 2.49 (0.5)

Performance
category max min avg σ

cpu time [s] 1168.23 (33.5) 672.21 (40.77) 888.11 (-23.15) 94.71 (-0.66)
memory [MB] 3466 (-779) 2392 (-366) 3081 (-738) 233 (-70)

Table 5.9: StatsCompressor’s Compression Ratios for compression of the LRT_A set
using rules discovered in the LRT_A set with deviations vectors usage and transformats
disabled. The values in brackets are value of( this field) − value of( the same field in full
LRT_A/LRT_A).
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Category Identity rules Sums rules
All statistics 48 940
Non-const statistic 14 528
Loaded rules 9 115 500
Tried to apply 709 364 26 386 600
Having a good cost 310 492 4 212 930

Not applied, cycling 16 598 193 870
Not applied, lhs described 252 894 5 965 020

Applied 41 008 (6596) 1002
Evaluation time [s] 7.4 578
Choosing the rules time [s] 18.0

Table 5.10: Statistics of usage of rules loaded from the rules file by StatsCompressor per
Zstat file while compressing the LRT_A set using all the methods and rules generated
on the LRT_A set. Rules created for constants compression are also included.

statistics of the usage of rules loaded from rules files while compressing the LRT_A set
with rules discovered on the LRT_A set.

Please note that results for identities include rules generated internally in StatsCom-
pressor for compression of constants. It is due to the fact that StatsCompressor does
not create identity rules for constant statistics, even though it could. According to that,
not including this kind of rules may result in creating a false image of StatsCompressor,
as some statistics (being constant in the file being compressed) might be compressed
very ineffectively because of the lack of the aforementioned identity rules. For example,
if f ≡ 2, g ≡ 2, instead of encoding f = g, a rule f = g + ∆g might be used. The
number of rules created in StatsCompressor for encoding constants is relatively small –
there are no more such rules than the number of statistics – so they will not perturb
the evaluation of external-knowledge rules very much, however their absence will make
these results totally untrue.

Description of Table 5.10

Before commenting on the result, categories used in Table 5.10 should be described:

• All statistics — The average number of statistics in the analyzed Zstat file.

• Non-const statistics — The average number of statistics being not constant in the
analyzed Zstat file.

• Loaded rules — The average number of rules per Zstat file that were loaded from
the rules file and they might be used for compression. A rule may be used for
compression if the Zstat file contains all the statistics this rule uses.

• Tried to apply — The number of rules that were scored (see Par. 5.6.1). There
is tried to apply > loaded rules, because generated identity rules for constants
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compression are included but, first of all, new rules are created out of existing
ones because of changing left-hand-sides of them (for example, if there is a rule
f = g + h, the following rules are created: f = g + h, g = h − f and h = g − f).
Such rules are called directed rules. Each directed rule can compress exactly one
statistic (which is on its left-hand-side).

• Having a good cost — The average number of directed rules per Zstat which can
really compress a statistic, so the cost of encoding a statistic using the aforemen-
tioned rule is smaller than the cost of compressing the statistic using the best
transformat (see Par. 5.6.1).

• Not applied, cycling — The average number of directed rules per Zstat, whose
usage will introduce cycles in the graph of statistics, so it would be impossible
to recover the factual values of samples of the statistics (only the relationships
between statistics would be known). See Par. 5.6.2.

• Not applied, lhs described — The average number of directed rules per Zstat file
that were not used because another rule has been previously selected to compress
the statistic. See Par. 5.6.2.

• Applied — The average number of directed rules per Zstat used for compression.
The number in parenthesis in the identity rules column indicates the average num-
ber of applications of identity rules really loaded from rules files (not generated by
StatsCompressor on its own for compression of constants).

• Evaluation time — The average time (in seconds) of scoring the directed rules per
Zstat file (see Par. 5.6.1).

• Choosing the rules — The average time (in seconds) of choosing the directed rules
to be used for compression per Zstat file (see Par. 5.6.2).

Please note that the following relationship holds between the directed rules:

Tried to apply > Having a good cost (5.11)
Having a good cost = Applied + Not applied... (5.12)

Analysis of performance of usage of external-knowledge based rules

First of all, it is very encouraging that so many rules have been loaded from the rules
file and may be applied to the (average) Zstat file. However, the number of directed
sum rules becomes extremely huge and it seems to be the main performance problem
of StatsCompressor, as the time of evaluation of sums is 80 times longer than the time
of the same operation for identity rules. Surprisingly, choosing the rules to be used for
compression is much faster than evaluation of sum rules, although this step seems to be
more complicated than evaluation. It is believed that the code of evaluation phase could
be improved – by better CPU’s caches usage, SIMD instructions leveraging etc.
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The number of rules that have good costs (so they are worth applying) is also impres-
sive and proves that correlation-based compression has considerable potential. Naturally,
it is only 44% of identity rules and 16% of sums rules, so it seems that the rules file’s
size can be decreased without much lowering the compression ratio. This issue will be
discussed in Par. 5.9.4. The main reason why (directed) rules cannot be applied is the
fact that target statistics are already compressed by another rule. This situation has
some important implications. First of all, improving the algorithm for choosing rules
(see Par. 5.6.2) may increase the compression ratio. On the other hand, it can also mean
that there are big abstraction classes among statistics, as there are often many ways of
compressing the same statistic (it is correlated with many other statistics). A relatively
small number of failures in the application of the rule due to a cycle appearance may
be interpreted as information about a small number of abstraction classes, but in real-
ity rules are checked for this condition only if their left-hand-sides have not yet been
compressed, so interpreting this value is difficult. However, no matter how big the value
of this result is, it means that without this check there would be many statistics that
cannot be properly decompressed.

At first glance, the number of applied rules (i.e. the ones really used for compres-
sion) is huge – on average 42 010 per Zstat file, containing on average 48 940 statistics
(so 86% of statistics can be compressed using correlations). On the other hand, on av-
erage 41 008 rules compress constant statistics and are generated by StatsCompressor
on its own. However, it is rather good news because it proves that dropping constants
in StatsMiner (see Par. 4.8.1 and Par. 5.8.1) was a good decision – otherwise rules files
would be huge and StatsCompressor would be much slower than it is now. Consequently,
the number of applications of rules loaded from the file (in total 6598) should be com-
pared with the number of statistics that are not constant (14 528), so 45% of statistics
are compressed using such correlations. Certainly this result may be improved after
extending StatsMiner by searching for more kinds of correlations (see Par. 4.7), or by
implementing one of the proposed, theoretically better, algorithms for window genera-
tion (see Par. 4.3.1). The number of applied rules should increase then but it is hard to
predict how much, as currently sums are applied to 7% of statistics. This kind of sums
(consisting of 3 statistics only) is not very sophisticated, and it is believed that sums
of many more statistics exist. On the other hand, the more complicated the formula of
correlation is, the higher is the cost of application of such a rule, because the rule should
also be stored in the Zplus file.

Summary

External-knowledge rules (these loaded from a file) are important for StatsCompressor –
they are often used for compression. Discovering more types of correlations in StatsMiner
(or just improving the existing algorithms) will certainly improve the compression ratio
achieved by StatsCompressor, as there is a group of statistics not compressed now. How-
ever, StatsCompressor currently has problems with performance, as there are too many
rules that are being assessed (especially sum rules) and it seems that they can be used
more efficiently. Possibilities of using a smaller number of sum rules will be discussed
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Full files
compressor max [%] min [%] avg σ

bzip2 -6 54.4 (1.8) 44.6 (0.8) 49.87 (1.91) 1.85 (0.00)
bzip2 -9 54.5 (1.8) 44.6 (0.8) 49.69 (1.91) 1.84 (-0.01)

gzip -6 58.3 (1.2) 50.7 (0.7) 55.44 (1.72) 1.69 (0.01)
gzip -9 59.0 (1.1) 51.7 (0.7) 56.1 (1.76) 1.68 (-0.03)

xz -6 72.4 (1.8) 63.3 (0.6) 69.18 (1.78) 1.95 (0.14)
xz -9 72.4 (1.8) 63.4 (0.7) 69.18 (1.79) 1.95 (0.14)

noComp 74.6 (0.3) 60.2 (1.4) 65.48 (1.04) 3.37 (-0.24)

Only bodies
compressor max [%] min [%] avg [%] σ [%]
bzip2 -6 50.6 (2.7) 34.4 (1.0) 45.3 (2.31) 2.63 (0.17)
bzip2 -9 50.4 (2.7) 34.4 (1.0) 45.02 (2.3) 2.67 (0.21)

gzip -6 54.7 (2.3) 39.0 (1.0) 50.51 (2.24) 2.82 (0.19)
gzip -9 54.8 (2.3) 39.1 (1.0) 50.58 (2.24) 2.82 (0.19)

xz -6 70.3 (2.3) 54.0 (1.2) 65.9 (2.37) 3.15 (0.22)
xz -9 70.3 (2.3) 54.0 (1.2) 65.9 (2.37) 3.15 (0.22)

noComp 36.0 (2.0) 22.6 (1.0) 32.63 (2.02) 2.19 (0.2)

Performance
category max min avg σ

cpu time [s] 21.1 (-1113.63) 17.05 (-614.39) 19.95 (-891.31) 0.94 (-94.43)
memory [MB] 422 (-3822) 322 (-2436) 347 (-3473) 18 (-285)

Table 5.11: StatsCompressor’s Compression Ratios for compression of the LRT_A set
using identity rules (only) discovered in the LRT_A set. The values in brackets are
value of( this field) − value of( the same field in full LRT_A/LRT_A).

in Par. 5.9.4 and some new system approaches will be presented in Par. 5.10. Problem-
atic (from the performance point of view) internal algorithms of StatsCompressor were
described in Par. 5.6.

5.9.3. Importance of identity and sum rules

In the previous section there was a suggestion of lowering the number of used sum rules
to improve the performance of StatsCompressor. Table 5.11 presents the StatsCom-
pressor’s Compression Ratios for compression of the LRT_A set using only identity
rules discovered on the LRT_A set. The values in brackets show the difference be-
tween the achieved values and those found when all the rules are being used (in full
LRT_A/LRT_A experiment, see Table 5.1), so they inform about the importance of
sum rules for the compression.

StatsCompressor’s Compression Ratios presented in Table 5.11 inform that sum rules
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have very small impact on the compression ratios achieved by the tool (about 1,8% for full
files and 2.37% for bodies only), but not using them greatly improves the performance
(CPU and memory usage becomes acceptable right now, albeit it is just a prototype
version of the compressor!). Moreover, as the standard deviation of performance results
drops significantly, it is easier to predict StatsCompressors requirements. It is interesting
that, in the case of compression of bodies only, usage of sums is the most important for
the xz compressor. However, it is not surprising, since this kind of correlation cannot be
discovered by any external compressor by itself – they would rather not assume that some
data can sum. If sums are not to be used, StatsCompressor uses some other methods
for compressing the affected statistics and the xz seems to be able to do some of this
work on its own.

As the sums are not used, StatsCompressor applies identity rules instead. On av-
erage, it applied 410 more such rules than usual. It may be treated as evidence that
sum rules are however important, because not all of them (1002 on average) may be
substituted. Furthermore, sum rules apply to 2% of statistics only, but they improve the
StatsCompressor’s Compression Ratio by about 2% as well – it is an impressive result
which also implies that use of other correlations should be tried by the designed soft-
ware. Naturally, performance degradation connected with usage of sum rules is currently
unacceptable and should be improved.

5.9.4. Random reduction of the number of sum rules

The simplest idea to reduce the time and memory consumption of StatsMiner while still
using sum rules is to randomly delete a specific amount of such rules. Table 5.12 presents
the differences between average StatsCompressor’s Compression Ratios and performance
results between usage of all the rules with usage of all the identities and a number of
randomly selected sum rules.

The results collected in Table 5.12 imply that it is possible to significantly improve
the performance of StatsCompressor with only a subtle loss of StatsCompressor’s Com-
pression Ratio by using only a small percentage of the originally found sum rules. It
seems that leaving 20% of sum rules is a good trade-off – at the price of losing about
45% of space saving stemming from the usage of sum rules, it is possible to cut down the
CPU and memory consumption so it is just 6% higher than while not using sum rules
at all. Such a strange behavior of StatsCompressor, that the number of deleted rules
is not in linear relationship with CPU and memory consumption, seems to be an effect
of using the combinational form of storing rules, as the rules file contains a product of
abstraction classes of all statistics involved in each sum rule. On the other hand, such a
good result may be proof that the implemented algorithm for selecting rules to be used
for compression – although simple – is quite effective.

5.9.5. Summary

The importance of usage of external-knowledge based rules is illustrated by Table 5.13.
It contains StatsCompressor’s Compression Ratios for compression of LRT_A without
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Full files
80% 50% 20% 5% 0%

bzip2 -6 0.11 0.4 0.75 1.3 1.91
bzip2 -9 0.13 0.4 0.76 1.31 1.91
gzip -6 0.12 0.4 0.73 1.26 1.72
gzip -9 0.12 0.41 0.74 1.29 1.76
xz -6 0.13 0.42 0.77 1.29 1.78
xz -9 0.13 0.42 0.78 1.28 1.79
noComp 0.07 0.19 0.39 0.67 1.04

Only bodies
80% 50% 20% 5% 0%

bzip2 -6 0.14 0.46 0.89 1.57 2.31
bzip2 -9 0.14 0.48 0.91 1.57 2.3
gzip -6 0.16 0.52 0.95 1.63 2.24
gzip -9 0.16 0.52 0.96 1.64 2.24
xz -6 0.17 0.55 1.02 1.7 2.37
xz -9 0.17 0.55 1.02 1.7 2.37
noComp 0.12 0.38 0.75 1.29 2.02

Performance
80% 50% 20% 5% 0%

cpu time [s] -176.0 -429.33 -712.21 -842.63 -891.31
memory [MB] -694 -1736 -2777 -3299 -3473

Table 5.12: Differences between StatsCompressor’s Compression Ratios for compression
of the LRT_A set using: all the rules discovered on the LRT_A set and all the identity
rules and only a given percentage of sum rules. The values in cells are value of( result
of the compression with the reduced set of sum rules ) − value of( corresponding field in
full LRT_A/LRT_A).
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Full files
compressor max [%] min [%] avg σ

bzip2 -6 66.8 (14.2) 51.1 (7.3) 60.18 (12.22) 2.98 (1.13)
bzip2 -9 66.7 (14.0) 51.4 (7.6) 59.9 (12.12) 2.97 (1.12)

gzip -6 66.0 (8.9) 54.5 (4.5) 62.36 (8.64) 2.34 (0.66)
gzip -9 66.5 (8.6) 55.4 (4.4) 62.92 (8.58) 2.3 (0.59)

xz -6 79.2 (8.6) 67.1 (4.4) 74.17 (6.77) 2.66 (0.85)
xz -9 79.1 (8.5) 67.1 (4.4) 74.15 (6.76) 2.66 (0.85)

noComp 81.2 (6.9) 73.2 (14.4) 75.27 (10.83) 2.21 (-1.4)

Only bodies
compressor max [%] min [%] avg [%] σ [%]
bzip2 -6 65.5 (17.6) 42.9 (9.5) 57.32 (14.33) 3.9 (1.44)
bzip2 -9 64.8 (17.1) 43.4 (10.0) 56.63 (13.91) 3.7 (1.24)

gzip -6 63.9 (11.5) 44.2 (6.2) 58.83 (10.56) 3.52 (0.89)
gzip -9 64.0 (11.5) 44.3 (6.2) 58.88 (10.54) 3.53 (0.9)

xz -6 78.5 (10.5) 59.8 (7.0) 72.18 (8.65) 3.67 (0.74)
xz -9 78.5 (10.5) 59.8 (7.0) 72.18 (8.65) 3.67 (0.74)

noComp 59.0 (25.0) 37.7 (16.1) 51.93 (21.32) 3.52 (1.53)

Performance
category max min avg σ

cpu time [s] 4.67 (-1130.06) 3.64 (-627.8) 4.0 (-907.26) 0.2 (-95.17)
memory [MB] 246 (-3999) 212 (-2546) 223 (-3597) 6 (-297)

Table 5.13: StatsCompressor’s Compression Ratios for compression of the LRT_A set
without usage of any rules found by StatsMiner. The values in brackets are value of( this
field) − value of( the same field in full LRT_A/LRT_A (the same experiment but all
the rules are being used)).

loading any rules from the file. The numbers in brackets are the differences between
the results of a similar experiment, but having enabled loading of all rules discovered
in the LRT_A (’full LRT_A/LRT_A’). From another point of view, this table can be
treated as part of the discussion of a different model of usage of the described solution
(see Par. 5.10) – it answers the question ’what if there is no StatsMiner at all?’.

The results from Table 5.13 indicate that usage of rules loaded from the file (i.e. dis-
covered by StatsMiner) improves StatsCompressor Ratio for full files by, on average, 6.76
– 12.22 percentage points, depending on the external compressor used, and 8.65 - 14.33
percentage points in the case of bodies only. It is interesting that usage of the loaded
rules is much more important for the bzip2 compressor than for the gzip, however files
generated by the xz are still smaller, though.

In this approach the tool has excellent performance, which can be further improved
by cautious implementation of StatsCompressor. Especially memory consumption may
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drop significantly, as much data is now being kept in the memory although it can be
easily computed on demand.

Summing up, using external-knowledge based rules increases StatsCompressor’s Com-
pression Ratio, albeit the space saving is not as big as in the case of other, built-in
algorithms of the tool. However, much work can be done to improve StatsMiner, so
the results can be much better – it is believed that 10 percentage points is feasible.
In addition, it is already known that some places of the StatsCompressor’s code need
optimalization, so the performance may also increase. Finally, the current results seem
to be satisfying at this point of research.

5.10. Other models of usage of correlation-based compres-
sion

Chapter 3 presents the most general, distributed model of usage of the designed solution.
There are two places where a policy should be adopted – the method of selecting rules
sent to customers and the external compressor used. External compressors were already
discussed in 5.4. Sections 5.10.2, 5.10.3 and 5.9.4 discuss three various approaches for
preparation of a rules file. Then section 5.17 covers a totally different approach – merging
StatsMiner with StatsCompressor, so discovering rules is being done just before the
compression, at the customer’s site. Please note that one more approach was already
discussed in Par. 5.9.5 – the idea of not using StatsCompressor at all.

This section only briefly presents different models of usage of the correlation-based
compression.

5.10.1. Realistic distributed model of compression

Up to now all the results concerned compressing the LRT_A set using (or sometimes
not) rules discovered on the LRT_A set. This assumption was not very realistic because
real Zstat files will be compressed using rules discovered not on the same data (although
such approach will be discussed in Par. 5.17), so the results already analyzed can be
considered as ’best currently achievable’.

Table 5.14 contains StatsCompressor’s Compression Ratios for compressing the
LRT_B set with rules discovered on the LRT_A set. It simulates realistic, but also the
most optimistic, use-case of the designed solution – the data at the customer’s site (the
LRT_B set) is compressed using rules discovered on a training set (the LRT_A set) and
both were generated by the exactly same version of HYDRAstor.

The results presented in Table 5.14 are very good, because StatsCompressor’s Com-
pression Ratios achieved in this realistic model are very similar to those analyzed in the
optimistic one – they are only 0.5 percentage point worse. Naturally, standard deviations
increased, but it is not surprising, as the input’s data entropy increased (not the same
files have been mined and then compressed). It seems that accepting deviations is crucial
to get such good results. Performance behaved as expected – CPU usage increased (as
there were more deviations to analyze), but memory consumption was lower, because in
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Full files
compressor max [%] min [%] avg σ

bzip2 -6 74.5 (21.9) 43.3 (-0.5) 48.67 (0.71) 4.29 (2.44)
bzip2 -9 74.5 (21.8) 43.8 48.47 (0.69) 4.29 (2.44)

gzip -6 76.0 (18.9) 48.4 (-1.6) 54.25 (0.53) 3.78 (2.1)
gzip -9 76.2 (18.3) 48.9 (-2.1) 54.89 (0.55) 3.74 (2.03)

xz -6 81.2 (10.6) 60.5 (-2.2) 67.83 (0.43) 3.04 (1.23)
xz -9 81.3 (10.7) 60.5 (-2.2) 67.84 (0.45) 3.05 (1.24)

noComp 81.8 (7.5) 58.7 (-0.1) 64.64 (0.2) 3.98 (0.37)

Only bodies
compressor max [%] min [%] avg [%] σ [%]
bzip2 -6 65.0 (17.1) 34.0 (0.6) 43.66 (0.67) 4.24 (1.78)
bzip2 -9 64.5 (16.8) 34.0 (0.6) 43.38 (0.66) 4.19 (1.73)

gzip -6 65.0 (12.6) 38.8 (0.8) 48.72 (0.45) 4.06 (1.43)
gzip -9 65.9 (13.4) 38.9 (0.8) 48.82 (0.48) 4.14 (1.51)

xz -6 71.2 (3.2) 53.2 (0.4) 63.83 (0.3) 3.73 (0.8)
xz -9 71.2 (3.2) 53.2 (0.4) 63.83 (0.3) 3.73 (0.8)

noComp 41.5 (7.5) 22.1 (0.5) 30.92 (0.31) 2.52 (0.53)

Performance
category max min avg σ

cpu time [s] 1255.27 (120.54) 596.87 (-34.57) 932.76 (21.5) 120.4 (25.03)
memory [MB] 4380 (134) 2099 (-659) 3784 (-36) 392 (87)

Table 5.14: StatsCompressor’s Compression Ratios for compression of the LRT_B set
with usage of all the rules found by StatsMiner on the LRT_A set. The values in
brackets are value of( this field) − value of( the same field in full LRT_A/LRT_A).

79



Zstat files from the LRT_B set some statistics that appeared in the LRT_A set may
not exist.

These results are crucial for assessment of all previous experiments, as it is proof that
the optimistic results already presented may also be used for discussing the properties
of a realistic model of usage of StatsMiner and StatsCompressor.

5.10.2. Usage of significant rules

StatsMiner first searches for rules, and then it checks how many times each rule might be
applied to the data and how often the given relationship between statistics is true. The
result of this check is called a significance (see Par. 4.3) of a rule – this value indicates
how good a correlation is, so how often it is true. As the number of rules produced
by StatsMiner is huge, not all of them can be sent to the customers. Moreover, as it
was already mentioned, using too many rules has negative impact on the performance
of StatsMiner. Accordingly, it seems reasonable to transfer only the best rules – having
the highest significance factor – to the customers’ machines. Table 5.15 presents the
correlation of the significance of the used rules with the StatsCompressor’s Compression
Ratios (compared to the best achievable results) and the tool’s performance.

According to the results from Table 5.15, using rules of a given significance has
strong impact on the performance of StatsMiner, as both CPU and memory consumption
drops significantly. Unfortunately, the StatsCompressor’s Compression Ratios are also
lower, but the decrease in resources consumption is much faster than the decrease in
compression ratios. The values of the compression ratio should be compared with those
from Table 5.13, which contains information about the general impact of usage of rules
found by StatsMiner. It seems that usage of rules having significance 80% and higher is
a good choice for policy of limiting of the size of the rules file.

Note that rules files created in this way may be used for efficient compression of
statistics gathered by a different version of HYDRAstor, as the best rules are being
chosen.

5.10.3. Usage of the rules already used

StatsMiner produces millions of rules, however StatsCompressor uses, in reality, about
63% rules for compression per single Zstat file. Limiting the rules files according to the
rules significance (described in Par. 5.10.2) was based on the knowledge from StatsMiner.
Table 5.16 presents a similar approach, but based on the experience with the usage of
StatsCompressor – at the support’s site StatsMiner discovers rules in the training set
(LRT_A), then StatsCompressor is run on the same set to determine which of the found
rules are used in practice. Only such rules will be transfered to customers. The quality
of this approach is measured by compressing the LRT_B set.

Table 5.16 presents the StatsCompressor’s Compression Ratios for compressing the
LRT_B set with only these rules that were also used for compressing the LRT_A set
before. Values in brackets indicate the loss of compression ratio while compared with best
achievable – those from LRT_A/LRT_A full experiment – and they can be assessed as
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Full files
compressor 95% 90% 80% 70% 50%
bzip -6 4.24 3.92 3.34 2.91 2.2
bzip -9 4.12 3.8 3.28 2.88 2.2
gzip -6 3.58 3.32 2.86 2.43 1.96
gzip -9 3.54 3.28 2.82 2.41 1.94
xz -6 2.5 2.36 2.12 1.71 1.45
xz -9 2.49 2.36 2.13 1.71 1.45
noComp 3.16 2.9 2.45 2.17 1.65

Only bodies
compressor 95% 90% 80% 70% 50%
bzip -6 4.85 4.52 3.96 3.51 2.71
bzip -9 4.9 4.53 3.93 3.47 2.68
gzip -6 4.58 4.27 3.69 3.18 2.57
gzip -9 4.51 4.21 3.63 3.12 2.52
xz -6 3.46 3.3 3.0 2.49 2.12
xz -9 3.46 3.3 3.0 2.49 2.12
noComp 6.25 5.72 4.83 4.29 3.25

Performance
category 95% 90% 80% 70% 50%
cpu time [s] -756.12 -735.22 -704.43 -620.71 -563.37
memory [MB] -2897 -2816 -2696 -2385 -2071

Table 5.15: Differences in the average StatsCompressor’s Compression Ratios for com-
pression of the LRT_A set using: all the rules discovered in the LRT_A set and rules
having the minimal given importance. The values in cells are value of( compression with
rules of minimal importance) − value of(average in the full LRT_A/LRT_A).
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Full files
compressor max [%] min [%] avg σ

bzip2 -6 73.8 (21.2) 43.6 (-0.2) 49.19 (1.23) 4.19 (2.34)
bzip2 -9 73.8 (21.1) 44.1 (0.3) 48.98 (1.2) 4.18 (2.33)

gzip -6 74.6 (17.5) 48.7 (-1.3) 54.71 (0.99) 3.63 (1.95)
gzip -9 75.6 (17.7) 49.2 (-1.8) 55.38 (1.04) 3.66 (1.95)

xz -6 82.5 (11.9) 60.9 (-1.8) 68.43 (1.03) 3.17 (1.36)
xz -9 82.5 (11.9) 60.9 (-1.8) 68.43 (1.04) 3.18 (1.37)

noComp 81.7 (7.4) 59.0 (0.2) 64.86 (0.42) 3.92 (0.31)

Only bodies
compressor max [%] min [%] avg [%] σ [%]
bzip2 -6 66.2 (18.3) 34.6 (1.2) 44.33 (1.34) 4.34 (1.88)
bzip2 -9 65.6 (17.9) 34.6 (1.2) 44.05 (1.33) 4.31 (1.85)

gzip -6 66.2 (13.8) 39.6 (1.6) 49.41 (1.14) 4.18 (1.55)
gzip -9 67.1 (14.6) 39.7 (1.6) 49.52 (1.18) 4.26 (1.63)

xz -6 74.9 (6.9) 53.6 (0.8) 64.66 (1.13) 3.96 (1.03)
xz -9 74.9 (6.9) 53.6 (0.8) 64.66 (1.13) 3.96 (1.03)

noComp 41.9 (7.9) 22.6 (1.0) 31.36 (0.75) 2.57 (0.58)

Performance
category max min avg σ

cpu time [s] 58.32 (-1076.41) 30.25 (-601.19) 45.97 (-865.29) 4.24 (-91.13)
memory [MB] 696 (-3549) 424 (-2334) 631 (-3188) 53 (-250)

Table 5.16: StatsCompressor’s Compression Ratios for compression of the LRT_B set
with usage of rules already used by StatsCompressor while compressing the LRT_A set
with the rules discovered on the LRT_A set. The values in brackets are value of( this
field) − value of( the same field in full LRT_A/LRT_A).
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very good, because the compression ratio dropped by about 1 percentage point although
performance increased significantly. It shows that StatsCompressor uses similar sets of
rules for compressing different Zstat files, naturally if HYDRAstor versions are similar.
However, the standard deviation increased up to 50%, so it is harder to predict the size
of a Zplus file while using this approach, though it is still only 3%-4%. The described
method of limiting the size of the rules file seems to be very promising and practical.

Please note that such good results could be achieved because existence of the devia-
tions vectors was allowed – rules were treated as though they described weak correlations.
This method of selecting the rules to be used is believed to work best if StatsCompressor
will compress Zstat files generated by the same version of HYDRAstor which produced
the files for experiments at the support’s site as well. On the other hand, StatsCompres-
sor performs much better having rules selected using this approach than while using the
rules of the highest significance (see Par. 5.10.2).

5.10.4. Merged StatsMiner with StatsCompressor

The model of cooperation of StatsMiner with StatsCompressor showed in the picture
3.1 is as general as it could be and it assumes that StatsMiner needs a lot of CPU
time and memory. However, algorithms have been already moved from StatsMiner to
StatsCompressor (discovery of constants – see Par. 5.8.1) and it resulted in increasing
of StatsCompressors’s Compression Ratios without much decrease of its performance.
Table 5.17 presents a more radical approach – both StatsMiner and StatsCompressor
run on the customer’s site, for each Zstat file separately. It simulates (to some extent)
the situation in which both tools were merged.

Table 5.17 shows the results of joining the mining and compressing phases, so that
each file undergoes this procedure separately on the customer’s site. While interpreting
these results, it should be kept in mind that StatsMiner and StatsCompressor were
not designed to run in this model, so the performance results are as poor as possible.
On the other hand, StatsCompressor’s Compression Ratios are best achievable while
using this method because StatsMiner discovers all the rules first and StatsCompressor
selects the most fitting ones. If the tools were merged, compression and mining may
be interleaved, so there would be no mining for sum rules among statistics which are
already perfectly compressed using identity rules. However, even if performance results
are not as good as they could be, the use of CPU and memory dropped by half at the
customer’s site – it is one more proof why the number of rules which were to be used by
StatsCompressor should be limited somehow. StatsCompressor’s Compression Ratios
drop in this model by about 1.5-2.5 percentage points in comparison to the best one
achievable (coming from LRT_A/LRT_A full experiment). It is interesting that these
results are slightly worse than those achieved while using rules proved to be already used
for compression (see Par. 5.10.3). This observation shows how the possibility of usage of
weak rules is important for StatsCompressor, because, at present, StatsMiner discovers
strict rules only. The conclusion is that implementing random windows (see Par. 4.3.1)
in StatsMiner should have high priority. When it comes to the standard deviation, it is
still very low and there were not many changes in comparison to the LRT_A/LRT_A
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Full files
compressor max [%] min [%] avg σ

bzip2 -6 54.6 (2.0) 44.4 (0.6) 50.17 (2.21) 1.91 (0.06)
bzip2 -9 54.6 (1.9) 44.3 (0.5) 49.97 (2.19) 1.89 (0.04)

gzip -6 58.5 (1.4) 50.5 (0.5) 55.64 (1.92) 1.69 (0.01)
gzip -9 59.1 (1.2) 51.5 (0.5) 56.25 (1.91) 1.67 (-0.04)

xz -6 72.2 (1.6) 63.1 (0.4) 68.77 (1.37) 2.0 (0.19)
xz -9 72.2 (1.6) 63.2 (0.5) 68.77 (1.38) 1.99 (0.18)

noComp 75.0 (0.7) 60.5 (1.7) 66.03 (1.59) 3.31 (-0.3)

Only bodies
compressor max [%] min [%] avg [%] σ [%]
bzip2 -6 51.1 (3.2) 34.1 (0.7) 45.68 (2.69) 2.72 (0.26)
bzip2 -9 50.9 (3.2) 34.1 (0.7) 45.37 (2.65) 2.77 (0.31)

gzip -6 55.0 (2.6) 38.7 (0.7) 50.77 (2.5) 2.88 (0.25)
gzip -9 55.1 (2.6) 38.8 (0.7) 50.81 (2.47) 2.89 (0.26)

xz -6 70.2 (2.2) 53.8 (1.0) 65.54 (2.01) 3.17 (0.24)
xz -9 70.2 (2.2) 53.8 (1.0) 65.54 (2.01) 3.17 (0.24)

noComp 38.9 (4.9) 22.8 (1.2) 33.75 (3.14) 2.41 (0.42)

Performance (StatsMiner + StatsCompressor)
category max min avg σ

cpu time [s] 902.1 (-232.63) 93.44 (-538.0) 478.04 (-433.22) 166.44 (71.07)
memory [MB] 4833 (588) 794 (-1964) 1176 (-2643) 652 (347)

Table 5.17: StatsCompressor’s Compression Ratios for compression of the LRT_A set
with rules discovered by StatsMiner in the file compressed at the moment. The values
in brackets are value of( this field) − value of( the same field in full LRT_A/LRT_A).
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full experiment – it is a good sign, because it enables the prediction of the size of the
Zplus files.

5.10.5. Summary

Numerous policies of selecting the rules to be sent to the customer’s site (see Par. 3.1)
have been described and assessed in this section:

1. Usage of the most significant rules (Par. 5.10.2).

2. Usage of the rules that were already used by StatsCompressor (Par. 5.10.3).

3. Random choice of the sum rules (Par. 5.9.4).

The mentioned policies may be mixed together to let the rules file have expected char-
acteristics (work well with slightly different versions of HYDRAstor (1), work best with
a specific version of HYDRAstor (2) or be of the minimum size (3)).

On the other hand, completely different models of cooperation of StatsMiner and
StatsCompressor were studied:

1. The distributed model of correlation-based compression (Par. 5.10.1).

2. Not using StatsMiner at all (Par. 5.9.5).

3. Merging StatsMiner with StatsCompressor (Par. 5.17).

Each of the models forces different trade-offs between the achievable compression ratios
and performance. The choice of the best one is very hard as it depends on the restric-
tions imposed on the designed solution. Moreover, the software that was prepared is
experimental, so its performance is not well-tuned.

Finally, it was proved that results of the experiment LRT_A/LRT_A full can be used
as a base for comparison with the results of other experiments, because the StatsCom-
pressor’s Compression Ratios and performance of the real-life use case is not very differ-
ent from those idealistic ones (see Par. 5.10.1).

5.11. Summary
StatsCompressor is a powerful tool for compressing files containing statistics. It com-
presses data using correlations loaded from a special file (Par. 5.9) or discovered on its
own (Par. 5.8). The tool reduces the size of Zstat files, on average, by half (best result is
66.6%). Unfortunately, the performance of the process is not very good – consumption
of CPU and memory is very high. This can be naturally improved by more cautious
implementation and optimalization, choosing more efficient internal algorithms (it was
already summarized in Par. 5.9.5) or by changing the whole approach towards the usage
of StatsCompressor (Par. 5.10).

Despite the specific characteristics of the implemented software, it was proved that
using correlations for compression is a good idea, as the most popular compressors (gzip,
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bzip2, xz) do not use such possibilities themselves. The space saving may be increased
by extending the functionality of StatsMiner (and StatsCompressor appropriately).
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Chapter 6

Evaluation on real statistics
obtained from customers

Correlation-based compression was tested not only on the artificial statistics gathered
during the Long Running Test (LRT) but also on statistics received from real customers
– (Customer Logs). As it was already mentioned, such statistics are downloaded occa-
sionally, when there is a need to check the system performance or investigate a potential
bug because the system behaves not in the way it was expected to. Due to this, such
statistics are often specific. The designed solution will be indeed used mainly in this
kind of situations but it may be possibly used in any conditions. For these reasons it
was decided to carry out detailed experiments on the Long Running Test’s results, and
only the most important ones on the Customer Logs. Another reason for this approach
was that even though the volume of statistics from customers is quite substantial, not
all the files are of the proper size (there are many that are too small). Finally, the
available statistics obtained from customers were generated by the different versions of
the HYDRAstor system. Experiments conducted on such inconsistent data are believed
to be slightly poorer than they might be if there were a possibility to experiment on the
statistics created by one, specific version of the system.

6.1. Testbed

6.1.1. Testing data

All the tests were carried out on the set of test data called CL_2. In Chapter 4, the
CL set was analyzed, where there is CL ⊂ CL_2. The CL_2 set contain 50 randomly
chosen XML files (CL had only 30) from among files received from real users (customers)
of HYDRAstor. The files were generated by various versions of the HYDRAstor system
having various patches and updates installed. Only the files of size 2 MB to 4 MB and
generated by SNs were approved for this test. The selected files have been converted to
the Zstat format. They contained about 50.000 statistics, each having 140 – 240 samples
(although all the statistics in one file had about the same number of samples.

87



Full files
compressor optimistic realistic used no rules merge
bzip2 -6 49.88 (1.92) 54.89 (6.93) 55.83 (6.64) 65.22 (5.04) 50.43 (0.26)
bzip2 -9 49.98 (2.2) 55.03 (7.25) 56.05 (7.07) 65.26 (5.36) 50.56 (0.59)

gzip -6 56.09 (2.37) 60.19 (6.47) 61.08 (6.37) 67.99 (5.63) 56.64 (1.0)
gzip -9 56.3 (1.96) 60.4 (6.06) 61.33 (5.95) 68.17 (5.25) 56.85 (0.6)

xz -6 71.45 (4.05) 74.87 (7.47) 75.74 (7.31) 80.46 (6.29) 71.94 (3.17)
xz -9 71.44 (4.05) 74.87 (7.48) 75.74 (7.31) 80.46 (6.31) 71.94 (3.17)

noComp 57.78 (-6.66) 62.12 (-2.32) 62.68 (-2.18) 74.47 (-0.8) 58.23 (-7.8)

Only bodies
compressor optimistic realistic used no rules merge
bzip2 -6 46.97 (3.98) 52.26 (9.27) 53.32 (8.99) 63.42 (6.1) 47.52 (1.84)
bzip2 -9 47.1 (4.38) 52.49 (9.77) 53.55 (9.5) 63.25 (6.62) 47.72 (2.35)

gzip -6 53.08 (4.81) 57.57 (9.3) 58.6 (9.19) 66.16 (7.33) 53.74 (2.97)
gzip -9 53.04 (4.7) 57.51 (9.17) 58.56 (9.04) 66.08 (7.2) 53.67 (2.86)

xz -6 68.95 (5.42) 72.76 (9.23) 73.76 (9.1) 79.08 (6.9) 69.56 (4.02)
xz -9 68.95 (5.42) 72.76 (9.23) 73.76 (9.1) 79.08 (6.9) 69.56 (4.02)

noComp 35.35 (4.74) 42.1 (11.49) 42.97 (11.61) 61.17 (9.24) 36.03 (2.28)

Performance
compressor optimistic realistic used no rules merge
cpu time [s] 1305 (393) 820 (-90) 43.73 (-2.24) 6.84 (2.84) 2724 (2246)
memory [MB] 3896 (48) 1973 (-1846) 537 (-93) 305 (82) 12 155 (10 978)

Table 6.1: Average StatsCompressor’s Compression Ratios for compression of the
CL_2 set in different models. The values in brackets are value of( this field) − value
of( the same field for the test run on the LRT_A set).

6.1.2. Measuring performance

Tests have been run on the same machine and in the same way as tests of StatsMiner
(see Par. 4.2.2).

6.2. Results of experiments

Tables 6.1 and 6.2 present the results of running the designed solution on the CL_2 set in
different models. The first table shows average StatsCompressor’s Compression Ratios,
and the second presents standard deviations of the results. In brackets, differences
between the value in the experiment on the CL_2 set and the corresponding experiment
on the LRT_A set are shown. The names of the columns refer to the models mentioned
in Par. 5.10:
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Full files
compressor optimistic realistic used no rules merge
bzip2 -6 3.02 (1.17) 3.08 (1.23) 3.11 (-1.08) 3.69 (0.71) 3.21 (1.3)
bzip2 -9 2.93 (1.08) 3.1 (1.25) 3.08 (-1.1) 3.58 (0.61) 3.24 (1.35)

gzip -6 2.4 (0.72) 2.54 (0.86) 2.48 (-1.15) 3.08 (0.74) 2.6 (0.91)
gzip -9 2.34 (0.63) 2.48 (0.77) 2.45 (-1.21) 3.05 (0.75) 2.55 (0.88)

xz -6 1.85 (0.04) 2.16 (0.35) 2.17 (-1.0) 2.38 (-0.28) 2.1 (0.1)
xz -9 1.85 (0.04) 2.15 (0.34) 2.17 (-1.01) 2.39 (-0.27) 2.1 (0.11)

noComp 3.21 (-0.4) 3.22 (-0.39) 3.06 (-0.86) 2.22 (0.01) 3.13 (-0.18)

Only bodies
compressor optimistic realistic used no rules merge
bzip2 -6 2.96 (0.5) 3.24 (0.78) 3.16 (-1.18) 3.95 (0.05) 3.18 (0.46)
bzip2 -9 2.95 (0.49) 3.23 (0.77) 3.15 (-1.16) 3.91 (0.21) 3.2 (0.43)

gzip -6 2.49 (-0.14) 2.8 (0.17) 2.79 (-1.39) 3.42 (-0.1) 2.75 (-0.13)
gzip -9 2.5 (-0.13) 2.81 (0.18) 2.81 (-1.45) 3.44 (-0.09) 2.78 (-0.11)

xz -6 2.01 (-0.92) 2.46 (-0.47) 2.47 (-1.49) 2.67 (-1.0) 2.37 (-0.8)
xz -9 2.02 (-0.91) 2.46 (-0.47) 2.47 (-1.49) 2.67 (-1.0) 2.37 (-0.8)

noComp 2.68 (0.69) 3.13 (1.14) 2.98 (0.41) 3.32 (-0.2) 2.93 (0.52)

Performance
compressor optimistic realistic used no rules merge
cpu time [s] 272.36 (176.99) 95.92 (0.55) 3.89 (-0.35) 0.63 (0.43) 1846.93 (1680.49)
memory [MB] 1431 (1126) 191 (-112) 24 (-29) 19 (13) 12 016 (11 364)

Table 6.2: Standard deviations of StatsCompressor’s Compression Ratios for compres-
sion of the CL_2 set in different models. The values in brackets are value of( this field)
− value of( the same field for the LRT_A set).
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• optimistic — compression of the CL_2 set using rules mined on the whole CL set.
Note that CL ⊂ CL_2 and |CL| = 30, |CL_2| = 50. Rules were discovered on the
CL set, because StatsMiner running on the CL_2 set consumed too much memory
(over 40GB). A similar experiment was LRT_A/LRT_A full – Table 5.1.

• realistic — compression of the CL_2 set using rules discovered in the whole
LRT_A set. The results of a similar experiment can be found in Table 5.14.

• used — compression of the CL_2 set using rules which were used for compression
of the LRT_A set with rules discovered in the LRT_A set. The results of a similar
experiment can be found in Table 5.16.

• no rules — compression of the CL_2 set using no rules created by StatsMiner.
The results of a similar experiment can be found in Table 5.13.

• merge — compression of the CL_2 set using rules found by StatsMiner in the file
compressed at the moment. The results of a similar experiment can be found in
Table 5.17.

Performance results apply to StatsCompressor only, except for the ’merge’ model, in
which it is a sum of performance of StatsMiner and StatsCompressor.

6.3. Analysis of the results of the experiments
Results of the experiments on the statistics obtained from customers are satisfactory. As
it was already mentioned, the CL_2 set, contrary to the LRT_A set, contained statistics
gathered by the various versions of HYDRAstor, so naturally the results are poorer than
those from the experiments on the LRT_A set. However, the loss was not big – it was
1.92-7.48 percentage points in the case of full files and 3.98-9.23 percentage points for
bodies only. Please note that the statistics from the CL_2 set contained many more
samples (140-240) than those from the LRT_A set (60-100), so the ratio between the
results for compression of the full files and the bodies only is different. The achieved
results proved that usage of the designed solution is reasonable in a real-life use-case.

These optimistic results present the hypothetical best results that can be achieved.
As a matter of fact, the CL set was compressed using rules found only in the subset of
it (CL_2), but if the rules had been found in the full CL set, StatsCompressor’s Com-
pression Ratios would not be much better (see Tables 5.12 and 5.15) but performance
would significantly drop. Currently, the ’merge’ model is characterized by a smaller
decrease of results than the ’optimistic’ model, and this may be inversed if the rules in
the ’optimistic’ approach were discovered in the full CL set.

The best results, in the case of a drop in the StatsCompressor’s Compression Ratio,
have been achieved with the ’merge model’. These are also the best absolute results
(except for the ’optimistic’ model which is totally unrealistic due to the huge size of
the rules file). Depending on the compressor used, Zplus files are finally 28% - 49%
smaller than Zstat files – which is a very good result. Unfortunately, the performance
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is very poor – it seems to be correlated with the bigger number of samples in the Zstat
files from the CL set. On the other hand, as it was already mentioned, StatsMiner and
StatsCompressor were not designed to work efficiently (as regards performance) in this
model and much optimization can be done.

The ’realistic’ model’s results are mediocre – they are acceptable, however the loss
is substantial and performance is poor (although better than in the case of the same
experiment for the LRT_A set). It is worrying though that the decrease is so big in the
case of the bodies only – the largest among all the models for each external compressor!
On the other hand, results of the experiments with the ’used’ model are satisfactory –
drops in StatsCompressor’s Compression Ratios are indeed big, but slightly smaller than
in the ’realistic’ model, however the performance is very good. It was believed that this
approach to limiting the number of the rules used will perform poorly if the versions
of the HYDRAstor system differ in the case of preparing rules and compressing files,
but finally the results are fully acceptable. It is interesting that the standard deviation
for this model dropped for each used external compressor and resource consumption
category – it is very good, because the lower the standard deviation is, the more precise
the predictions of the final Zplus file’s size are.

The results for the ’no rules’ model are slightly disappointing – they dropped 5.04-
6.31% in the case of full files, albeit in this approach StatsCompressor does all the
analysis on each file separately. It seems to be connected with the larger quantity of
samples in each Zstat file, so for example looking for constants did not work so well.
On the other hand, this may also result from the fact that customers have HYDRAstor
in the earlier versions than the one used for generating Zstat files for the LRT_A set.
Finally, HYDRAstor may behave differently when normally used by the customers than
in the artificial Long Running Test. However, the results for the ’no rules’ approach
constitute additional proof that all the methods proposed in the thesis are important
for gaining good compression ratios, even in a real-life example – it is not enough to use
the sole StatsCompressor to obtain a good compression ratio.

Standard deviation of the results of all the experiments is good – it did not increase
much, although the compressed files came from different versions of HYDRAstor. It
implies that the statistics generated by the system are similar, no matter which version
has been used. It means that anomaly detection based on the analysis of the statistics
is reasonable (at least using the correlations found by StatsMiner).

When it comes to the selection of an external compressor, StatsCompressor’s Com-
pression Ratios are the highest for the bzip2 tool.

6.4. Summary

The experiments conducted with the designed solution used for compressing some of
the statistics received from customers proved that correlation-based compression may
be successfully used in practice. The achieved results are slightly worse than in the
case of the compression of example statistics, but they are still satisfying. It was found
out that two approaches are significantly better than others – merging StatsMiner with
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StatsCompressor is the first one and usage of the rules already used for compression
of the training set is the second. The first of the aforementioned methods had good
results but very bad performance – using it would require creating a new tool that
would be optimized to work in this manner. The second method should be further
investigated as it seems that both performance and compression ratios may be improved
– for example extending the rules file with the rules of the highest significance (but not
used for compression already) should be checked.

Usage of the designed solution in cooperation with the bzip2 tool allows to decrease
the size of packages downloaded from customers by 45%-50% in comparison with the
usage of bzip2 only. To sum up, the designed solution is practicable.
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Chapter 7

Related work

The thesis presents a method of improving the compression ratio of the specific kind
of logs by usage of the discovered correlations and domain-knowledge. The proposed
approach seems not to have been outlined yet in the literature, especially the idea of
searching for correlations at the support’s site and using this knowledge on the cus-
tomer’s site. However, the designed solution can be placed at the intersection of a few
well-researched disciplines of the computer science: data mining, compression and logs
analysis.

Compression of the logs has been studied for a long time, especially in the context of
supercomputers [BS06] or distributed systems [RL04] and [SS07]. The aforementioned
articles propose usage of an additional, specialized compressor, which should be used
together with a general purpose one. The designed solution bases on the same approach.
However, StatsCompressor has statistics as the input. The statistics are a kind of already
parsed and compacted logs. On the contrary, authors of the cited articles struggle with
logs parsing themselves and then try to find some identities and thus reduce the size
of the files. Authors of the [BS06] developed algorithms working rather on the byte-
level, while the solution from [SS07] works by comparing lines of logs. [RL04] proposes
compression of each column of logs using a different, the most effective algorithm. The
authors of all the aforementioned articles put substantial effort into minimizing resource
consumption of their tools – this aspect of StatsMiner and StatsCompressor should still
be improved.

Logs are a very important source of knowledge about the state of the system which
can be utilized in many ways, as the survey [OGX12] indicates. Data mining meth-
ods are often used for analysis of the logs [HBK+03] or anomaly detection [OKA10],
[BKK01], [FRZ+12]. All of them make use of correlations in some way, though different
authors understand this term differently. [HBK+03] proposes ’Comprehensive Log Com-
pression’ whose aim is not to compress data but rather to help system administrators in
analysis of logs by finding (textual) patterns. From this point of view, rules generated
by StatsMiner can also be an important source of knowledge for system administrators.
Authors of [FRZ+12] discuss a notion of a ’bottleneck anomaly’ which may be interesting
while tuning a system. It seems that a set of simple scripts may help in finding such
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situations by comparing the model set of rules generated by StatsMiner for a specific
version of HYDRAstor with those found in particular Zstat files. Unusual identity cor-
relations between unbound statistics (’anomalies in the statistics files’) may warn about
the existence of a performance bottleneck. What is interesting, authors of [FRZ+12]
have also introduced a similar notion of a window as it was done for StatsMiner. On
the other hand, they used sophisticated data mining techniques for analysis. All articles
mentioned in this paragraph propose tools for anomaly detection that may be (probably)
extended and improved by the use of the rules generated by StatsMiner, because they are
all based on some kind of dependencies or correlations – [OKA10] proposes a Structure-
of-Influence Graph, [BKK01] focuses on the operational dependencies and [FRZ+12]
describes a tool for event prediction. This last article has a comprehensive bibliography
too. Finally, [Say04] presents the analysis of data in a very similar approach as the
one used by StatsMiner. [Say04] focuses on detecting time correlations in data streams
– StatsMiner does a very similar thing, although the method described in the article
searches rather for interesting singular events, while algorithms presented in the thesis
try to discover general relationships.

From the data mining point of view, the notion of correlation used in the thesis
bears some similarity to a specific association rule. There are plenty of methods of
finding association rules, however they seem to be overly general and thus too slow to be
used by StatsMiner, especially that the aim of this tool is to mine for exact, numerical
relationships. What is interesting, the article [BMS97] faces the problem of upgrading
the association rules to make them correlations from the mathematical point of view.
The mathematical approach presented in this text might be adopted to improve the
methods of limiting the number of rules used by StatsCompressor. In fact, the notion
of significance used in the thesis is very similar to the confidence, which stems from the
association rules’ world. Moreover, the term support corresponds to the percentage of
windows in which the correlation may occur (because the expected statistics exist) to
the number of all windows.

To sum up, it seems that the idea of usage of numerical correlation found by a data
mining tool for compressing another (or even the same) sets of data is a new one.
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Chapter 8

Summary

The thesis presented a distributed, data-mining based approach to the compression of the
statistics while the statistics are a kind of aggregated logs. Two tools have been imple-
mented – StatsMiner, which searches for correlations between statistics, and StatsCom-
pressor, which uses the rules created by StatsMiner to efficiently compress files containing
statistics. Both programs were intended to work in a distributed model – StatsMiner
discovers correlations while working on the example data at the support’s site while
StatsMiner runs at the customer’s site. Other models of cooperation of the tools have
also been evaluated, for example running the whole software on the customer’s machines
only.

The achieved compression ratios met all the expectations – on average, in the most
optimistic model, usage of StatsCompressor can increase the space saving by about
50%, while using the tool together with the bzip2 compressor, by about 45% while
using the tool together with the gzip compressor and by about 30% while using the tool
together with the xz compressor. The aforementioned numbers inform, how smaller can
be packages that are downloaded from customers when the designed solution is used in
comparison with usage of the given external compressor only. The results can be further
improved by implementation of some extensions for StatsMiner, which aim to discover
more types of correlations. On the other hand, the performance of the implemented
software is below expectations, although it is a prototype version in which performance
bottlenecks were identified and some preliminary solutions were proposed.

StatsMiner – a tool for discovering correlations between statistics – can also be used
as a basis for anomaly-detection software.

There are plans to introduce some results described in the thesis to NEC HYDRAstor.
The work on the project was initiated due to real-life problems of the HYDRAstor
support team and these problems may be solved using the proposed ideas.
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Appendix A

Encoding of sparse deviations
vector

Experiments with StatsCompressor have proved that usage of weak correlations – so
that there are some numerical deviations between expected and real values of samples –
may dramatically improve the compression ratio (see Par. 5.9.1). As deviations are very
often encountered, there was a need for their efficient encoding. This appendix contains
a detailed description of the method of saving information about deviations, as it has a
direct impact on the compression ratios achieved by StatsCompressor.

Let ~d be a vector of deviations (created during correlation-based compression of a
specific statistic). ~d is often a sparse vector (contains many zeroes), because if there are
two correlations of the same type that may be used for compressing a statistic, often the
one having smaller deviations vector will be finally used for compression (see Par. 5.6.1).
Traditionally, saving the content of v involves dumping the values of it, eventually using
Run-Length Compression (RLE). This approach has been improved to some extent.

Description of the encoding of sparse deviations vector will be easier on a concrete
example, so let

~d = [0,0,2,0,0,0,− 4,− 4,0,5,3,3,3,0,0] (A.1)
Ex(~d) − encoding of vector ~d in the step x (A.2)
|Ex(~d)| − number of characters used for encoding ~d (A.3)

(A.4)

Encoding used in Zstat files E0 is an encoding used in Zstat file.

E0(~d) = 0;0;2;0;0;0;−4;−4;0;5;3;3;3;0;0 (A.5)
|E0(~d)| = 31 (A.6)

Better encoding of samples’ values The main assumption for StatsCompressor
was that an output file will contain plain text, as the byte-level encoding is being done
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by an external compressor. According to that, deviations vectors should also be saved
as a plain text. The saved numbers have different lengths, so they have to be separated
somehow. The signs of numbers act as separators.

E1(~d) = +0+0+2+0+0+0-4-4+0+5+3+3+3+0+0 (A.7)
|E1(~d)| = 30 (A.8)

Run Length Encoding Run Length Encoding is a popular method of lossless com-
pression, used in most compressors. If a number is repeated, it is written only once
together with a number of occurrences – see E2:

E2(~d) = 0t2+2+0t3-4t2+0+5+3t3+0t2 (A.9)
|E2(~d)| = 25 (A.10)

Note that if there is a sequence +2+2+2, it is coded as +2tx, where x is a counter.
In the classical version of the algorithm, x = 3. However, it is enough to x = 2 – as +2
is never coded as +2t1. This observation gives no obvious profits in the length of the
encoded vector, although it may be better compressed by an external compressor, as it
is believed that deviations vectors contain rather small numbers, so it is theoretically
better to also have smaller counters because the entropy will then be smaller. Hence E3:

E2(~d) = 0t1+2+0t2-4t1+0+5+3t2+0t1 (A.11)
|E2(~d)| = 25 (A.12)

Moreover, t1 can be exchanged with just ’t’. See E3

E3(~d) = 0t+2+0t2-4t+0+5+3t2+0t (A.13)
|E3(~d)| = 22 (A.14)

Shifts The deviations vector is believed to be sparse, so value 0 will appear much more
frequently than others. Due to this, each sequence of 0 will be exchanged with sy, where
y is the exact number of times when 0 occurs. It means that the sequence +0 is coded
as s1 and +0+0+0 is coded as s3 (= +0t2). See E4:

E4(~d) = s2+2+s3-4ts1+5+3t2s2 (A.15)
|E4(~d)| = 20 (A.16)

Please note that s1 can be encoded just as s. See E5:
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E5(~d) = s2+2+s3-4ts+5+3t2s2 (A.17)
|E5(~d)| = 19 (A.18)

Moreover, if sy is just at the beginning of the sequence, s can be omitted, because
regular values start with signs + or -. See E6 (compare with E1):

E6(~d) = 2+2+s3-4ts+5+3t2s2 (A.19)
|E6(~d)| = 18 (A.20)

Furthermore, if the sequence ends with sy, it can also be omitted, as during decom-
pression, insufficiently short deviations vector can be simply filled with zeroes and the
length of the vector depends on the number of samples of the statistic, which is however
known from the context.

E6(~d) = 2+2+s3-4ts+5+3t2 (A.21)
|E6(~d)| = 16 (A.22)

E6 is the final step of encoding.

Summary The algorithm of encoding sparse deviations vectors described here is very
efficient, as |E6(~d)|

|E0(~d)|
= 16

31 ≈ 52% (this ratio depends on the content of the vector). It
achieved such a good result thanks to the extensive usage of context knowledge and
avoiding saving redundant information. As experiments showed (p .5.9.1), sequences
encoded using this method seem to be efficiently compressed by external compressors
so, on the whole, a very good compression ratio is being achieved by StatsCompressor
while using the described algorithm.
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Appendix B

Content of the attached CD

The attached CD contains some software that was created during the research and the
results of all the experiments with the created solution. However, the source code of
StatsMiner and StatsCompressor is not included as it is property of the NEC Corpora-
tion. Moreover, as the mentioned software depends on some components of HYDRAstor,
it could not be compiled without the sources of HYDRAstor. Please note that the data
on which the experiments were carried out is not included either, because analysis of
this data may reveal some confidential details of the HYDRAstor system.

Three categories of files were put on the CD:

1. Results of the experiments with the designed software. Please note that only the
most relevant results were presented in the thesis. The directory of each experiment
contains doSummarize script which summarizes the results and compares them
(mostly) with the results of the LRT_A/LRT_A experiment. The script is very
simple and can be easily modified. On the other hand, doExperiments script can
repeat the experiment, although the CD contains neither the sources of the software
nor the data on which the experiments were conducted.

2. Functional tests of StatsMiner and StatsCompressor. The tests may naturally not
be repeated without having the source code of the designed software, although the
tests’ files contain many examples of real Zstat, Zplus and rules files. However,
some technical details of the mentioned file formats were omitted in the thesis.

3. Helper scripts. The scripts are used by other scripts that reside on the CD.

The CD contains four directories:

• experiments\, comprised of the results of all the conducted experiments.

• statsCompressor\

– tests\
– scripts\
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• statsMiner\

– tests\
– scripts\

• thesis\, containing this document as a PDF file.

The scripts published on the CD use Bourne Shell, Python 2.6 interpreter and stan-
dard Unix tools like grep, cut etc. Some of the scripts require setting three environ-
mental variables as well:

• STATS_MINER_EXE – it should contain an absolute path to the StatsMiner
executable.

• STATS_COMPRESSOR_EXE – it should contain an absolute path to the StatsCom-
pressor executable.

• ZSTAT2DB_SCRIPT – it should contain an absolute path to the script which
converts Zstat files into database files.

Please note that viewing the results of the experiments (using doSumarize script) does
not require setting any of the aforementioned environmental variables.
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