Uniwersytet Warszawski
Faculty of Mathematics, Computer Science and Mechanics
Vrije Universiteit Amsterdam
Faculty of Sciences

Anna Chmielowiec
Student id. no.: 209198 (UW), 1637576 (VU)

Node Isolation in Wireless Ad Hoc
Networks

Master’s Thesis

in COMPUTER SCIENCE
in the field of DISTRIBUTED SYSTEMS

Supervisors:

Maarten van Steen and Daniela Gavidia
Dept. of Computer Science,

Vrije Universiteit Amsterdam

and

Janina Mincer-Daszkiewicz

Institute of Informatics,
Uniwersytet Warszawski

August 2007






Abstract

In ad hoc networks nodes rely on forwarding packets for each other. Yet, in large hetero-
geneous networks the willingness of all nodes to decently cooperate towards a common goal
of effective communication cannot be taken for granted. Malicious nodes can compromise
the integrity of the messages they forward by replacing their contents with unsolicited data
(hereinafter referred to as spam) and without any countermeasures such malpractices may
disrupt the performance of some of the nodes or even the whole network.

This thesis presents a mechanism for detecting and isolating malicious nodes from the net-
work. The decision whether to cease communicating with another node is made individually
by every node, thus, no exchange of reputation information is necessary.

Firstly, all nodes continuously perform probabilistic verification of the data they relay,
removing the spam they find and marking the verified messages that proved to be undistorted
with the ’checked’ flag. The algorithm is designed so that the frequency of checks adapts
itself to the intensity of the spam received.

Secondly, every node gathers during the sampling of its traffic information on the esti-
mated fractions of spam and ’checked’ messages received from every neighbour. It appears
that these two values should be close to each other if only a node adheres to the protocol.
Thereby, if a node observes discrepancies between these two values, the node will regard the
corresponding neighbour as a spammer and refuse to communicate with it. The divergence
between the values that raises the suspicion and the number of data exchanges needed before
a node can make a decision on neighbour isolation were set experimentally in order that
all visibly malicious nodes are detected and isolated, yet the number of false accusations is
minimized.

Keywords

ad hoc networks, epidemic protocols, gossiping protocols, probabilistic verification, security,
spam, wireless networks

Thesis domain (Socrates-Erasmus subject area codes)

11.3 Informatics, Computer Science

Subject classification

C. Computer Systems Organization

C.2. Computer - Communication Networks
C.2.2. Network Protocols

C.2.4. Distributed Systems






Contents

1. Introduction . . . . . . . . . 7
1.1. Contribution of the Thesis . . . . . . . . . . . . . . . ... ... .. .. ..., 7
1.2. Related Work . . . . . . . . . e 8

1.2.1. Payment Systems . . . . . . . . ... 8
1.2.2. Reputation-based Systems . . . . . . ... ... o oL 8
1.3. OVErVIEW . . . . . o e e e e 9

2. System Model . . .. . .. . . ... 11
2.1. General Description . . . . . . . ..o 11
2.2. Assumptions . . . . ... 11
2.3. Shuffle Protocol . . . . . . . . . e 12
2.4. Basic Attack Model . . . . . . . ... 13
2.5. Simulation Setup . . . . . ... 14

3. Probabilistic Verification . . .. .. ... ... ... ... ... ... ... ... 15
3.1. Constant Probability Scheme . . . . . ... ... ... ... ... ... 16
3.2. Ageing Probability Scheme . . . . . . ... ... ... L. 17
3.3. Probability based on Conditional Expectation . . . . . . . .. ... ... ... 18
3.4. Probabilistic Verification vs. Workload Caused by Spammers . . . . . .. .. 21

4. Detecting and Isolating Malicious Nodes . . . . . .. ... ... ... .... 23
4.1. Cache Contents of a Well-behaved Node . . . . . . .. . ... ... ...... 23
4.2. Detection mechanism . . . . . . . . . . .. 24
4.3. Isolation mechanism . . . . . . . . . . . . e e 28

5. Ways of Avoiding Isolation . . .. . ... ... ... ... ... ... ...... 31
5.1. Checking and Lowering Spamming Rate . . . . . . ... .. ... ... .... 31
5.2. Imitating a Well-behaved Node . . . . . . ... ... ... .. ... ...... 34
5.3. Manipulating Spamming Rate . . . . . . . . .. ... oL 35

6. Conclusions and Future Work . . . . . . ... ... ... ... ... ...... 39
6.1. Conclusions . . . . . . . . . e 39
6.2. Future Work . . . . . . . e 40

Bibliography . . . . . . . . .. e 41






List of Figures

2.1.

3.1.
3.2.

3.3.
3.4.

4.1.

4.2.

5.1.

5.2.

5.3.

5.4.

9.5.

9.6.

Skeleton of the shuffle protocol. . . . . . . . . ... ... oL

Fraction of spam received from a neighbour that is not detected by the node
(P; — the probability that a received entry is corrupted and P; &~ Popecki]). -
Probabilistic model of a gossip exchange. . . . .. ... ... ... ......
3D graph of Ppecr,,, update function . . .. ... ... ... . L.
Histogram of average values of Ppeor for everynode . . . . .. ... ... ..

Results of applying detection function absDiff > ¢ (§ = 0.10) over time in the
network of 2500 nodes (10% of them malicious).. . . . . ... ... ... ...
Results of applying the isolation mechanism with constant isolation threshold
or following formula 4.8 for different spamming rates. . . . . . . . . . ... ..

Spammers attempts at avoiding isolation by lowering its spamming rate or
performing probabilistic verification . . . ... ... ... ... ... ... ..
Divergence between percentage of spam that is created or sent by malicious
nodes in one gossip exchange . . . . . . . ... ... L L.
Fluctuations of P, and checked values when a spammer changes its spam-
ming rate and checked entries fraction every two gossip exchanges (equation
3.4 is used for updating Pepeck). - « « v v v ov v e e e e e e e e
Results of applying the isolation mechanism when spammers change their
spamming rates and checked entries fractions every two gossip exchanges. . .
Fraction of corrupted entries in the network when malicious nodes spam with
constant spamming rate 0.50 or change their spamming rate every two gossip
exchanges. . . . . . . ...
Fluctuations of P,.pecr and checked values when a spammer changes its spam-
ming rate and checked entries fraction every two gossip exchanges (equation
3.1 with a = 0.10 is used for updating Pepeck)- - « « « v v v v v v v v v v oo






Chapter 1

Introduction

Among many characteristics of wireless ad hoc networks such as dynamic nature and often
unreliable links the following two are especially interesting: the absence of trusted infrastruc-
ture for routing and the lack of a central authority. Due to the first property, all networking
functions must be performed by the nodes themselves. Thus, if a node wants to send a
packet, it has to rely on the willingness of other nodes in the network to forward it. The
lack of a central authority makes it difficult to guarantee or execute this willingness from the
nodes and results in wireless networks being a tempting environment for selfish or malicious
behaviours.

I have focused on networks that use gossiping as a communication protocol and on sending
spam as a way of misbehaving. Because excessive production of messages can be easily
prevented by restricting the id space of messages per node, malicious node would have to
make use of the id space belonging to other nodes in the network and compromise the content
of their messages if it wants to place more spam in the network. Another motivation behind
corrupting messages created by other nodes instead of publishing spam under own identity is
the desire to remain anonymous. Therefore, hereinafter the term spam refers to any message
whose content has been compromised.

The conventional approach to deal with corrupted messages is to require every message to
be signed by its creator. Then, the receiver can check the integrity of the message by verifying
its digital signature. However, this solution may not be appropriate in all scenarios. Firstly,
it makes impossible to detect and isolate a spammer, because the message might have been
corrupted by any of the intermediate nodes that were engaged in its forwarding. Secondly,
sometimes a message does not have a particular receiver, as it happens when gossiping is
used for dissemination of information.

Other solution is to check the integrity of a message at every hop. This means that
each node in the network has to verify every message it relays. The advantages are that
corrupted messages are removed immediately from the network and malicious nodes can be
easily detected. But this solution may be computationally too expensive.

1.1. Contribution of the Thesis

I focused on the isolation of malicious nodes that corrupt relayed messages. The assumed
design constraints constitute prohibitive costs of verifying every forwarded message and lack
of any reputation information exchanged among the nodes. Under these assumptions the
goal was to minimize the probability of accidental isolation of good nodes while isolating as
many malicious ones as possible. The thesis presents a step by step path of the isolation



mechanism.

The thesis can be regarded as a continuation and further development of the work by
Gavidia et al. (see [9] and [10]) on the subject of enforcing data integrity in ad hoc networks.
In her publications, Gavidia presented mechanisms to prevent the spread of the spam and to
detect malicious nodes in the network. The subject on spammer isolation discussed in this
thesis is taking this research one step further.

1.2. Related Work

Most of previous work addressing the security problems in wireless ad hoc networks focuses
on securing the routing layer. In great part this stems from the fact that the majority of
protocols that have been proposed for wireless ad hoc networks (AODV [19], DSDV [20], DSR
[15], TORA [17], etc.) lack mechanisms to enforce cooperation and non-selfish behaviour. As
assuming non-hostile environments is utopian, the researchers have developed secure routing
protocols that mostly are modifications of already existing protocols. Several of these proto-
cols are SAODV [24], SecAODV [18], SEAD [13], Ariadne [14], SRP [16], BSAR [2], SBRP
[23].

Apart from the above protocols several solutions have been proposed for discouraging
selfish behaviour and punishing malicious nodes that operate on the forwarding layer. We
can distinguish two main approaches: Payment Systems and Reputation-based Systems. The
latter can be additionally divided into systems where nodes exchange reputation information
among themselves (Cooperative Reputation-based Systems) and systems where each node
evaluates its neighbours reputation basing only on its individual observations (Autonomous
Reputation-based Systems).

1.2.1. Payment Systems

In payment schemes, the use of tamper-proof hardware or outside infrastructure is required
for securing the accounting. Both of these solutions may not be realizable in actual ad hoc
network scenarios.

In [7] (the continuation of [6]) Buttyan and Hubaux explore the use of the former solution.
FEach node is equipped with a tamper resistant hardware module — security module. This
module maintains a counter (referred to as nuglet counter). The counter is increased by one
every time the node forwards a packet and decreased by the number of intermediate nodes
when the node wants to send its own packet. As the value of the nuglet counter must remain
non-negative, nodes are motivated to forward packets for other nodes.

In Sprite [25] the use of tamper resistant hardware is substituted by an external infrastruc-
ture in the form of a Credit Clearance Service (CCS). When a node sends its own messages,
it loses some fraction of credit. In order to receive more credit, every node would forward
messages of other nodes and store the receipts of these messages. The receipts are reported
to the CCS, which is responsible for computing the value of gained credit.

1.2.2. Reputation-based Systems

When neither the use of tamper-proof hardware nor outside infrastructure is available, a
reputation-based scheme may be appropriate.



Cooperative Reputation-based Systems

In cooperative reputation-based systems nodes not only evaluate the behaviour of their neigh-
bours but also share this information with other nodes.

The CONFIDANT system [3] consists of four modules that are deployed at every node. A
monitor is responsible for detecting and registering deviations from normal behaviour. When
malicious action is observed a trust manager sends out a so-called ALARM message, to inform
other nodes of this misbehaviour. A reputation system manages a table of node ratings that is
updated on the basis of first-hand and trusted second-hand (ALARM messages) observations.
A path manager uses this table to adapt a node’s routing behaviour. The biggest problem
in such system is the threat of the false accusations. It was mitigated in the following works
[4], [5] by the use of Bayesian statistics.

In SORI [12] the propagation of reputation information is limited only to the direct neigh-
bours. This reduces the communication overhead and lessens the problem of false accusations.
In more detail, a node evaluates the reputation of its neighbour by weighting the information
received from all other neighbours and its own observations. As weights used for calculations
depend on the credibility of each node, the accusations of a suspected node would have low
impact on the evaluation.

Autonomous Reputation-based Systems

In autonomous reputation-based systems no reputation information is spread, a node has to
evaluate a neighbour’s behaviour and make an eventual decision about punishment based
solely on its own observations.

Every node in OCEAN [1] maintains ratings for each of its neighbours in a RouteRanker
component. The rating is incremented (decremented) on observing positive (negative) action
of the neighbour. Based on these ratings a node decides which route to choose for forwarding
a packet. A route is assumed to be good if the next-hop node is non-faulty (has enough high
rating). Besides route selection, ratings are also used for rejection of malicious traffic; all
traffic from a misleading node is rejected.

The mechanism proposed in [21] lets a node autonomously evaluate the reputation of each
of its neighbours, not on the basis of observing a neighbour just forwarding the packet, but
on the completion of the requested service. In general, when a node forwards a packet to one
of its neighbours, this neighbour (from the point of view of the node) is held responsible for
the delivery of the packet to the destination.

Adopting the above classification, the isolation mechanism presented in this thesis lies
close to the third group — Autonomous Reputation-based Systems — as the decision about
punishing a node relies only on the statistical analysis of incoming traffic. But unlike the
systems presented above, which focus mainly on the malicious behaviour of dropping packets,
our mechanism is designed to fight the nodes that corrupt the packets they forward. From
this perspective, our work is more related to the Quarantine Regions [8] for wireless sensor
networks or fighting spam in peer-to-peer networks [22].

1.3. Overview

The remainder of this thesis is organized as follows. In the next chapter, the system model
for the data integrity enforcement and malicious node isolation mechanism is described and
the platform used for testing and basic modelling of the malicious behaviour are presented.



Chapter 3 is focused around the probabilistic verification of the data that is relayed by the
nodes in the network. Brief descriptions of previous models are presented in Sections 3.1
and 3.2, and in Section 3.3 the initial probabilistic verification scheme developed by the
author is explained. Chapter 3 is completed with remarks on the effects of spammer activity
in the network depending on the probabilistic verification scheme used. Chapter 4 is solely
devoted to detecting and isolating malicious nodes in the network. The results of extensive
simulations are presented that highlight not only the efficiency in malicious nodes isolation
(minimising the number of false negatives), but also avoidance of false accusations (namely
false positives). In Chapter 5 possible attempts of malicious nodes to avoid isolation are
analysed. The conclusions are presented in Chapter 6 along with the future work possibilities.

10



Chapter 2

System Model

2.1. General Description

This thesis is focused on store-and-forward systems with wireless communication medium.
Every node in such system devotes a limited amount of space to store messages, which are
disseminated through the network in a multi-hop manner. We assume that nodes forward a
batch of messages at a time.

The Gossip-based News Service, as introduced in [11], can be an example of the sys-
tem presented above and will serve as the experimental platform for evaluation of the data
integrity enforcement and node isolation measures described in this thesis. The service is
provided by a mesh backbone formed of a large number of wireless routers communicating
through gossiping (the protocol used for gossiping is described in detail in Section 2.3). Own-
ers of the routers are eligible to publish events, called news items, which are gossiped through
the mesh backbone in the form of news entries. While a news item is a piece of information,
a news entry is the representation of the news item in the network and for each news item
several news entries may exist. The users are then able to retrieve the news matching their
interests by connecting to the mesh backbone by means of portable mobile devices (such
as smart phones, laptops, PDAs). The relevance of the news items received by the users is
ensured by providing a nearby router with the user’s preferences.

2.2. Assumptions

Each node is assigned a unique id. Thus, every entry in the network can be uniquely identified
by a combination of the publisher’s id and a sequence number. A limited number of these
entries is stored by each node in its local cache. In experiments conducted in this thesis, all
nodes have the same cache size ¢ and hence, every node can store at most ¢ entries. Nodes
gossip periodically swapping some of their entries with their neighbours. An interval in which
each node initiates an exchange once is referred to as round.

Items can be published by any node and are propagated through the network in the form
of entries (just like news items and news entries in Gossip-based News Service). Replication
may occur naturally if a node has available storage space to keep a copy of received entry,
resulting in many entries for the same item being present in the network.

Furthermore, every item has to be digitally signed by the node which originally has
published it, so every entry can be a subject to integrity check. As execution of a public key
signature verification may require considerable computational workload, checking all entries
received during a gossip exchange is assumed to be prohibitively expensive.

11



2.3. Shuffle Protocol

The data exchange between nodes follows a predefined structure, presented in Figure 2.1.
Each node initiates an exchange once every round undertaking the role of an active party.
The node that is contacted assumes the passive role.

/***x Active thread **xx/ /*%* Passive thread **x/

// Runs periodically every T time units // Runs when contacted by another node

Q = selectPeer() receive buff_recv from any P

buff_send = selectItemsToSend() /* Place for the isolation mechanism */
send buff_send to Q buff_send = selectItemsToSend()

receive buff_recv from Q send buff_send to P

cache = selectItemsToKeep() cache = selectItemsToKeep()

Figure 2.1: Skeleton of the shuffle protocol.

The core of the protocol is represented by three methods: selectPeer (), selectItemsTo-
Send () and seletItemsToKeep(). By implementing different policies in these methods, var-
ious epidemic protocols, each with its own distinctive characteristics, could be instantiated.
Yet, in this thesis the shuffle protocol is used (described in [11]), in which each node agrees
to keep the entries received from a neighbour for the next round. Given the limited storage
space available in each node, keeping the entries received during an exchange implies discard-
ing some entries that the node has in its cache. By picking the entries to be removed from
the ones that have been sent to the neighbour the conservation of the data in the network is
ensured.

Furthermore, the basic shuffle protocol is enriched with the added measures to enforce
data integrity and to isolate maliciously behaving nodes. First of them — probabilistic
verification — has already been presented in papers [10] and [9] and in this thesis an author’s
modification of probabilistic verification is presented and evaluated in comparison to previous
solutions. Isolation mechanism introduced in this paper is a lightweight mechanism that
uses information gathered in probabilistic verification phase and by the means of which a
node can decide to refuse to communicate with obviously malicious nodes. In the passive
thread the isolation mechanism is implemented just after receiving buff recv from P (see
the comment in Figure 2.1). P is then checked if it should be isolated and when the answer
is positive then all entries in buff_recv are dropped and an empty buff _send is sent to P.
In the active thread, isolation mechanism is enclosed in selectPeer () method.

The policies for the main shuffle protocol’s methods are summarized as follows:

e selectPeer() randomly selects a neighbour for gossip exchange. If the isolation
mechanism is switched on then only a node that has not been discovered as being
malicious is chosen,

e selectItemsToSend() randomly selects s entries from the local cache and sends their
copies (buff_send) to the selected peer,

e selectItemsToKeep() performs probabilistic verification of the data integrity and
then adds the received entries from buff_recv to the local cache removing repeated

12



entries. If the number of entries exceeds the size ¢ of the node’s cache, entries among
the ones that were previously sent are removed (unless they are also in buff recv) to
make the room for the new ones.

2.4. Basic Attack Model

Wireless ad hoc networks that use gossiping for data dissemination constitute a perfect envi-
ronment for the activity of spammers. Knowing only one node in the network is enough for a
malicious node to start operating. Moreover, as all peers collaborate to propagate messages,
the effort that a spammer has to make in order to spread its spam resolves itself simply into
inserting messages into the network and all other nodes will make sure that the messages are
delivered.

This vulnerability of gossip network could easily lead to flooding the whole network with
the items produced excessively by a small fraction of nodes, which can be considered a form
of a distributed denial-of-service attack.

Fortunately, excessive production of items can be easily prevented by restricting the id
space of items per node. For instance, the id space of items per node could be set to n bits
resulting in 2" items. In such situation, after a node has published 2™ items with different
ids, the next item will have to reuse the id of the one of previously published items. Since
nodes are allowed to hold at most one entry per item (based on item’s id) entries of the more
recently published item will overwrite entries of the older item in the network. Taking into
consideration the specific characteristics of the shuffle protocol that ensure that each item
has on average the same number of entries in the network, a node could only occupy limited
fraction of collective storage space.

Hence, in order to place more spam in the network, a malicious node would have to
make use of the items id space belonging to other nodes. In essence, a spammer would be
replacing the content of the other nodes’ entries with its own while keeping the metadata (id,
signatures,. ..) of the entries unchanged.

By this means, the malicious node steals the storage space of other nodes and is able to
flood the network with its messages afresh. Especially, when executing an integrity check for
every message received is assumed to be prohibitively expensive for a node, tracking down
and isolating a spammer becomes nontrivial as a compromised entry might have been shuffled
around several times before its integrity has been verified.

With the aim of testing the effectiveness of proposed methods of probabilistic verification
and node isolation a relatively small number of nodes in the network is assumed to be mali-
cious. These nodes, also referred to as spammers, execute a slightly different version of the
shuffle protocol. Their basic attack model is to corrupt entries before forwarding them to
their neighbours. In the simplest case, a spammer would corrupt outgoing entries with a con-
stant probability Psp.m (also called spamming rate) while executing selectItemsToSend().
Moreover, to save the computational resources, a malicious node does not perform any prob-
abilistic verification of relayed traffic.

Although it appears that the higher the P, is the more effective attack becomes, the
results presented in Chapters 4 and 5 prove that high spamming rates are actually counter
productive and lead to faster detection and isolation of the malicious node. Furthermore,
in Chapter 5 we illustrate through simulation results that not only should a malicious node
lower (and maybe differentiate) the percentage of spam inserted into the network in order to
avoid isolation but it also have to adhere to the rules of probabilistic verification. What is
more, it appears that spammers have to check the entries they receive more frequently than

13



an ordinary well-behaving node in order not to fall under suspicion because of relaying spam
of other nodes and to compensate for the spam they place in the network.

2.5. Simulation Setup

In the experiments, whose results are presented in this thesis, nodes are arranged in a square
grid topology, with 50 nodes on each side over an area of 50 x 50 units. The range of each of
2500 nodes is set to 1 unit, making communication possible with the node’s adjacent neigh-
bours to the North, South, West and East. Every node is provided with a cache size of ¢ = 100
and during each gossip exchange swaps s = 50 of stored entries. From among 2500 nodes
present in the network 250 malicious nodes are selected randomly at the beginning of each
experiment. Up till the 50th round of an experiment spammers behave as every well-behaving
node. After the 50th round they start their malicious activity by corrupting outgoing entries
with a constant probability as described in Section 2.4 unless specified otherwise.

14



Chapter 3

Probabilistic Verification

Checking all messages at every hop has its undeniable advantages. Spam is discovered imme-
diately after it has been created and thus has no opportunity to spread over the network. At
the same time malicious nodes are detected and can be isolated from the network the moment
they start operating. Unfortunately, in a system where the entries are constantly being gos-
siped, verifying all entries that node receives would be computationally too expensive which
makes this approach unpractical.

As an alternative solution to checking all entries at every hop, each node could just check
some randomly selected fraction of the entries it receives. In more detail, the scheme for this
kind of data integrity checking can be incorporated into the shuffle protocol in the following
way:

e In selectItemsToKeep(), before a node merges received entries with the entries in its
cache it executes probabilistic verification of the received entries.

e Each of the received entries is checked with a probability P.pec;. If a selected entry
passes the digital signature verification, it is marked as checked. Otherwise, the entry
is spam and is discarded.

e Lastly, entries that were not selected for checking and the ones that received a checked
mark are merged into the local cache.

Depending on the way the value of P.pecr is handled (whether it is fixed and constant for
all the nodes in the network or changes in time individually for every connection depending
on the quantity of spam received from the neighbour on the other side of this connection) the
probabilistic verification may have different characteristics. But regardless whether at all or
how Pepecr is modified, it would be recommended that some lower bound for P.pecr (greater
than 0) is set as every node should be on the guard in case any spam appears. This necessity
for some Pepeck,,;, derives directly from the properties of wireless ad hoc networks, where
nodes may join or leave the network at any given time (intentionally or due to failure or
falling out of reach of its neighbours). This results in wireless environments being generally
very unstable. A node that joins the network has no knowledge of its environment besides
the identity of its immediate neighbours. It has no preconceptions about its neighbours nor
about the spam traffic level it will encounter. Thus, to be on the safe side, the node should
apply at least the minimal level of checking at the beginning by setting its Pepeck t0 Peneck,yiy, -
Since the behaviour of neighbours may change over time, the value of P.pe.; should never
drop below that lower bound. The implication of this is that there is a minimum workload
imposed on the network but at the same time we have a probabilistic guarantee that every

15



spam entry would be detected and removed from the network. We just have to realise that
the probability of an entry not being checked in n hops is:

n
P(entry not checked in n hops) = H(l — Peheck,i)
i=1

where Pepecri Was used for probabilistic verification at hop i
n

S H(l - Pcheckmm)
i=1
= (1 - Pcheckmm)n

Thus, the probability of corrupted entry traversing further drops with every hop and the
further from a spam source (in number of hops) a node in the network is placed, the lower
the probability that it receives a corrupted entry.

In all our experiments Pppeck, . is set to 0.05.

min

3.1. Constant Probability Scheme

The simplest scenario for probabilistic verification is to keep Ppeck fixed in the entire network.
This solution was evaluated in [10]. The results presented in that paper show that deploying
even the simplest probabilistic verification into the gossip protocol is enough to stop the
number of corrupted entries from increasing until all entries in the network are corrupted.
Checking entries with constant probability P.peex will both reduce the overall percentage of
spam in the network and decrease its expansion. Moreover, the effectiveness of probabilistic
verification in fighting spam depends directly on the value of P.peck-

Firstly, the value of Pe.peq is indirectly proportional to the value to which the amount of
spam in the network converges. Secondly, entries are restricted from spreading too far from
the source. With every hop it becomes more likely that the corrupted entry will be removed
by a non-malicious node. It is not surprising that the average distance (in hops) from the
source that spam travels is also reciprocally proportional to the value of P.peck-

The experimental results described in [10] showing that higher values of Pppecr reduce
both the amount of spam in the network and the area affected by corrupted entries derive
from the properties of the probabilistic verification.

To start with we note that the corrupted entry can be created only in two ways:

e by the spammer that compromises the content of the original entry,
e by the replication during a gossip exchange.
We will also be taking no account of the fact that the corrupted entry may be relayed by

other spammers while being gossiped (we omit in our computations hops where a spammer
is a receiver). This omission has no effect on the correctness of the computations below.

If we now denote by the random variable X the number of hops that the corrupted entry
travels until it is checked and discarded and provided P.j.. is fixed for all nodes in the
network then X has a geometric distribution with parameter Pppecr and

P(X = i) = Puneck - (1 = Popeet)' ™"

16



where 1 € 1,2,..., and

00
E(X) = ZZ : Pcheck ' (1 - Pckeck)iil
i=1

1
Pcheck .

From the formula for E(X) we can safely infer that the higher the value of P.pecr is, the
shorter the time the corrupted entry exists in the network and the shorter the distance it can
travel through the network. In addition, the probability of the entry being replicated drops
as well along with the increase of P.peqi (and decrease of E(X)).

Unfortunately, this simply solution of P being a fixed network-wide parameter has a
huge drawback of not being flexible. Regardless of the size of the threat faced by a node from
its neighbours (being flooded with spam or not) constant Pppecx requires a fixed amount of
work to be performed.

3.2. Ageing Probability Scheme

The conclusions from [10] led to a more advanced way of handling P.pe. that has been
presented in [9]. In that paper, nodes are given the autonomy to adjust the P,pcq; values
to their needs, namely to the intensity of spam they receive from their neighbours. The
motivation behind giving the nodes freedom to control the level of probabilistic integrity
checks is to transform the network into a self-policing system where the high security measures
are engaged where needed while at the same time nodes in areas where spam is rare keep their
work to a minimum. A node cannot completely stop performing integrity checks, because it
should always keep a watchful eye in case situation in the network changes.

In more detail, every node maintains a different P,jq. for each of its neighbours. When a
node engages in a gossip exchange with one of its neighbours the scenario of updating Ppeck
proceeds as follows:

e executing probabilistic verification

The node checks each of the received entries with the probability of the current value
of Pepeck (Peheck,)- If we assume that the neighbour selects entries to send randomly
from its cache, then the fraction of corrupted entries received by the node in the current
exchange should reflect the fraction of spam in the neighbour’s cache. Consequently,
the entries chosen for verification should give the node an estimated level of corrupted
entries at the neighbour’s side. We denote by P’ the ratio of the number of the entries
that have not passed the integrity check (numRemoved) to the number of checked
entries in the probabilistic verification (numChecked). Thus,

,  numRemoved

~ numChecked

e updating the checking probability P.peck
The value of P for the next gossip exchange with this neighbour is updated as a
weighted sum of the current value of P.j..r and the value of P':

PcheckH_l = (1 - O‘)Pcheckt + aP' (31)

where parameter o € [0, 1] determines the sensitivity of P.pecr to the changes in the
value of P'.

17



In this probabilistic verification scheme when a node joins the network it sets P.peer’s for
all it neighbours to Pepeck,,,,- Thus, when it starts gossiping it would probably need some time
to adjust its filters (Pepeck’s) to the right values. Ideally, if the node always observed P’ equal
to the percentage of spam actually sent by the neighbour i (denoted by P;), the value of a
P_pecr[i] would finally converge to the level of spam received (on the grounds of equation 3.1).
Consequently, if P.pecr[i] = P, the fraction of spam received from i and detected by the node
would on average be equal to P? and the fraction of spam that goes undetected into node’s
cache would be equal on average P;(1 — P;). This simple observation already suggests that
for a spammer spamming with a Psp,, higher then 0.5 would be unprofitable because more
than half of the spam would get discarded at the very first hop (compare to Figure 3.1).

0.3 X
£ P*(1-P) ——
8 o025}
w
®
£ o2f
2
S 015}
c
>
5 01}
c
il
T 0.05 |
g
- 0 1 1 1 1
0 0.2 0.4 0.6 0.8 1

Figure 3.1: Fraction of spam received from a neighbour that is not detected by the node (F;
— the probability that a received entry is corrupted and P; &~ P.peck[i]).

3.3. Probability based on Conditional Expectation

In the course of the characteristics analysis of equation 3.1, the following observation came
into focus. The difference between Pepeck,,, and Pepeck, is directly proportional to the dif-
ference between P’ and P.pecr,, which can be regarded as an advantage — it causes that the
more significantly the current value of P.pecr (which is assumed to estimate the intensity with
which a neighbour sends out corrupted entries) deviates from the amount of spam received in
the latest gossip exchange, the more substantially the updated value of P.pcq will be modified
to reduce this divergence. If the value of P, is low and on the contrary the value of P’ is
considerable one can consider the above as a fast alarm rise. Unfortunately, at the same time
such a rapid increase of the P value may be overhasty behaviour and the related growth
of the sampling frequency can only result in higher computational resources consumption by
the node.

It is important to investigate under what circumstances it is justifiable for a node to take
dramatic precautions against its neighbour and raise the value of P, and when this kind
of behaviour may be premature. Let us compare the following two situations that the node
executing probabilistic verification may encounter. In the first one, the node is checking the
received entries with the probability P.pecr = 0.05. If the number of entries the node has
received is 50 then on average the node will check only a few messages (mean value of the
number of verified entries equals exactly 2.5). In the second case, Ppeer = 0.50 and the
mean value of the number of checked entries equals 25 out of 50. If we now assume that in
both cases all the checked entries turned out to be spam then in both cases to update P.peck
the value of P’ = 1.0 will be taken as the observed spamming rate of the current message

18



exchange. Supposing o = 0.1 the new values of P, would equal accordingly 0.145 (growth
by 0.095) and 0.55 (growth by just 0.05). But intuition says that in the first situation it could
be just by chance that the node has observed this high P’ and the real fraction of spam sent
by the neighbour could be much smaller. The contrary situation has place in the second case,
where the value P’ seems to reflect the actual fraction of spam received in the last gossip
exchange more reliably.

The above observation led to a new scheme of updating P.peck- To obtain the enhanced
equation the information provided by the probabilistic verification mechanism itself was used
but to explain how the equation was derived we have to look at the gossip exchange from the
mathematical perspective.

We can look at the N entries received by a node from its neighbour as a probabilistic space
of N statistically independent Bernoulli trials, where an entry being spam denotes success
and uncorrupted entry denotes failure. The node does not know the real probability with
which an entry is compromised, it can only estimate it by the value of P.peer. (Note that
the node does not know the real distribution of spam among the entries it receives from the
spammer-neighbour in the course of gossip exchanges and the P value may be discordant
from the real rate at which the spammer sends out corrupted entries so this is just a simplistic
model).

uncarrupted

\

currupted

checked unchecked

Figure 3.2: Probabilistic model of a gossip exchange.
While the node executes the probabilistic verification of the received entries it checks every
entry with the probability P.pecr. Thus, there are another N Bernoulli trials (statistically

independent from previous Bernoulli trials) where checking an entry denotes a success.
We introduce now random variable X; that represents the number of corrupted entries

among ¢ received ones. Suppose now that:
e N is the number of received entries,

e M is the number of checked entries (0 < M < N and M/N = P.pecr),

19



e S is the number of checked entries that turned out to be spam (0 < S < M and
S/M = P’).

Then, the conditional expected value of the number of the spam entries among all IV entries
provided that among M entries we found S spam entries can be estimated by:

E(XN|XM:S):S+Pcheck'(N_M) . (32)

E(Xn| Xy =S5) =

from the definition of conditional expected value
N

P P(Xy = S)
from statistical independence of the Bernoulli trials
_ il P(Xy =S) P(Xy_p=i—S)
par P(Xy =S)
N
= > i -P(Xy_y=i-05)
i=0
replacing variables — j =14 — S
N-S
= (J+8) - P(Xn-m =)
j=—5
changing summing ranges, removing components of 0 value
N—M
= > (G+9) P(Xn-m =)
j=0

Bernoulli distribution of spam entries among all entries

= (N-M)-PX1=1)+S5
as said above, we do not know the exact probability of the entry being a spam, so we will
use Pepeck as the estimation of it

= (N—=M)- Pepeck + 5.

Hence, if we accept that in the last gossip exchange the node has received (N — M) Pepeck +
S spam entries then the spamming rate of the neighbour can be assumed to be close to
((N — M)Pepeck +5)/N. This value can be taken as an updated value of Pepeck:

(N - M)Pcheck:t + S
N .

Pcheckt+1 = (33)

Although we have all information needed to use the equation Pepeck,,, = (N =M ) Pepeck +
S)/N (S, M and N are the products of probabilistic verification), we will transform the
equation to rely solely on P’ and P.peck,. To achieve this, we notice that P’ = S/M and that
Peheck, = M/N. Consequently,

S:M'P/%N'Pcheckt-Pl

and
N—-M=~N-—-N- Pcheckt = N(l — Pcheckt) .

20



After inserting the above values into equation 3.3 we obtain:

P ~ N(l_Pcheckt)'Pcheckt ‘I'N'Pcheckt - P’
checkiy1 N

= (1 - Pcheckt) . Pcheckt + Pcheckt . Pl
= Pcheckt(l + Pl - Pcheck:t)

Thus, our new equation for updating P.pcct would be:

Pcheckt_H = checkt(l + Pl - Pcheck:t) . (34)

The 3-dimensional graph of the Pepect,,, function is presented in Figure 3.3.

Pcheckm / ) - ] 1
: ; 0.8

0.6
0.4

0.2

Figure 3.3: 3-dimensional graph of the new Pepeck,,, update function.

The last remark that should be made about the above equation is whether the P.jcqk
converges to the P’ value provided P’ is constant. We can easily show that if Ppeer, < P’
then Popeck, < Peheck,., < P’ and similarly if P’ < Pupeer, then P < Pepeck,yy < Peneck,-
The pace of the convergence is dependent both on the value of Ppcck, as well as on the value
of (P — Pepeck,) which results directly from transformed equation 3.4 (Pepeck,,; — Peheck, =

Pcheckt (PI - Pcheckt))'

3.4. Probabilistic Verification vs. Workload Caused by Spam-
mers

Workload that the nodes in the network face while using probabilistic verification with a

fixed P.pect does not depend on the size of the threat imposed by spammers. Only the

value of Pppecr is responsible for the additional amount of work that well-behaved nodes must
perform while gossiping. Yet, the situation looks completely different when the nodes deploy

21



probabilistic verification that allows Ppecr adjustments (like the Peperr updates schemes
described in Sections 3.1 and 3.3).

As long as there is no spam in the network, nodes keep their P.peqr value to a minimum
(namely Pppeck,,.,) so the costs of probabilistic verification computations are low. When
spammers appear, nodes in the network, especially those in the vicinity of malicious nodes,
start to adjust their P.ecr values to the actual amounts of spam observed through each of
the links to their neighbours. Owing to the properties of equations 3.1 and 3.4 the strength
of the filtering is fine-tuned to be proportional to the amount of corrupted entries received.
This explains the inability of spammers to disseminate corrupted data while using a very high
spamming rate but at the same time it gives the malicious nodes an opportunity to perform
a kind of denial-of-service attack on their neighbours by depleting neighbours of energy and
thus, disrupt the performance of the network.

Figure 3.4 illustrates the imbalance in the workload (in average values of P.pe. as a met-
ric) placed on the nodes when 10% of the nodes in the network are malicious and they spam
90% of their outgoing traffic. The majority of nodes have a low average P.pecr (performing
less than 10% of checking) but a considerable number of nodes check more than a quarter of
their incoming traffic and a few dozen nodes check around 50% or even more of the entries
they receive. These nodes have malicious nodes as their neighbours and they face the danger
of performance difficulties if the computational workload caused by probabilistic verification
does not decrease.

400 T T T T T T T T T
#nodes ——

300 ] B
0
[0
°
o
c -
S 200 | e
Q
Qo
£
S
c

b ‘h‘w‘ jl-'H_hTLMA |

0 L I L _.-I'rm-H'h_ 1 T 1 1
0 10 20 30 40 50 60 70 80 90 100

average Pgpeck

Figure 3.4: Histogram of average values of Ppeck for every node in the network (except for
spammers). 250 malicious nodes with spamming rate 0.90. P, updates according to the
equation 3.4.

These considerations lead to the question whether the nodes can differentiate malicious

nodes from well-behaved ones and isolate spammers, yet at the same time keeping the prob-
ability of isolating a good node to a minimum.

22



Chapter 4

Detecting and Isolating Malicious
Nodes

Before a node is able to isolate malicious neighbours it needs a method of differentiating
spammers from well-behaved nodes. Since nodes do not verify every entry they receive, they
cannot assume that a neighbour that has sent them a corrupted entry is malicious. Actually,
the probabilistic verification makes it completely acceptable that some fraction of entries
relayed by nodes in the network is spam. Comparably, if a node sends out checked entries it
is not enough to assume that it is well-behaved. In fact, it may be a spammer which tries to
avoid detection by executing probabilistic verification.

The following section presents what the cache contents of a well-behaved node that adheres
to the rules of probabilistic verification looks like and thus, what properties characterize the
outgoing traffic of a well-behaved nodes. Section 4.2 describes what should raise suspicion
when a node analyzes incoming traffic from one of the neighbours and in Section 4.3 the
isolation mechanism is introduced and experiments concerning its performance are presented.

4.1. Cache Contents of a Well-behaved Node

When a node wants to examine the traffic coming from one of its neighbours it can observe
two figures: the P related to that neighbour and the fraction of received entries marked
as checked. It was already described in [9] how these two values should behave if a neighbour
is a well-behaved node and in this section these results are briefly presented.

If a node is adhering to the rules of probabilistic verification while gossiping, part of the
entries in its cache would be marked as checked. If spammers are present in the network,
every node may have corrupted entries in its cache as well.

The probability of a corrupted entry to sneak through probabilistic verification into a
node’s cache (Pspam in cache) depends on both the probability with which the node’s neigh-
bour ¢ sends spam, P;, and the probability of checking an entry received from this neighbour,
Pepecr|i]. More precisely, the probability of a corrupted entry making its way into a node’s
cache equals:

Pspam in cache — P’L(l — Peheck [ZD . (41)

In a similar way the probability of a node marking an entry as checked, P.hecked in caches
can be determined by calculating the probability of an entry being selected to be checked,
Pepecr]i], and not being corrupted at the same time, (1 — P;):

Pchecked in cache — L check [2](1 - PZ) . (42>

23



If a node is executing the probabilistic verification properly, P.pecx[i] should approximate the
probability that an entry received from neighbour i is corrupted (P;). Therefore, we can
expect the values Pypom in cache a0d Penecked in cache t0 be approximately the same.

Thus, every well-behaved node should have in its cache similar amounts of corrupted and
checked entries. This statement holds even if a node has neighbours that forward different
amounts of spam. For example, neighbour A may be a spammer and send many corrupted
entries and therefore, be responsible for a large number of both corrupted and checked entries
in nodes cache, while neighbour B may pass corrupted entries only once in a while and as a
consequence, be responsible for only a few corrupted and checked entries.

Moreover, when Pepeck|i] = P; and we approximate Pspam in cache a0d Pehecked in cache
by P;(1 — P;), we can tell even more about these values. The function f(P;) = P;(1 — P;)
is increasing in the interval [0.0,0.5] and decreasing in the interval [0.5,1.0]. Thus it has
its maximum in 0.5 equal to 0.25. Therefore, if a node has adjusted its filters (Ppeck’s) to
approximate the values of P;’s, then it can be expected that this node does not have in its
cache more than 25% of spam and more than 25% of checked entries alike.

In this light, if a protocol used by a node to exchange data selects entries from a node’s
cache randomly (like the shuffle protocol does) its neighbours can expect to receive similar
amounts of spam and checked entries and these values should not exceed 0.25 each. Sig-
nificant discrepancies in the difference of the amount of corrupted and checked entries or
fractions of corrupted or checked entries higher than 0.25 should raise concern.

4.2. Detection mechanism

The previous section provides us with enough information to make an attempt on detecting
spammers in the network. We know that we have to pay attention not only to the number
of corrupted and checked entries but also on the relation between these two.

We have already explained how nodes compute Pepe.; values: they can use one of the
equations 3.1 or 3.4. We will next motivate why the latter equation is to be used for detection
and isolation of malicious nodes. However, there are some matters that should be addressed
before.

Keeping track of the number of checked entries received from neighbours is much easier
than estimating the number of corrupted entries by P.pecr. Marking an entry as checked
can be implemented by setting one bit. Then a node that receives entries can just count
the number of entries flagged as checked — this operation is computationally inexpensive.
As a node wants to have an estimate of the overall number of checked entries received
from the neighbour i, it can compute it with the equation similar to equation 3.1 used for
updating P.peck- The new estimated fraction of checked entries (checked;y1[i]) is updated
as a weighted sum of its previous value (checkedy[i]) and a fraction of checked entries in the
current gossip exchange with neighbour i (fracChecked):

checked1[i] = (1 — a)checked,[i] + afracChecked . (4.3)

We cannot use equation 3.4 here because the model for this equation assumes that we have
only partial information about the number of entries of certain properties (like being cor-
rupted).

The spammer detection mechanism introduced in [9] is based on monitoring only the
difference between P,peck[i] and checked[i]. After every gossip exchange with neighbour i a
node calculates

absDiff [i] = | Peheck[i] — checked]i]| (4.4)

24



and the parameter ¢ defines the acceptable difference:
o if absDiff < J, neighbour 7 is most probably behaving properly,
o if absDiff > J, neighbour ¢ is a suspected spammer.

Following intuition confirmed by the experiments presented in [9], the value of the threshold
¢ affects the detection of spammers in the following manner.

e A small § allows fast detection of spammers and makes it possible to detect malicious
nodes even if they don’t spam severely. But at the same time, a small § can result
in well-behaved nodes being mistakenly taken for spammers i.e. we will have false
positives.

e When larger values of § are used, spammers can operate for longer period of time
before being identified or even not being identified at all if the spamming rate is low.
Nevertheless, a larger § threshold makes it less possible to confuse a well-behaved node
with a spammer.

In our experiments we have set § equals to 0.10 after initial calibrations.

Choosing equation for updating P....

The motivation for abandoning equation 3.1 based on the weighted sum in favour of equa-
tion 3.4, which is based on conditional expectation, is closely related to the discernment
between spammers and well-behaved nodes.

When spammers appear in the network, well-behaved nodes (especially those in the vicin-
ity of the malicious nodes) need to adjust their values of P.pcqx for their neighbours to the
appropriate level. And as adjusting takes some time, during this period good nodes may
relay more corrupted entries than expected. As a result, they can easily be confused with
spammers, in particular, if the threshold ¢ is low. The duration of the regulating phase for
P.pect: to match the incoming rate of spam depends highly on the equation used for updating
Peheck-

In Figure 4.1 the results of applying the detection function absDiff > § where § = 0.10
are presented. The experiments were organized as described in Section 2.5. They were
conducted for the network of 2500 nodes organized in a square grid topology. Each node
could communicate with its adjacent neighbours to the North, South, West and East. From
among all nodes present in the network, 250 malicious nodes were selected randomly and
they started spamming at the 50th round.

Since nodes perform separate analyses for each of their neighbours and the decision
whether the neighbour is behaving suspiciously or not are made individually, we count the
results per link, not per node. Thus, the number of true positives denotes the number of
connections between well-behaved node and malicious one that has been rightly detected by
the good node, the number of false positives denotes the number of connections between
well-behaved node and malicious one where the good node has not detected the spammer on
the other end and the number of false positives denotes the number of connections between
two well-behaved nodes where one of the nodes has mistakenly suspected a good node on the
other side (if both nodes suspect each other the connection is counted twice).

In the experiments there are on average approximately 880 links between good and ma-
licious nodes. As a consequence, there is around 760 well-behaved nodes which have at least
one spammer as a neighbour. Further, there are roughly 7930 connections between two good
nodes (counted separately for each of the two directions).

25



5000

Pcheckt+l

= (1 — @) Pepeck, + aP’, where a = 0.10

5000 5000
true positives —+— true positives —+— true positives —+—
false negatives —&— false negatives - I false negatives —&-—
4000 false positives & 4000 false positives - 4000 y o} false positives -©-
2 2 £ Q
£ 3000 £ 3000 ©-q £ 3000
5 s Y s i :
3 3 g o g 8
£ 2000 € 2000 € 2000 .
2 2 Q 2
®.
1000 1000 ey 1000 i
e e}
. °
0 0 0 5E8
40 60 80 100 120 140 100 120 140 40 60 80 100 120 140
rounds rounds rounds
Pipam = 0.10 Pipam = 0.50 Piapam = 0.90
/ —
PchecktJrl (1 - a)Pcheckt + aP', where a = 0.20
5000 — 5000 5000 —
true positives —+— true positives —+— true positives —+—
false negatives —&-— false negatives & false negatives —&-—
4000 false positives - 2000 false positives o 4000 false positives --©-
Q
£ £ £ 9
= 3000 = 3000 = 3000 i
k3 k3 S Q
= o Q =
8 8 ’ 8
£ 2000 £ 2000 ¢ o £ 2000
=] = K =
2 2 2 é &
1000 1000 R
B A S
©00-0-6.6.0.0-0-0-0-0.¢-0 j/ ©-9-6:0-0-0-0-0-0-0© ©0-0.0-0-0-0-0-0-0-O
0 @ o o 0 G
40 60 80 100 120 140 40 60 80 100 120 140 80 100 120 140
rounds rounds rounds
Pipam = 0.10 Pipam = 0.50 Pipam = 0.90
_ /
Pcheckt_H — L check: (1 + P — Pcheckt)
5000 — 5000 — 5000 —
true positives —+— true positives —+— true positives —+—
false negatives —&-— false negatives —&-— false negatives —&--
4000 false positives o 4000 false positives o 4000 false positives —©-
2 2 g
£ 3000 £ 3000 £ 3000 o9
5 5 5 ;
5 ] o 3
£ 2000 £ 2000 Bl £ 2000 Q
2 2 ¢} 2 o)
O.
1000 ,E"BW, 1000 .. R 1000 f 5
©
<}
0booesoB®888aaa0 - WEUSURURURNI -4 oo 8-S -8 - 0ot odnaoonos
40 60 80 100 120 140 40 60 80 100 120 140 40 60 80 100 120 140
rounds rounds rounds

Pupam = 0.10

Pupam = 0.50

Pipam = 0.90

Figure 4.1: Results of applying detection function absDiff > ¢ (6 = 0.10) over time in the
network of 2500 nodes (10% of them malicious).

26



We easily notice that the number of false negatives drops fast to 0; our detection mecha-
nism has no problems with detecting spammers even if the spamming rate is as low as 0.10.
More alarming are the results for false positives.

What can be observed is the change over time in the number of false positives. Obviously,
before the appearance of spammers in the network, there are no false positives. After the
50th round, when spammers start to operate, the number of falsely suspected good nodes
grows rapidly and after some time decreases until it reaches a stabilized level, forming a
mountain-like shape.

We can see in every row, which corresponds to a different P.je.. update scheme, that the
number of false positives in its highest point is directly proportional to the value of Pypam
used by malicious nodes. Therefore, from the point of view of minimizing the probability
of isolating a well-behaved node, the higher Py,qn, is, the higher the probability of false
accusation of a well-behaving node. Thus, while choosing the function for updating P.peck,
we should focus on the ability to adjust as fast as possible, so a well-behaved node may avoid
being misjudged.

We can see that the equation using weighted sums (3.1) with o = 0.10 performs poorly
for high values of Pypam. When Pypq,, = 0.10, the number of false positives reaches over 4300
(~ 55%) and it takes over 55 rounds for nodes to reach a state where the number of mistakenly
suspected links stabilizes (at around 0.5%). Using a = 0.20 instead of aw = 0.10 results in an
improvement in the decrease of the number of false positives, which is distinctly below 3700
(~ 46%), as well as a reduction in the time needed by the network to stabilize the number
of false positives to around 35 rounds. But the level to which the number of false positives
converges is around 4% which is much higher than in case of @ = 0.10. Further increase of «
causes even further increase in the level to which false positives converge. Equation based on
the conditional expectation (3.4) seems to consolidate the advantages of the equation based
on a weighted sum with a = 0.10 and « = 0.20. The number of false positives does not reach
the high values as in the case of equation 3.1 with a = 0.10 or even a = 0.20 stopping at the
level of 39% and the number of false positives stabilizes after around 35 rounds as in the case
of equation 3.1 with o = 0.20, but at the same time, the level to which the number of false
positives converges is comparable to the level in the case of equation 3.1 with a = 0.10.

Modification of detection function

Apart from using a different equation for updating P.pecr values than in [9], a different formula
for separating spammers from well-behaved nodes is proposed.
Firstly, we will not take the absolute value as in 4.4:

diff [i)] = Peheck, [t] — checked]i] . (4.5)

We introduce this change because we do not want to punish well-behaved nodes that happen
to send out at some point more checked entries than corrupted ones. Besides, we imagine
that this kind of situation, where checked[i] > Pepecr|i] would be actually more common for
well-behaved nodes than malicious ones. A spammer has no reason for performing any kind
of verification of its traffic except for avoiding detection and isolation. Thus, it would try to
keep additional work to the minimum (not performing or performing only an indispensable
minimum of checks). Therefore, when a spammer has to make a decision whether to send
out more spam and less checked messages or less spam but more checked messages (while
still wanting to avoid detection) it is obvious that it will choose the former. We can safely
assume that a spammer does not mark a corrupted entry as checked. Such an act would
automatically identify a spammer as being malicious.

27



Secondly, aside from using now in our detection mechanism inequality diff > ¢ instead of
absDiff > §, we add another inequality:

Peheck [7/] > (46)

which imposes an upper bound on the value of P,pecr which now cannot be higher then ~ if
a node does not want to risk isolation. This inequality stems from equation 4.1, where we
have shown that the amount of spam in a well-behaved node’s cache should not exceed 25%.
Thus, the parameter v should be equal to or higher than 0.25. In our experiments we set for
v = 0.30 to avoid an unnecessary raise in the number of false positives.
To sum up, to detect spammers nodes will use, instead of inequality absDiff[i] > ¢, the
alternative inequalities:
diff [i] > 0 or Pepeck[i] > 7. (4.7)

As our experiments confirm, the changes introduced to the detection mechanism do not
lower the number of detected spammers. This is understandable as the spammers in our
experiments perform a basic type of attack where they do not send any checked messages. Yet,
the level to which the number of false positives converges is lower, which is a big advantage
because it lowers the possibility of isolating a well-behaved node.

4.3. Isolation mechanism

The desirability of malicious nodes isolation is beyond all question. If nodes are capable
of detecting and isolating spammers then once malicious nodes are isolated they are no
longer able to insert any spam into the network. The network is then able to recover from
a spammer’s attack and in a short period of time discard corrupted entries. Besides, in
the context of probabilistic verification, isolation of malicious nodes is important for every
single node. If a node has a neighbour that is a spammer which produces vast amounts of
corrupted entries, then the P.peq value for this neighbour is high and the node has to devote
more time to verify incoming traffic from the associated link. This is strictly connected to
higher computational workload imposed on the node and higher consumption of its CPU
time. And when the sensor networks are concerned, this can result in fast depletion of the
node’s energy resources. Therefore, the ability to isolate spammers has both local and global
advantages.

In the previous section we have presented formula (4.7) to differentiate spammers from
well-behaved nodes. This formula has its origin in the properties of the contents of a good
node’s cache. But as it was explained, the assumptions about these properties would be
correct only if the node has adjusted all its filters (Pepecr’s) to the levels of spam received
from neighbours. Therefore, a node cannot isolate its neighbour 7 just on the grounds of one
gossip exchange after which the values of Pepeck[i] and checked[i] comply with the detection
formula 4.7. The node must take into account that his neighbour ¢ may be just struggling to
adjusts its own P, value for its own neighbour spammer which just started operating.

Thus, the simplest idea to isolate spammers and at the same time minimize the probability
of isolating a well-behaved node is to wait for some rounds and see if the way the neighbour ¢
is perceived improves and Pepeck[i] and checked[i] values no longer satisfy detection formula
4.7. In more detail, every node keeps counters (counter) for each of its neighbours. After
every gossip exchange with neighbour ¢, the node checks whether updated the Pppccx[i] and
checked[i] values satisfy formula 4.7 or not:

o if Ppecrli] < v and Pepeerli] — checked[i] < § (formula is not satisfied) the counter for
this neighbour is reset to 0 — counter[i] := O,

28



e otherwise (formula is satisfied), a node is suspected spammer the counter is increased
by 1 — counter[i] := counter[i] + 1.

If the value of counter[i] crosses some threshold the neighbour i is assumed to be a spammer
and the node refuses any further communication with it. The node does not choose neighbour
1 for gossip exchanges any more and drops all the packets with entries received from 1.

In Table 4.1 we present the results of an experiment on isolating nodes according to the
above scheme with different values for the isolation threshold. The experiments are setup
in the same way as the experiments from the previous section. What becomes evident after
studying the results is that avoiding isolation of well-behaved nodes is problematic. Naturally,
one could settle for the high isolation threshold but this solution leaves too much space for
the spammers to change their behaviour (like stop sending spam for some time) and avoid
detection.

Isolation Pypam = 0.10 Pypam = 0.50 Pypam = 0.90
threshold isolated false isolated false isolated false
spammers | positives | spammers positives | spammers positives

(in %) (in %) (in %)

5 100.0 | 106 (1.3%) 100.0 | 1648 (20.8%) 100.0 | 2825 (35.6%)
10 99.9 | 23 (0.2%) 100.0 | 608 (7.7%) 100.0 | 935 (11.8%)
15 99.8 3 (0.0%) 100.0 91 (1.1%) 100.0 81 (1.0%)
20 99.4 0 (0.0%) 100.0 9 (0.1%) 100.0 4 (0.0%)
25 98.9 0 (0.0%) 100.0 1 (0.0%) 100.0 0 (0.0%)

Table 4.1: Results of simple node isolation (neighbours which counter crosses the network-
wide threshold are isolated) for different threshold values.

We can see from the results presented in Table 4.1 that if we want to avoid isolating more
than 1% of links connecting good nodes while using a constant isolation threshold, we should
choose it to be equal or higher than 20. But at the same time, we would like to be able to
isolate spammers as fast as possible.

To be able to improve the decision process of node isolation, one should understand better
what happens to a node when one of its neighbours starts to send spam. Assume that node
P has a malicious neighbour ) and @ has just started operating. In this situation, P has
to adjust P.peck[@] to match the level of spam received from Q. Regulating Ppeqk[Q] takes
some time and during this period the number of corrupted entries that sneak into P’s cache
can be much higher than in the situation where all P,.j..; values are already adjusted. Thus,
P forwards to its neighbours more spam than it normally would. This may raise suspicion
and, as consequence, P may face the threat of being isolated. This threat is even higher
when P has more than one spammer as a neighbour. Hence, if P could isolate its maliciously
behaving neighbours before being isolated itself, it would have higher chances to clear its
cache (by the means of communicating only with well-behaved nodes) to an acceptable level
and eventually avoid isolation.

Note, that on average node P forwards less spam than it receives from its neighbours
(because part of it is discarded during the probabilistic verification phase). As a result,
the Popecr[P] values at P’s neighbours should be lower than the P.peqr values at node P for
spammers that are neighbours of P. Bearing this in mind, if the isolation threshold depended
upon the value of P.jc.r, we could isolate malicious nodes fast and at the same time minimize
the number of isolated good nodes.

29



Experiments were conducted to check the performance of a few heuristic functions for
node isolation where the isolation threshold depended linearly or quadratically on the value
of P.peck- The result were the most promising when nodes were isolated if

counter[i] > isolation Threshold(1 — (Pepecr[i])?) (4.8)

with isolationThreshold = 20. In this scheme, the number of links between two well-behaved
nodes that were isolated by one of the nodes (false positives) was around 0.1%. This is the
same level of false positives as in experiments with constant isolation threshold equal to 20.

Figure 4.2 compares the results of isolating nodes with the constant isolation threshold
and for an isolation threshold dependent on Pepecr, (following formula 4.8). The graphs depict
the number of isolated links between spammers and good nodes, as well as the number of
links to malicious nodes that avoided detection (false negatives) and the number of links
between two good nodes that were mistakenly isolated by one of them (false positives). The
results are counted per link, since nodes do separate analyses for each of their neighbours.
We can easily notice how the curves denoting the number of isolated links with spammers
for Pspam = 0.50 (and even more for Pspq,, = 0.90) are shifted to the left when we use Pppeck
dependent isolation threshold. This clearly indicates that while using formula 4.8 we isolate
spammers faster than in the scheme with constant isolation threshold, keeping at the same
time the number of mistakenly isolated good nodes to a minimum.

a) isolating nodes with the constant isolation threshold equal 20

1200 true positives —+— 1200 true positives —+— 1200 true positives —+—
1100 false negatives —&-— 1100 false negatives —&-— 1100 false negatives ---&--
1000 false positives —©- 1000 false positives —©- 1000 false positives —©-
900 .- BB BB 900 -5 B-B-B-0,_ 900

800 g, 800 5 800

700
600
500
400
300
200
100

700
600
500
400
300
200
100

700
600
500
400
300
200
100

0

number of links
number of links
number of links

0
40 60 80 100 120 140 40 60 80 100 120 140
rounds rounds rounds

Pspam =0.10 Pspam =0.50 Pspam =0.90

b) isolating nodes according to inequality 4.8 with isolation threshold equal 20

1200 ' ' true positives‘ — 1200 j true positives‘ — 1200 j true positives‘ —
1100 f?\?e nega{ives J{E}r 1100 f?ls‘e negaﬁives J{E}r 1100 f?ls‘e nega_}ives J{E}r
1000 alse positives 1000 alse positives 1000 alse positives

W nposaesa, 900 900 f3-g-53-.

800
700
600
500
400
300
200
100

800
700
600
500
400
300
200
100

800
700
600
500
400
300
200
100

number of links

number of links
number of links

40 60 80 100 120 140
rounds rounds rounds

Pspam =0.10 Pspam = 0.50 Pspam =0.90

Figure 4.2: Results of applying the isolation mechanism with constant isolation threshold or
following formula 4.8 for different spamming rates.

30



Chapter 5

Ways of Avoiding Isolation

To have a thorough insight into the efficiency of proposed solutions for malicious node isolation
we should examine how a spammer can avoid isolation. In order to prevent its neighbours from
refusing communication with it, a malicious node needs to modify its behaviour enough to be
confused with a well-behaved node. In this chapter three possible strategies are presented:

e Checking entries just as a normal node would do and spamming with lower probability
Pypam in the unchecked entries.

e Imitating good node behaviour by controlling the properties of outgoing traffic (carefully
managing numbers of corrupted and checked entries that are sent to each neighbour).

e Changing the number of sent corrupted and checked entries over time in order to ma-
nipulate the values of P.ec and checked on a neighbour’s side.

5.1. Checking and Lowering Spamming Rate

When a spammer is aware how nodes in the network detect malicious behaviour, it can make
an attempt to avoid isolation. Knowing the inequalities 4.7 by means of which good nodes
determine which of neighbours behaves suspiciously, a spammer may try to abide to the rules
more. We identify two possible ways for a malicious node to achieve this:

e Checking entries just as a well-behaved node would in the hope of reducing the difference
between P.pecr and checked at its neighbours enough so that diff < 4.

e Lowering Psyqm to reduce both diff and Ppecr enough so that the former complies with
diff <6 and the latter does not exceed the upper bound ~.

A spammer may use only one of the above strategies or both. We will consider the
following four scenarios:

e (a) a spammer lowers its spamming rate to 0.05 and does not perform any checking,
e (b) a spammer lowers its spamming rate to 0.10 and does not perform any checking,

e (c) a spammer lowers its spamming rate to 0.05 and performs probabilistic verification
as every well-behaved node,

e (d) a spammer lowers its spamming rate to 0.10 and performs probabilistic verification
as every well-behaved node.

31



1200 ' ' ' ' ' ' ' trué positivés — ]
false negatives ---&---
1000 false positives ----©-- H
@ B-E-8-68-88-8-88-68
£ 800 f =e
k]
5 600
Ke)
1S
2 400
200
0 & &
40 60 80 100 120 140 160 180 200 220 240
(a) rounds
1200 ' ' ' ' ' ' trué positivés — 1
false negatives ---&---
1000 false positives ----©-- S
2 B-5-8-5-88-5-84,
£ 800 [ N B
S
5 600
Q
S
2 400
200
O & & & = 5 g
40 60 80 100 120 140 160 180 200 220 240
(b) rounds
1200 F ' ' ' ' ' ' " true positives —— 7
false negatives ---&---
1000 false positives ----@--- 4
_@ H-Er8E-88E-860-8E2-80-8860-68-8860-808-8-868-8C0-868-c868-68-5-86-884
£ 800
k)
5 600 B
Q
S
2 400 B
200 B
0 & & & & & & & 5 - &
40 60 80 100 120 140 160 180 200 220 240
(C) rounds
1200 | ' ' ' ' ' ' true positives ——— |
false negatives ---&---
1000 false positives ----0--- 4
[2] B-Er8E-8688-860-68-8-g5_
_—_E 800 ' E’B‘E'El-EI-F_H3-E-E--E-E-B-E-E—B—E—B-E—E—E—EI-ED—-E-B—B-E—E}-G:E]
k]
5 600 B
Qo
£
2 400 B
200 B
0 & & & & & & & &
40 60 80 100 120 140 160 180 200 220 240
(d) rounds

Figure 5.1: Spammers attempts at avoiding isolation by lowering spamming rate or perform-
ing probabilistic verification: a) Pspgm = 0.05, no checking, b) Pspem = 0.10, no checking,
¢) Pspam = 0.05 and performing probabilistic verification, d) Pspam = 0.10 and performing
probabilistic verification.

32



The results of applying the isolation mechanism for the networks of 2500 nodes in which
250 spammers try each of the above methods: (a), (b), (¢) and (d) are presented in Figure 5.1.

The very first observation is that lowering Pspq, is not enough to avoid isolation. Graphs
(a) and (b) of Figure 5.1 depict the number of isolated links between spammers and good
nodes when Pyyqpm, equals 0.05 and 0.10 respectively. In both situations malicious nodes fail
at avoiding isolation. When Pgpqm, = 0.05 after 200 rounds of spammers operating in the
network (that is around 250th round), 65% of links connecting malicious nodes with well-
behaved ones is already isolated. When P4, = 0.10 almost all links to spammers are isolated
during first 200 rounds of operating. When spammers perform probabilistic verification the
number of malicious nodes that gets isolated drops. During the same period of time almost
no link connecting spammer and good node is isolated when Pgp,q, = 0.05 and just 13% of
links with spammers at one of the ends is isolated when Pjpq,, = 0.10.

In conclusion, even though malicious nodes execute probabilistic verification and spam
with rate as low as 0.10, good nodes are still able to detect and isolate them. To lower the
risk of isolation while using the approach proposed in this section, a spammer has to lower
its spamming rate to around 0.05. At first this may seem a little bit unintuitive. Consider a
malicious node P that spams with Pype, = 0.10 and performs probabilistic verification. From
the back-of-the-envelope calculations, in P’s cache the number of checked entries should be
equal to at least a few per cent (even if P’s neighbours don’t send out any spam, P checks
at least Pepeck,,,, entries, which in our experiments amounts to 0.05). Thus, P’s neighbours
should perceive the traffic coming in from P to have the following properties:

e checked|[P] > 0.0,

® Pepeck[P] < 0.10 (because the corrupted entries are inserted with probability Pspam
among unchecked entries).

Therefore, P should never be isolated, because Ppeck[P] < 7, v = 0.30, and diff < 9,
0 = 0.10. Yet, our experiments suggest quite the contrary. This inconsistency between our
simple calculations and the experimental results derives from the misconception that in the
traffic outgoing from the spammer only a fraction Pjpe, is corrupted. In fact, a malicious
node also forwards the spam that it has received from its neighbours. Part of the received
spam consists of the corrupted entries created earlier by this malicious node (which just came
back to it), the other part consists of the corrupted entries created by other malicious nodes
in the network. Figure 5.2 presents the average number of corrupted entries created by the
spammers per every gossip exchange, the average number of corrupted entries actually sent
out by a spammer to its neighbour and the mean and standard deviation of the Ppp.q values
for spammers.

We can see that especially for small values of Pg,q, the fraction of created corrupted en-
tries is visibly lower than the fraction of corrupted entries that are sent by the spammer. This
occurs regardless of performing probabilistic verification by the spammer or not, although
when a spammer performs integrity checks the difference between these two fractions is a
little smaller, because some of the corrupted messages that a spammer receives are discarded
during the probabilistic verification.

Of course Ppeck[P] at the spammer’s neighbours estimates the level of spam that is
received by a node and not the number of spam created by the spammer (see Figure 5.2).
Thus, ironically the spam created by the spammer that traversed the network and returned
to its creator’s cache puts the spammer at higher risk of being discovered and isolated.
Additionally, the chances of a spammer to be isolated are increased by the spam that the
spammer receives and that was created by other malicious nodes operating in the network.

33



1 ——————————————8 1

09 | ] 09 |

08 | e ] 08 |

0.7 ¢ e ] 0.7}

06 | e ] 06 |

05 | oy ] 05 |

04| ey ] 04|

sl S &7 ] 03}

02} & =7 ] 02| - ]
01} ¢ oot spam o | o1l & oot spam o |
0 . . . . . . . Pehegk -0 0 g . . . . Pehegk -0
0 01 02 03 04 05 06 07 08 09 1 0 01 02 03 04 05 06 07 08 09 1
Pspam Pspam

(a) (b)

Figure 5.2: Divergence between percentage of spam that is created or sent by malicious nodes
in one gossip exchange a) spammers do not perform any integrity checks, b) spammers do
probabilistic verification. 2500 nodes are in the network, 10% of them is malicious.

And for these reasons we presume that the higher the density of spammers in the network the
higher the chances to isolate spammers. Therefore, a spammer should control its outgoing
traffic more carefully if it wants to avoid detection and isolation.

5.2. Imitating a Well-behaved Node

When a spammer is aware of the dangers related to the lack of control over the outgoing
traffic, it can decide to perform the integrity check on every incoming entry. This way it
can make sure that it does not forward any unwanted corrupted entries. Of course, this may
entail a higher workload on the spammer but by means of careful management of outgoing
traffic, a malicious node can realize a much more dangerous attack than the one presented in
the previous section. A spammer can both stay undetected by its neighbours and send more
spam.

Firstly, consider a situation where our detection mechanism does not take into account
the value of P.peqr but only the difference between P.pecr and checked. Thus, a neighbour is
suspected only when diff > §. In this scenario spammer P can send in every gossip exchange
50% of checked entries and another 50% of corrupted ones. P’s neighbours would never isolate
it because the values of Ppcq;[P] and checked[P] would be both around 0.5 and consequently
diff <.

We can clearly see that the previous detection mechanism introduced in [9] that uses
an absolute value of diff would also be helpless in the presence of this type of a spammer
attack. Therefore, this malicious behaviour is a good example that motivates usage of the
upper bound for P.peq aside from the upper bound for diff. When P.peer, > v and v = 0.3,
a spammer is no longer able to perform an attack in which it sends in every gossip exchange
50% of corrupted entries. But still a spammer is able to spam with Pgpey, smaller than v and
not be detected and isolated as long as it sends at the same time the same fraction of checked
entries. For example, 25% of spam and 25% of checked entries in every gossip exchange.

34



5.3. Manipulating Spamming Rate

The previous examples of spammer behaviour assume that spammers spam with a constant
spamming rate; in every gossip exchange malicious nodes send Py, newly corrupted entries.
Yet, it turns out that a malicious node can impose a much bigger threat on the network when
it diversifies the spamming rate over time. For instance, a spammer may change the Pgpqpm,
per every gossip exchange with a particular neighbour.

Consider the following spammer behaviour:

e Every two gossip exchanges with a particular neighbour the spammer sends only cor-
rupted entries (Pspgm = 1.00).

e Every other two gossip exchanges the spammer sends 44% of entries marked as checked
and no corrupted ones (Pspgm = 0.00).

Thus, on average the outgoing traffic comprises 50% spam.

1 T T T T T T T

Pcheck B— |
checked ---o---
0.8 | 4

Om‘-"l 1 1 1 1 1 1

0 5 10 15 20 25 30 35 40
rounds

Figure 5.3: Fluctuations of P and checked values when a spammer changes its spamming
rate and checked entries fraction every two gossip exchanges (equation 3.4 is used for updating

Pcheck) .

Figure 5.3 models the changes in the P.p.. and checked values on the spammer’s neigh-
bour side. These values where computed using equations 3.4 for P.peqr and 4.3 with o = 0.10
as in all our experiments for node isolation. In even rounds the spammer sends only corrupted
entries so we can observe the decrease in the checked value and increase in the Pjeq. value
for the next round. In odd rounds the malicious node sends 44% of its entries marked as
checked and no spam. Thus, there is an increase of checked and a decrease of Py for the
next round. After the initial period when a good node tries to adjust P.pect and checked, the
situation stabilizes and P..c equals around 43% and 24% alternately and checked equals
around 20% and 23%, respectively. Every two rounds Ppec is smaller than 25% (and as a
consequence smaller than 7) and at the same time Pepeer — checked ~ 0.01 so that diff < 6
(6 = 0.10). Therefore, our isolation mechanism would not be able to isolate this kind of a
spamimer.

Results of experiments for the network with 2500 nodes (see Figure 5.4) confirm our
concerns. During 200 rounds of 250 spammers operating in the network (spammers start
to operate at the 50th round), no link to a malicious node is isolated. Yet, we can see the
growing number of false positives. During these 200 rounds there are more than 100 (1.2%)
such links . This phenomenon is caused by the fact that a neighbour of the spammer is not
able to adjust its P.pecr value to match the spam coming in from a malicious node. In every

35



1200 | I I I I I I " true positives ——— 1
false negatives ---&---
1000 |- false positives e -
—g 800 H-EFr80-88-8-80-8080-860-8-80-668-8080-80-860-8c80-06 8- 8 G0-88-8-68G0-884
©
> 600 i
Ke]
§
S 400 |
200 i
ee_?.@-O-@'0'0'@'@'9'0'00‘0'G'G'G'O'O‘-O-G-G'G'O-O'@"@-'G'G'G-G-é
0 o000 F—F———— e
40 60 80 100 120 140 160 180 200 220 240

rounds

Figure 5.4: Results of applying the isolation mechanism when spammers change their spam-
ming rates and checked entries fractions every two gossip exchanges.

other gossip exchange when the spammer sends only corrupted entries, P.peqr is lower than
25% and as a result more than 75% of corrupted entries from this gossip exchange sneak into
its neighbour’s cache. That is much more than 25% when a spammer spams with constant
Pypam = 0.50. Hence, the adjacent nodes of this well-behaved neighbour may confuse it with
a spammer and isolate it.

Another consequence of the fact that the neighbours of the spammers are not able to
adjust their P.peq values is the higher number of corrupted entries in the network. Figure 5.5
compares the number of corrupted entries in the network over time when spammers spam
with constant spamming rate equal to 0.50 and do not perform any integrity checks (and
there is no isolation mechanism) with the number of corrupted entries when spammers use
the approach introduced in this section (their average spamming rate is equal 0.50). In the
latter situation, even though the isolation mechanism is active, the fraction of corrupted
entries present in the network is higher than in the former one by more than 2%.

30 T T T T T T T T T T T T T T T T T T T
2
T 25 . ]
g 20 ml'O G.\B\‘e . 1
£ 15 o B 00.0.0.0.0:0-0:0:0.0-000 000000000000 6 6.0-6-0-0-0]
) H G-a48-8g-888268a5E-86-00-8-05-888-80-85-868-84
kel H
2 10 i E
5 g
E K fixed P g ]
8 ° .',"¢' alternating pepam g

0 y 1 1 1 1 1 1 1 1 spam 1

40 60 80 100 120 140 160 180 200 220 240

rounds

Figure 5.5: Fraction of corrupted entries in the network of 2500 nodes when 250 malicious
nodes spam with constant spamming rate 0.50 (fixed Pspgpm,) or change their spamming rate
every two gossip exchanges (alternating Pspam)-

The weak point of our isolation mechanism that is responsible for the problems with
detecting and isolating this type of a spammer seems to be the function for updating P.jeck
that doesn’t converge to the average level of received spam. Using the function based on

36



the weighted sum Pepeck,,; = (1 — @) Popeck, + P’ with a = 0.10, for example, would yield
much better results (compare Figures 5.3 and 5.6). When this equation is used, Pgpecr would
fluctuate in the range between ~ 0.47 and ~ 0.53 and obviously the spammer would be
isolated. But we must recall from Section 4.2 the motives behind the decision to use equation
3.4 instead of equation 3.1 that uses weighted sum. Especially for small values of « like 0.10
the time needed by a node to adjust P.pecr while using equation 3.1 may be much longer than
while the node is using equation 3.4. Thus, when detection mechanism is active, percentage of
false positives is visibly higher (for example, around 55% instead of 39% when Pgpqpn, = 0.90)
and more time is needed for the level of false positives to stabilize at less than 1% (~ 55
rounds instead of ~ 35). As a consequence, applying isolation mechanism may take a heavier
toll of false positives when equation 3.1 with a = 0.10 is used instead of equation 3.4.

Therefore a much better solution could be introducing the isolation decision based on
a sliding window, when a node would take into the account the average number of gossip
exchanges when the neighbour misbehaved, rather than the counter, that is reset on the basis
of a single exchange.

1 T T T T T T T
Peheck —8— |

checked ---o---
0.8 | E

0.6 .

02 | o ° 0__@_O_G_0,_9.@.0-.9.0-0.-0-9-&.0-0~0--0~oAG-~0-0-0--®-9-G-~®--0~0.

hd 1 1 1 1 1 1
0 5 10 15 20 25 30 35 40
rounds

Figure 5.6: Fluctuations of P, and checked values when a spammer changes its spamming
rate and checked entries fraction every two gossip exchanges (equation 3.1 with o = 0.10 is
used for updating Ppeck)-

37






Chapter 6

Conclusions and Future Work

6.1. Conclusions

The problem discussed in this thesis is a good example of how adding a simple constraint
to the assumptions of an algorithm can change an easy task into something much more
complicated. If nodes in the network could verify digital signatures of every entry they
receive, guaranteeing the integrity of data in the network and isolating malicious nodes would
be trivial. A corrupted entry would be discarded by the very first node that receives it and
the sender would be isolated immediately.

However, when we introduce a constraint that the costs of verifying all entries at every
hop are prohibitively high, the problem increases in complexity. The direct result of this
restriction is that it can no longer be assumed that a node is malicious only because it
has forwarded some spam. On the contrary, it becomes a normal situation for a node in
the network to relay some number of corrupted entries. As a consequence, detection and
isolation of malicious nodes cannot be based solely on the discovery that the neighbour has
sent a corrupted entry to a node.

I have proposed an algorithm that addresses the problems of assuring data integrity and
isolation of malicious nodes. The algorithm can be divided into two parts: probabilistic ver-
ification and node isolation. The probabilistic verification phase is based on the works of
Gavidia at al. ([10], [9]) and was modified by me by introducing a new equation for updating
P_pecr, values. The isolation phase is aimed at isolating the malicious nodes and at the same
time preventing isolation of well-behaved nodes that could be mistakenly suspected. This
is achieved by differentiating the isolation threshold on the basis of the level of harmful-
ness of a node (nodes with higher P..q are isolated faster). The strength of our solution
stems from the fact that the decision on the isolation of a neighbour is taken solely on the
grounds of a node’s individual observations of the incoming traffic (no reputation information
is exchanged).

The experiments proved that by using this algorithm, malicious nodes that spam with
a constant spamming rate can be isolated without difficulties. The results show that even
spammers with spamming rate as low as FPgpqm = 0.10 are detected and isolated.

Unfortunately, when more elaborate spammer attacks were considered, the weak points
of the presented algorithm were revealed. In general, when we assume that a spammer knows
all about the algorithm that is used in the network, it can adapt its own behaviour in a
way which allows him to avoid detection and at the same time its outgoing traffic can be
comprised in 50% (or even more) of corrupted entries.

The vulnerability of our algorithm to this kind of spammers is induced by the deterministic

39



nature of the protocol. The spammer can easily predict how it will be perceived by its
neighbours. Thus, it can deceive nearby nodes by manipulating the numbers of corrupted
and checked entries it sends.

One of the possible readjustments that could improve our solution is to introduce ran-
domness into our protocol regarding isolation threshold but more importantly, the functions
for updating P.peqr and checked. This modifications would hinder spammers from predicting
whether their behaviour is perceived as suspicious or not.

6.2. Future Work

In the future, it seems crucial to explore how to detect and isolate malicious nodes that deploy
more elaborate schemes of attack (for example, use variable Pgpqpm,). One of possible directions
in which the research could go is introducing variable isolation threshold and more randomness
of functions for updating P.p.ct and checked. As far as the isolation threshold is concerned, we
can analyse approaches where the threshold is chosen at the beginning individually for every
node or per connection or even changes in time. Randomness in P.x.. and checked update
function can be understood as using equation Pepeck,,, = (1 — @)Pepecke + P’ (3.1) with
different (randomly chosen) values of o but we can also imagine having a set of completely
different functions like a set containing equation 3.4, equations 3.1 with different values of «
etc. from which a node randomly chooses the equation to use. This kind of solution should
make it much more difficult for malicious nodes to find a way of avoiding isolation, because
spammers would not be able to predict how their neighbours perceive their behaviour and if
they are already suspected or not.

Another issue, which was beyond the scope of this thesis but which seems worth inquiring,
is whether the P.p..; value can be used to adjust the frequency of communication with
particular neighbours. In the current solution the neighbour for the next gossip exchange is
selected randomly. If a node observes that its neighbour is behaving maliciously it can only
completely refuse to communicate with it. Another solution could allow nodes to adjust the
probabilities with which a node can contact each of its neighbours. In result, the node would
be able to contact more frequently with the neighbours that it perceives send less spam and
less frequent with those sending more spam. We already can foresee that in this suggested
solution the measures against the spammers that would like to manipulate P, values are
even more important.

40



Bibliography

1]

2]

3]

[4]

S. Bansal, M. Baker, Observation-based Cooperation Enforcement in Ad Hoc Networks.
Tech. Rep., Stanfor University, USA, July 2003.

R. Bobba, L. Eschenauer, V. Gligor, W. Arbaugh, Bootstrapping security associations
for routing in mobile ad-hoc networks. May 2002.

S. Buchegger, J.-Y. Le Boudec, Performance Analysis of the CONFIDANT Protocol;
Cooperation of Nodes: Fairness in Dynamic Ad Hoc NeTworks. In Proc. of IEEE/ACM
Symposium on Mobile Ad Hoc Networking and Computing (MobiHOC), Lausanne,
Switzerland, June 2002.

S. Buchegger, J.-Y. Le Boudec, The Effect of Rumor Spreading in Reputation Systems
for Mobile Ad Hoc Networks. In WiOpt’03: Modelling and Optimization in Mobile, Ad
Hoc and Wireless Networks, March, 2003.

S. Buchegger, J.-Y. Le Boudec, Coping with Fualse Accusations in Misbehaviour Reputa-
tion Systems for Mobile Ad Hoc Networks. EPFL Technical Report Number 1C/2003/31,
2003.

L. Buttyan, J. P. Hubaux, Enforcing Service Availability in Mobile Ad Hoc WANs. In
Proc. of IEEE/ACM Workshop on Mobile Ad Hoc Networking and Computing (Mobi-
HOC), Lausanne, Switzerland, June 2002.

L. Buttyan, J. P. Hubaux, Stimulating Co-Operation in Self Organizing Mobile Ad Hoc
Networks. Mobile Networks and Applications, vol. 8 no. 5, pp. 579-592, October 2003.

V. Coscun, E. Cayirci, A. Levi, S. Sandak, Quarantine Region Scheme to Mitigate Spam
Attacks in Wireless Sensor Networks. In IEEE Transactions on Mobile Computing, vol. 5,
no. 8, pp. 1074-1086, August 2006.

D. Gavidia, M. van Steen, Enforcing Data Integrity in Very Large Ad Hoc Networks.
In Proc. 8th IEEE Int’l Conf. on Mobile Data Management (MDM’07), Mannheim,
Germany, May 2007.

D. Gavidia, G. P. Jesi, C. Gamage, M. van Steen, Canning Spam in Wireless Gossip
Networks. In Proc. Fourth Annual Conference on Wireless On demand Network Systems
and Services (WONS), Obergurgl, Austria, January 2006.

D. Gavidia, S. Voulgaris, M. van Steen, A Gossip-based Distributed News Service for
Wireless Mesh Networks. In Proc. 3rd IEEE Conference on Wireless On demand Network
Systems and Services (WONS), Les Nenuires, France, January 2006.

41



[12]

[13]

[14]

[19]

[20]

Q. He, D. Wu, P. Khosla, SORI: A secure and Objective Reputation-based Incentive
Scheme for Ad hoc Networks. In Proc. of IEEE Wireless Communications and Network-
ing Conference (WCNC2004), Atlanta, USA, March 2004.

Y.-C. Hu, D. B. Johnson, A. Perrig, Sead: Secure efficient distance vector routing for
mobile wireless ad hoc networks. In Proc. of the Fourth IEEE Workshop on Mobile
Computing Systems and Applications, IEEE Computer Society, 2002.

Y .-C. Hu, A. Perrig, D. B. Johnson, Ariadne: a secure on-demand routing protocol for ad
hoc networks. In Proc. of the 8th annual international conference on Mobile computing
and networking, ACM Press, 2002.

D. B. Johnson, D. A. Maltz, Dynamic source routing in ad hoc wireless networks. In
Imielinski and Korth, editors, Mobile Computing, volume 353. Kluwer Academic Pub-
lishers, 1996.

P. Papadimitratos, Z. Haas, Secure routing for mobile ad hoc networks. January 2002.

V. D. Park, M. S. Corson, A highly adaptive distributed routing algorithm for mobile
wireless networks. In INFOCOM (3), pp. 1405-1413, 1997.

A. Patwardhan, J. Parker, A. Joshi, M. lIorga, T. Karygiannis, Secure Routing and
Intrusion Detection in Ad Hoc Networks. In Third IEEE International Conference on
Pervasive Computing and Communications (PerCom’05), 2005.

C. Perkins, E. Belding-Royer, S. Das, Ad hoc On-Demand Distance Vector (AODYV)
Routing. July 2003.

C. Perkins, P. Bhagwat, Highly dynamic destination-sequenced distance-vector routing
(DSDV) for mobile computers. In ACM SIGCOMM.94 Conference on Communications
Architectures, Protocols and Applications, pp. 234-244, 1994.

M. T. Refaei, V. Srivastava, L. DaSilva, M. Eltoweissy, A Reputation-based Mechanism
for Isolating Selfish Nodes in Ad Hoc Networks. In Proc. IEEE Second Annual Inter-
national Conference on Mobile and Ubiquitous Systems (MOBIQUITOUS 2005), San
Diego, USA, July 2005.

K. Walsh, E. G. Sirer, Fighting peer-to-peer spam and decoys with object reputation. In
Proc. of P2PECON Workshop, Philadelphia, USA, August 2005.

Y.-C. Tseng, J.-R. Jiang, J.-H. Lee, Secure bootstrapping and routing in an ipv6-based
ad hoc network. In ICPP Workshop on Wireless Security and Privacy, 2003.

M. G. Zapata, Secure Ad hoc On-Demand Distance Vector (SAODV) Routing. In Internet
Draft, 2002.

S. Zhong, J. Chen, Y. R. Yang, Sprite: A Simple, Cheat-Proof, Credit-Based System for
Mobile Ad Hoc Networks. In Proc. of IEEE Infocom 2003, pp. 1087-1997, San Francisco,
USA, April 2003.

42



