
Vrije Universiteit Amsterdam
Faculty of Sciences

Warsaw University
Faculty of Mathematics, Informatics and Mechanics

Michaª Ejdys
Student number: 1544055 (VU), 201258 (WU)

A peer-to-peer
Grid monitoring system

Master's Thesis
in COMPUTER SCIENCE

in the �eld of DISTRIBUTED SYSTEMS

Supervisors

Dr. Thilo Kielmann
Prof. Maarten van Steen
Vrije Universiteit Amsterdam

Dr. Janina Mincer-Daszkiewicz
Warsaw University

July 2006

Abstract

Grid monitoring systems aim at delivering accurate dynamic information about the Grid,
which helps users with optimal utilization of the resources. Current systems have a static
structure or are centralized services � thus are sensitive to nodes failures, not scalable, and
di�cult in administrating. In this work we propose an architecture of a peer-to-peer Grid
monitoring system, addressing these issues. Furthermore, we propose three information dis-
seminating strategies and evaluate their prototype implementations.

Contents

1. Introduction . 5

2. Related work . 7
2.1. Grid monitoring systems . 7
2.2. Scalable Event Noti�cation Service (SIENA) 10
2.3. P2P networks . 11
2.4. P2P and Grids . 14

3. Queries and information in Grid monitoring systems 15
3.1. Queries . 15
3.2. Information . 16
3.3. Aggregating information . 16
3.4. Predictions . 17

4. System architecture . 19
4.1. Architecture overview . 19
4.2. Pull approach . 20
4.3. Push approach . 22
4.4. Mixed approach . 25

5. Evaluation . 29
5.1. Prototype implementation . 29
5.2. Tests setup . 31
5.3. Pull approach . 37
5.4. Push approach . 39
5.5. Mixed approach . 42
5.6. Comparison . 45

6. Conclusions and future work . 47
6.1. Conclusions . 47
6.2. Future work . 48

A. Software archive . 49

3

Chapter 1

Introduction

Grid monitoring systems provide meta-information about the observed environment. They
monitor highly dynamic information, such as network bandwith, CPU load, job queue waiting
time, etc. On the other hand, Grid information systems provide access to semi-static system
characteristics. They are responsible for resource discovery, accounting and authorization.

Users need monitoring systems for optimal resource utilization. Information about load
helps them with selecting the best resource available for the next task to be submitted on the
Grid. Answering complex user queries may involve not only the monitoring system, but also
resource discovery. In this work, we regard a Grid monitoring system as a system providing
users with dynamic Grid information as well as with resource discovery services.

A main problem of existing monitoring systems is scalability. They are either centralized,
thus introducing a single point of failure and a performance bottleneck, or have a static
structure, making maintenance practically impossible in a large environment. Overcoming
these weaknesses has motivated our work.

A natural answer to the scalability problem is a distributed system. Massie et al. in [9]
identify key design challenges for distributed monitoring systems: scalability (up to thousands
of nodes), robustness, manageability, portability, extensibility, and overhead.

To address scalability, robustness, and manageability, a structured peer-to-peer (P2P)
network might be used. The decentralized nature of the P2P assures scalability. Addition-
ally, the dynamic and self-organizing structure of P2P networks has minimal con�guration
requirements and is a solution to the remaining problems.

The cooperation between P2P networks and Grid computing, however, is still in its early
stage. Although both technologies seem to have the same objective � coordinated use of
large sets of distributed resources � they are being developed independently by di�erent
communities.

P2P and Grids have both the same general approach to ful�lling their main objective,
i.e. utilizing the overlay structures. The overlays (virtual networks) coexist with underlying
organizational structures (hardware and physical networks), but not necessarily correspond in
structure to them. However, each has some crucial limitations � Grid computing focuses on
infrastructure rather than failure, whereas P2P does quite the opposite: addresses failure but
not yet infrastructure. Foster and Iamnitchi in [5] suggest that the complementary nature
of the strengths and weaknesses of the two approaches will cause the interests of the two
communities to grow closer over time.

The objective of our work is the design of a peer-to-peer Grid monitoring system. The
proposed architecture uses an acyclic graph over P2P network, which allows for e�ective data
aggregation and caching. Our system works in an event-driven fashion with measurements

5

and queries as events.
In our work, we discuss and evaluate three strategies for disseminating information: pull,

push, and mixed. In the pull approach a user query is the event, causing the network to collect
all the information needed for the answer. The push-based model reacts to measurements,
trying to spread new values across the network and thus to be ready to immediately answer
user queries. In the mixed approach we try to join aforementioned concepts to leverage their
strengths and overcome weaknesses.

The rest of this thesis is structured as follows. Chapter 2 presents the study of related
work, including existing Grid monitoring systems, as well as P2P networks. In Chapter 3 we
describe in detail functional requirements for a Grid monitoring system. We present example
user queries, their classi�cation and required information to serve these queries. Chapter 4
describes the proposed architecture together with a detailed description of three approaches
to information disseminating (pull, push, and mixed). Chapter 5 presents the prototype
implementation and its evaluation. Finally, Chapter 6 concludes and suggests future work.

6

Chapter 2

Related work

In this chapter we present current projects and concepts in the �eld of Grid monitoring
systems together with their strengths and weaknesses. We dedicate a separate section to
SIENA � an interesting example of a large-scale event noti�cation system. Finally, we present
an overview of peer-to-peer networks and current achievements in the �eld of incorporating
P2P concepts into Grids.

2.1. Grid monitoring systems
There exist quite a few monitoring systems for Grids. In this section we present the most

important ones, not only describing their architecture, but also identifying their strengths
and weaknesses. The study is the basis for determining functional requirements for Grid
monitoring systems, described in detail in Chapter 3.

2.1.1. Ganglia
Ganglia [9, 14] is a distributed monitoring system with a hierarchical design. It works at

two levels: clusters and federations of clusters (see Figure 2.1).

gmetad

gmetad

gmetad

gmond

node

gmond

node

gmond

node

... gmond

node

gmond

node

gmond

node

...

client

clusters

federations

Figure 2.1: Ganglia architecture (adapted from [9])

There is a Gmon daemon present at each node within a cluster. Gmon monitors a node at
which it is located, collecting 37 di�erent measurements (e.g. number and speed of CPUs, their
load, available memory, operating system). Moreover, daemons within a cluster communicate
with each other using multicast over a local network to exchange collected information. As

7

a result, each node has complete information on the status of the entire cluster and can be
regarded as its representative. This assures resilience to nodes failures. In case the current
representative fails, any other node within the same cluster may be contacted by external
processes.

Selected nodes run Gmeta daemons. They are organized in a tree of a static structure,
de�ned by the system administrator. Static trees are used for simplicity, because the authors
of Ganglia believe that Grids usually have only a small number of participating sites, even
though the number of clusters might be large. Worse yet, Ganglia does not provide any
automatic recovery from Gmeta daemons failures.

Each leaf node in the tree logically represents a single cluster. Each non-leaf node rep-
resents a federation of clusters. Gmeta periodically polls data from its children (Gmons and
Gmetas). For children being clusters, it stores complete information about their measure-
ments. For federations, it stores only summary information (sum and number of values for
each measurement for all clusters in all federations in the subtree).

In Ganglia, only the root node answers queries. Consequently, the root is a performance
bottleneck and a single point of failure. The query is processed by forwarding it to children.
A node that knows the answer, does not pass the query to its children. Thus, queries are
propagated potentially throughout the entire Gmeta-tree.

The system is designed to answer queries on the value of a measurement on a speci�c
node, rather than ranking resources (e.g. �nding the least loaded node).

2.1.2. Delphoi
Delphoi [8] is a centralized Grid monitoring system built from two types of components:

a single query processing service (Delphoi) and its helpers (Pythias) � see Figure 2.2.

Pythia

pathChirpMercury ...

Site 1

Delphoi

pathChirp

Pythia

Mercury ...

Site 2

information requests information requests

network
measurements

Figure 2.2: The Delphoi system architecture (adapted from [8])

The system provides the user with di�erent kinds of information: meta data (active sites,
known measurements), low-level resource and network information (delay, bandwith), high-
level network information (optimal con�guration of TCP connections, transfer time estima-
tion), and queueing information (available queues, con�guration, average waiting time and
number of free nodes). Not only gives it current measurements, but it is also capable of

8

computing predictions. Its predictor is a version of the Network Weather Service (see Sec-
tion 2.1.4) forecaster library.

Pythias are responsible for gathering information. They work by continuously collecting
measurements from the computers they monitor. Pythias use specialized modules to com-
municate with external measurement providers (e.g. Mercury � a Grid monitor for resources
and applications, or pathChirp � an estimator for available bandwith). Usually one Pythia
controls one site.

The Delphoi service is responsible for answering all the queries. It handles low-level
(e.g. CPU load, bandwith) and high-level queries (e.g. transfer time estimation). The an-
swer to a low-level query is taken from an appropriate Pythia or retrieved from Delphoi's
cache. For high-level queries, proper low-level queries are �rst answered. After performing
some computations on received information, the �nal answer is returned.

Interesting use cases for the system are: selecting the best available replica, queue waiting
time estimation, and transfer protocol optimization. However, a single Delphoi service is a
performance bottleneck and a single point of failure.

2.1.3. CoMon
The main goal for CoMon [11] (a mostly-scalable monitoring system for PlanetLab) is to

help administrators and users with tracking problematic machines on PlanetLab. Therefore, it
contains special measurements for that speci�c environment (e.g. statistics of resource utiliza-
tion per user account spread over a set of nodes). For details on PlanetLab, see Section 5.2.2.

The system has a centralized service that periodically (currently every 5 minutes) polls
information from daemons running at nodes in PlanetLab. Additionaly, it answers user's
queries. To be more precise: it presents the history of resource utilization, allowing for
�ltering the available data (e.g. showing only nodes with a load below given threshold).

CoMon is a centralized system. As a consequence, scalability becomes an issue. However,
since it is mostly used for monitoring rather than e�cient resource allocation, the informa-
tion served to clients is allowed to be stale. Thus, whenever the number of monitored sites
increases signi�cantly, the frequency of gathering information at the centralized service is
simply decreased.

2.1.4. Network Weather Service (NWS)
The aim of the Network Weather Service is to maximize four functional characteristics [16]:

• predictive accuracy (to provide accurate predictions in a timely manner),

• non-intrusiveness (not to introduce additional load on the existing system),

• execution longevity (to be able to operate logically inde�nitely),

• ubiquity (to be accessible from all potential execution sites within a resource set).

The service is built out of four types of components, i.e. Sensor, Persistent State, Name
Server and Forecaster (see Figure 2.3).

Sensors are located at monitored resources and gather measurements. Persistent State
takes care of storing all the measurements. Many Sensors may use the same Persistent State.
The Name Server is a centralized directory for binding names with TCP/IP addresses and
discovering available sites. This is currently implemented with LDAP. Finally, Forecaster

9

Figure 2.3: NWS processes distributed across three workstations (source: [16])

makes predictions for a given resource and a given time frame. This is the only process clients
contact.

The emphasis of the project is on collecting measurements and making predictions. For
example, the system reduces the number of point-to-point network measurements (e.g. la-
tency) by organizing sensors in a hierarchy of cliques. A clique is simply a group of nodes
physically close to each other (e.g. within the same campus). Thus, network measurements
with distant sites can be computed once for the entire clique and then approximated for its
members.

Two main weaknesses of the system are: the manually managed structure of connections
between sensors and a centralized Name Server.

2.2. Scalable Event Noti�cation Service (SIENA)
The Scalable Event Noti�cation Service [2] is an interesting example of content-based

networking. It is an event-driven model of event dispatching.
The dispatching is regulated by advertisements, subscriptions and noti�cations. Objects

of interest specify the events they intend to publish by means of advertisements. Interested
parties specify the events they are interested in by means of subscriptions. Objects of interest
can then publish noti�cations and the event service takes care of delivering them to the
interested parties.

An event consists of its identi�er, timestamp and a set of attributes. An event �lter
de�nes a class of event noti�cations by specifying a set of attribute names and types and
some constraints on their values. A pattern is de�ned by combining a set of event �lters
using �lter combinators (or, and). An event noti�cation is delivered to a subscriber only if
its subscription pattern matches the given event.

In SIENA, nodes are organized either in a hierarchical or peer-to-peer topology. SIENA
introduces two algorithms for constructing noti�cation paths for events: subscription and
advertisement forwarding.

The �rst approach uses subscriptions to set paths for noti�cations. Every subscription
is stored and forwarded from the originating server to all the servers in the network. As a
result, a tree that connects the subscriber with all the servers is formed. Whenever an object
publishes a noti�cation that matches that subscription, it is routed towards the subscriber
following the reversed path established by the subscription.

Advertisement forwarding uses advertisements to set the paths for subscriptions, which
in turn sets the paths for noti�cations. Every advertisement is forwarded throughout the
network. As a result, a tree that reaches every server in the network is formed. Whenever a
server receives a subscription, it propagates the subscription in reverse along the path to the

10

advertiser, thereby activating the path. Noti�cations are then forwarded only through the
activated paths.

Both algorithms result in a minimal spanning tree for each source.

2.3. P2P networks
Peer-to-peer networks are self-organizing distributed systems without any hierarchical

structure or centralized control, overlayed on IP networks. Among their most important
features are robust routing, scalability and fault tolerance. They fall into two categories [7]:
unstructured and structured networks.

2.3.1. Unstructured P2P
Unstructured peer-to-peer networks organize peers in a random graph and use �ooding,

random walks or expanding-ring Time-To-Live (TTL) search on the graph to query content
stored by peers. Each peer evaluates the query locally on its own content. This is ine�cient
because queries for content that is not widely replicated must be sent to a large fraction of
peers. Additionally, there is no coupling between topology and a data item's location.

Most interesting examples of unstructured P2P networks are: FreeNet, Napster, BitTorent,
and Gnutella. The latter will be described in detail.

Peers in Gnutella perform actions of both servers and clients (and they are named ac-
cordingly: servers+clients = servents). Each peer participates in maintaining the network,
forwarding, and answering users queries. Servents exchange the following messages: ping (for
manifesting their presence), pong (a response to ping, containing information about exist-
ing peers), query (a user speci�ed search string), and query response (containing information
necessary to download a �le).

Gnutella uses broadcasting within a limited scope for ping and query messages. They
are identi�ed by a randomly generated id, which prevents rebroadcasting messages. Limited
scope of broadcasting is done by utilizing TTL counters, decreased at each hop. Answers
to broadcast messages (pong to ping and query response to query) are back propagated via
paths established by the original messages.

In order to join the network, each new peer has to contact one of the hosts known to be
on-line most of the time. Their list is usually published on a web-site. The new peer starts
operating by broadcasting a ping message via hosts from the acquired list. As a response, it
receives the list of some other peers in the network. After joining the network, nodes period-
ically exchange ping and pong messages to maintain network connections. This mechanism
assures network integrity and makes Gnutella failure robust.

How the user queries are broadcast can be seen in Figure 2.4. Each peer receiveing a query
message tries to match it to the resources it stores. Furthermore, it forwards the message
to its peers. Answers to queries contain contact information to hosts storing data items the
user is searching for. After receiving the answer, a user directly contacts appropriate hosts
by exchanging get and push messages.

Because of locality of query processing (�ooding within limited scope), searching is e�ective
only for widely spread content.

2.3.2. Structured P2P
Structured peer-to-peer network assigns keys to data items and organizes its peers into a

graph that maps each data key to a peer. This structured graph enables e�cient discovery of

11

peer

peer peer

peer
get

broadcast
back−propagation
direct

query query

push

query

query answerquery answer

Figure 2.4: Queries in Gnutella

data items using the given keys. Examples include Content Addressable Network (CAN) [12],
Chord [15] and Pastry [13]. The latter will be described in detail in the next section together
with an application-level multiast overlay, Scribe.

2.3.3. Pastry and Scribe
Pastry

Pastry [13] is a scalable, self-organizing peer-to-peer location and routing substrate. Each
node in the Pastry network has a unique numeric identi�er (nodeId). The nodeId is assigned
randomly when a node joins the system. It is assumed that nodeIds are generated such that
the resulting set of nodeIds is uniformly distributed in the 128-bit nodeId space.

For the purpose of routing, nodeIds and keys are represented as a sequence of digits with
base 2b (b is a con�guration parameter with typical value 4). Pastry routes messages to the
peer whose nodeId is numerically closest to the given key. In each routing step, the message
is forwarded to a node whose nodeId shares with the key a pre�x that is at least one `digit' (b
bits) longer than with the present nodeId. If no such node is known, the message is forwarded
to a peer with common pre�x of the same length, but numerically closer to the message key.
For an example, see Figure 2.5(a).

Assuming a network consists of N nodes, Pastry can route messages in less than dlog2bNe
steps under normal operation.

In order to route messages, a routing table is maintained at each node � see Figure 2.5(b).
It contains nodes for pre�xes of di�erent length. Additionally, a neighborhood set with M
(being a parameter) closest nodes is being kept. The set is used only for optimizing the
routing table, not for routing itself.

The neighborhood set is also used to assure network locality. It aims at minimizing the
distance messages travel, according to a scalar proximity metric provided by the application
(e.g. the number of IP routing hops). This is achieved by always selecting the closest known
node as representative for the each pre�x. More precisely, a message is forwarded to a relatively
close node with a nodeId that shares a longer common pre�x or is numerically closer to the
key than the local node.

Scribe

Scribe [3] is a large-scale, decentralized application-level multicast infrastructure built on
Pastry. It allows for creating topic groups and then publishing messages to subscribers.

12

(a) Routing a message from node 65a1fc with key
d46a1c. The dots depict live nodes in Pastry's
circular namespace

(b) Routing table of a Pastry node with nodeId
65a1x, b = 4. Digits are in base 16, x represents
an arbitrary su�x

Figure 2.5: Routing messages in Pastry (source: [13])

Any Scribe node may create a group. Other nodes can then join the group and multicast
messages to all members of the group. Each group has a unique groupId. The Scribe node with
a nodeId numerically closest to the groupId acts as the rendez-vous point for the associated
group. The rendez-vous point is the root of the multicast tree created for the group.

To create a group, a Scribe node asks Pastry to route a create message using the groupId
as the key. Pastry delivers this message to the node with the nodeId numerically closest
to groupId, similarly for a join request message. Each node through which a create or join
message is routed, becomes a forwarder for the given group, maintaining children table with
all nodes that passed the message to it. As a result, a multicast tree is formed, spanning all
members of the given group.

forwarder

forwarder and member

join
repair

Root

1100

1101 1001

0100
1111

Figure 2.6: Tree maintenance in Scribe (adapted from: [3])

An example of tree maintenance procedures is shown in Figure 2.6. Node 1100 is the
rendez-vous point for the example group. Nodes 1101 and 1001 are group members and � at
the same time � forwarders. The joining node, 0100, sends the join message to the group id.
Pastry routes this message to node 1001 in the �rst step. Upon receiving the join message,
1001 registers 0100 as its child. This is needed for proper dissemination of group messages.
Since 1001 is already a forwarder for the group, it is part of the multicast tree. Consequently,
this join message is not forwarded and the join procedure for 0100 ends.

13

Scribe periodically monitors its connections and whenever a node failure is discovered, the
system reacts by reconstructing the multicast tree. For example, if node 1001 discovers that
1101 is down, it asks Pastry to route a join message so that a new connection in the multicast
tree can be established. Pastry routes the join message to node 1111. Since that node was
not part of the tree, not only it registers the fact that node 1001 is its child, but also forwards
the join message further towards group id. Next node on the way is the root node. It registers
node 1111 as its child.

Failures of the rendez-vous points are handled similarly. As soon as any of the root's
children discovers that rendez-vous point is no longer available, it routes the join message.
Since Pastry delivers messages to the nearest (with respect to ids) available node, new root
node is selected and noti�ed automagically.

The described method of building and maintaining the multicast tree limits the number
of nodes involved in each action. All the tree repairs are performed locally (e.g. node 0100
does not have to be noti�ed about changes in the tree above its parent).

It is worth mentioning that periodically sent messages not only help with repairing the
tree, but also with optimizing the tree whenever a new node appears in the network. If a new
node happens to be a better peer (in terms of locality and number of routing steps), the tree
is reconstructed accordingly. Thus, Scribe bene�ts from Pastry's locality properties.

Messages publishing in Scribe is done by sending the message to the root node of the
multicast tree. As soon as Pastry delivers the message to the rendez-vous point, it is resent
to its children. Similarly, every node in the tree handles the received message.

2.4. P2P and Grids
Current Grid systems have two serious problems: the scalability and the disability to

handle node failures. Both problems are caused by centralized services, which are mostly
needed for resource discovery. As Foster and Iamnitchi suggested in [5], convergence of Grid
computing and peer-to-peer networks seems to be a natural step. Enriching Grids with
abilities of P2P networks would solve scalability issues and help with handling nodes failures.
Additionally, P2P could also provide Grids with a decentralized way of discovering available
resources.

Surprisingly, there exist only a few projects that join experiences from both �elds. Exam-
ples are Zorilla [4], the Web-Services Discovery Architecture (WSDA, [6]) and NaradaBroker-
ing [10].

Among them, the most interesting project is Zorilla � a large-scale job scheduling system.
In order to bene�t from P2P networks, its authors completely redesigned the concept of Grid
computing, instead of extending it. Zorilla does not need a centralized service to submit a
job, nor requires synchronization of many independent job schedulers. It simply uses �ooding
to publish the job request locally.

Instead of making a globally optimal decision about job scheduling, Zorilla exploits locality
and bene�ts from the scalability of the solution. The job is simply published within a certain
scope from the user node.

14

Chapter 3

Queries and information in Grid
monitoring systems

The starting point for designing our system is collecting requirements. After studying
the systems presented in Section 2.1 and their example applications, we identi�ed the most
common types of queries that Grid users actually need and use. In this chapter we also present
information needed to handle these queries and possible strategies of aggregating them.

3.1. Queries
Possible queries that could be of Grid users' interest, fall into two categories: direct mea-

surements and resource discovery.
Direct measurements provide users with detailed information about speci�c resources �

their utilization, hardware and software speci�cation, etc. This helps with verifying that a
given resource is suitable for an application (e.g. it has su�cient memory available or the
CPU's frequency is high enough). Additionally, this category includes host-to-host network
measurements, which are useful for e�cient usage of available resources � e.g. by allowing
selection of the best replica to use.

Resource discovery queries in their simplest form return a list of all available resources.
More advanced queries allow users to express some requirements for the resources (e.g. mini-
mum available memory, type and version of the operating system) or some preferences (e.g. job
queue average waiting time or CPU load below some value). Additionally, a user may request
the system to rank the resources accordingly to their accessibility, e.g. by CPU load or job
queue waiting time.

Resource discovery queries could be further classi�ed based on the presence of constraints.
Queries with constraints allow for retrieving the list of resources meeting the speci�ed re-
quirements (e.g. minimum memory available). Queries without criteria, in turn, allow only
for retrieving the list of all resources.

Unfortunately, current systems do not o�er advanced resource discovery. For example in
Ganglia, Delphoi or NWS (see Section 2.1) the user can only acquire the list of all available
resources. In order to rank the resources or �lter out unsuitable ones, the user is forced to
submit a series of additional direct measurements queries.

Since we believe that resource discovery is of highest importance to the user and direct
measurements can be easily implemented in a decentralized manner, we concentrate our ef-
forts on advanced resource discovery services. Surely, the system should also o�er direct
measurements. They, however, can be regarded as complementary information.

15

3.2. Information
For the sake of answering queries described in the previous section (direct measurements

and resource discovery), a Grid monitoring system has to collect the following information:

• node measurements � total and available disk space, swap space and memory; load and
frequency of the CPU,

• job queues � their con�guration (number of CPUs, job manager used, maximum allowed
jobs, maximum memory available) and utilization (average waiting time, average waiting
jobs),

• network measurements � low-level metrics like latency, bandwith (available and utilized),
path (in terms of IP hops) and high-level estimates deducted from them, e.g. expected
transfer time between hosts or optimal TCP options.

In the system we are proposing, the emphasis is put on node measurements. Information
about job queues is very similar to node measurements and thus can be designed and imple-
mented similarly. Network measurements, in turn, are omitted, since they are only used in
the already excluded direct measurements category.

Information coming from nodes becomes a basis for both ranking resources (e.g. by CPU
load) and �ltering using criteria (e.g. by available memory).

3.3. Aggregating information
Besides collecting and serving the information itself, a Grid monitoring system can operate

on its aggregated form. Aggregated information presents an extract of information. It allows
for answering some queries without investigating all information in detail. Possible types of
aggregation in our system are: union, minimum, and maximum.

Union presents joint information about all elements of a set. Keeping that kind of ag-
gregated information might enable a quick access to the complete list of all resources. Fig-
ure 3.1(a) presents the example.

4

9 2

1

8

A

AB

B

9 4
1 2 8

9 4 1 2 8

(a) union

4

9 2

1

8

A

AB

B

4
1

1

(b) minimum

Figure 3.1: Examples of aggregated information

Minimum and maximum can be useful to quickly determine the `best' element (i.e. with
highest or lowest value of some measurement) and to optimize �nding answers to queries with
constraints.

Whenever a query with constraints is analyzed by the system, aggregated information
about some set of resources can help with deciding whether the particular set should be

16

analyzed in detail or not. This technique can signi�cantly limit the number of resources being
involved in answering the query.

Figure 3.1(b) presents an example together with aggregated information (minimum). In
this case, the answer to the query `return all values below 3' could be computed as follows.
At �rst, we decide to look into the set AB � its minimum value (1) assures that there are
suitable elements inside. Further, since A has minimum value of 4, it should be skipped � all
its elements would not meet the constraint `below 3'. B, however, has to be investigated in
detail, contributing values 1 and 2 to the answer.

3.4. Predictions
Some Grid monitoring systems (like NWS or Delphoi) o�er predictions in addition to

current measurements. The motivation is that for users it might not be important what
the load of the machine is or was, but � what the load will be when they decide to use it.
Consequently, all identi�ed queries may be related either to the presence or to the future.

However, enriching existing system with a predictions module is not complicated. For
example, the Delphoi system adapted the NWS forecaster library in order to compute predic-
tions about job queues utilization.

In order to serve current information as well as calculated predictions for the limited time
slots, our system will be able to operate on series of values. Forecasting will be performed by
each node individually and only the results will be presented to other nodes.

17

Chapter 4

System architecture

After describing all the requirements, we are ready to propose the architecture of a peer-
to-peer Grid monitoring system. In this chapter we present the architecture overview together
with three strategies of disseminating information.

4.1. Architecture overview
We propose to build the Grid monitoring system on top of a peer-to-peer network in

order to obtain a decentralized self-organizing structure. With minimal con�guration and
administration e�ort, a scalable system can be maintained.

We assume that an acyclic graph of peers can be created on top of a P2P overlay (as our
prototype implementation proves, this can be easily achieved) � see Figure 4.1.

P2P OVERLAY

NETWORK

Figure 4.1: P2P overlay network

The Grid monitoring system resides on top of a P2P overlay network � see Figure 4.2.
The application processes client queries and manages the infrastructure for optimizing the
processing. It is a mediator between the user and the measurements. The application uses
the P2P overlay network to communicate with all the nodes.

The user may contact any of the nodes in the network to submit a query, since the
application treats all the nodes equally and exports the same interface to each of them.

For query processing and information disseminating, we propose the following three strate-
gies:

1. pull approach,
All user queries are answered by propagating them throughout the entire network and
gathering information. However, no additional communication is required.

2. push approach,
Each node maintains a cache for measurement, keeping aggregated information about
the rest of the network. Thus, user queries (without constraints) are answered locally.

19

NODE NODE NODE NODENODE ...NODE

USER

APPLICATION

queries answers

NETWORK

P2P OVERLAY

measurements

queries

Figure 4.2: System architecture

However, in order to maintain the cache, peers need to constantly exchange information
about new measurements.

3. mixed approach.
This approach is a combination of the aforementioned two solutions. Some nodes of the
network work in push mode, others in pull mode.

These three strategies will now be discussed in detail.

4.2. Pull approach
In the pull approach the query is the event, which causes messages to be propagated.

The only communication is directly caused by the submitted query. There is no information
cached in this approach. Figure 4.3 presents an example graph of 5 nodes (A, B, C, D, and
E) with their current measurement value (7, 5, 1, 2, and 3 respectively).

3

5 2

1

7

A

B

C

D

E

Figure 4.3: Example graph in pull approach

Regardless of its type (with or without constraints), queries are processed in the same
way. Whenever a user submits one, information is gathered from the entire network.

Figure 4.4 presents the process of answering an example query without constraints (ob-
taining the minimum value in the network). At �rst the query is submitted to node B � see

20

1

2

3

5

min value

7

A

B

D

C

E

(a) submission of the query

2

3

5

1

7

A

B

D

C

E

(b) query propagation, level I

1

2

3

5

7

A

B

D

C

E

(c) query propagation, level II

1

2

3

5

7

A

B

D

C

EE:3

D:2

(d) collecting answers, level II

1

2

3

5

7

A

B

D

C

E

C:1

A:7

(e) collecting answers, level I

1

2

3

5

7

A

B

D

C

E

C:1

(f) returning the answer

Figure 4.4: Query without constraints in pull approach

21

Figure 4.4(a). In Figures 4.4(b) and 4.4(c) it is propagated throughout the network. In Fig-
ures 4.4(d) and 4.4(e) the answer is returned. Node C calculates the minimum value based on
the answers it received from its peers (2 at D and 3 at E) and its own value (1). Consequently,
the answer it passes to B is 1 at C. Likewise, node B computes the minimum of its own and
received values, returning 1 at C to the user � see Figure 4.4(f).

In the pull approach network tra�c is generated only when a query is submitted. Intu-
itively, the trade-o� will be the quality of information. In our work, the quality of information
is measured in terms of staleness. Its de�nition will be formulated in Section 5.2.4. Roughly,
staleness is the time passed since the acquired information has stopped being correct.

In the case of the pull approach, staleness is expected to be proportional to the maximum
network latency between a node receiving a user's query and all other nodes. The reason is
that the node being queried initiates pulling and has to wait for all the answers to come.

This approach is expected to be suitable for systems with a low query load, i.e. when
maintaining a cache for measurements (as in push and mixed models) would not pay o�. We
will return to this issue at the end of the next section.

4.3. Push approach
In the push approach a measurement is the event causing the exchange of information

beetween nodes. They maintain a cache for values, which contains the aggregated information
about each subnetwork represented by its peer nodes.

3

5 2

1

7

A

B

C

D

E

C:1

A:7 C:1
B:5 D:2

E:3
C:1

C:1

Figure 4.5: Minimum-cache in push approach

Figure 4.5 presents an example graph of 5 nodes with a cache that aggregates information
by calculating a minimum. Each node keeps aggregated information for every connection
it has. For example node A has only one peer-node, i.e. node B. It represents the subnet-
work consisting of nodes B, C, D and E. Among them, node C has a minimum value of 1.
Consequently, node A stores information min of 1 at C (C:1) for its connection to node B.

Similarly, node B stores cache information for its two peers: A and C. The connection
with A represents a one node subnetwork. Thus, aggregated information for it is A:7. Node
C represents the subnetwork consisting of nodes C, D and E with a minimum value of 1 at
node C. Thus, a cache value for B's connection with C is C:1.

Whenever a new value arrives at a node, it recalculates the aggregated information it
should present to all its peers and � for which an update is needed � sends a noti�cation.

Figure 4.6 shows changes after a new value of 4 appears at node A. At �rst, node A updates
its local information � see Figure 4.6(a). Then, A updates information it has presented to node
B since it became outdated. New information (min of 4 at A) is sent to B. Node B updates
its cache � see Figure 4.6(b). Since the new value is below the minimum value presented by

22

1

2

3

5

7 4

A

B

C

D

E

C:1

C:1
B:5 D:2

E:3
C:1

C:1
A:7

(a) new value at A

1

2

3

5

A

B

C

D

E

A:4 A:7

C:1

C:1
B:5 D:2

E:3
C:1

C:1

4

(b) B updates its cache

2

3

5

1

4

A

B

C

D

E

C:1A:4

C:1

D:2

E:3

C:1

C:1

B:5 A:4

(c) C updates its cache

Figure 4.6: Updating cache in push approach

B to C, the latter has to be noti�ed. B informs C about the new value (min of 4 at A) � see
Figure 4.6(c). However, information C presented earlier to D and E is still valid (C:1). Thus,
the update process does not go beyond node C.

In the push approach, queries without constraints can be quickly answered � directly by
the queried node. Figure 4.7 presents an example query submitted to node B about the
current minimum value. Node B quickly calculates the minimum of aggregated information
from its peers (1 at C, 7 at A) and its own value (5) and returns the answer (min of 1 at C).

1

2

3

5

7

A

B

D

C

E

C:1

A:7 C:1
B:5 D:2

E:3
C:1

C:1

min value

(a) submission of the query

1

2

3

5

7

A

B

D

C

E

C:1

A:7 C:1
B:5 D:2

E:3
C:1

C:1

C:1

(b) returning the answer

Figure 4.7: Query without constraints in push approach

Queries with constraints have to be propagated among peers. However, the query is
forwarded only to these subnetworks, which aggregated information meets the requirements
speci�ed in the constraints.

Figure 4.8 shows an example query about all nodes with a measured value below 4. The

23

1

2

3

5

all nodes < 4

7

A

B

D

C

E

C:1

A:7 C:1
B:5 D:2

E:3
C:1

C:1

(a) submission of the query

1

2

3

5

7

A

B

D

C

E

C:1

A:7 C:1
B:5 D:2

E:3
C:1

C:1

(b) query propagation, level I

1

2

3

5

7

A

B

D

C

E

C:1

A:7 C:1
B:5 D:2

E:3
C:1

C:1

(c) query propagation, level II

1

2

3

5

{E:3}

7

A

B

D

C

E

C:1

A:7 C:1
B:5 D:2

E:3

C:1

C:1

{D:2}

(d) collecting answers, level II

1

2

3

5

7

A

B

D

C

E

C:1

A:7 C:1
B:5 D:2

E:3

C:1

C:1

{C:1, D:2, E:3}

(e) collecting answers, level I

1

2

3

5

7

A

B

D

C

E

C:1

A:7 C:1
B:5 D:2

E:3

C:1

C:1

{C:1, D:2, E:3}

(f) returning the answer

Figure 4.8: Query with constraints in push approach

24

example usage is a request to retrieve a list of all the nodes with average job queue waiting
time below 4 minutes. The user submits a query to node B � 4.8(a). In the �rst step, node
B decides it can skip the subnetwork represented by node A, since its minimum value is 7,
meaning none of the nodes in this part of the network can satisfy the user's requirements.
The query, however, is propagated to the other branch, where the minimum value is 1 � see
Figure 4.8(b).

In Figure 4.8(c) node C forwards the query to both its subnetworks, since both can possibly
satisfy the requirements. In Figure 4.8(d) nodes D and E return their answers with singletons
containing only themselves.

Figure 4.8(e) presents the answer that node C sends back to B. It contains nodes that C
received from its peers (D and E) and C itself, since it also satis�es the user's requirement.
In Figure 4.8(f) B returns the answer to the user. B itself does not contribute to the answer,
since its value (5) is greater then the user's threshold.

In this example, the list of resources was ranked accordingly to the measurement involved
in the constraints, but a di�erent measurement for ranking can be used. For example, retriev-
ing a list of resources with average job waiting time below 4 minutes ranked by the amount
of available memory is also possible,

Also limiting the list to a speci�ed number of resources can easily be implemented by
truncating the list at each step. For example, if the user requests only the top two nodes,
node C in the stage presented by Figure 4.8(e) would return the list {C:1, D:2}.

Normally, the cache is constantly updated and queries are submitted randomly. Therefore,
the quality of information at a speci�c node is expected to be proportional to the average (as
opposed to maximum in the pull approach) network latency between the given node and all
other nodes in the network.

The push approach, at the price of frequent updates needed to maintain the cache, gives
a quick response to queries without constraints and limits the number of the nodes involved
in processing queries with constraints.

The approach presented in this section is expected to be e�cient in environments where
the average number of queries per second signi�cantly exceeds the average update rate of
measurements at nodes. In that case the overhead of maintaining the cache pays o�.

4.4. Mixed approach
The mixed approach merges the concepts of the push and pull approaches. Both queries

and measurements initiate communication.
Leaf nodes (i.e. nodes with only one peer) work in push mode. Whenever a new measure-

ment is done, information is propagated to a node's peers. Other, non-leaf nodes (i.e. having
more than one peer) work in pull mode. They do not propagate information about subnet-
works to other peers, but cache information about their leaf-peers.

Figure 4.9 presents an example network con�guration and cache content in the mixed
approach. A, D and E are leaf nodes working in push mode. They present information about
their one-node subnetworks to their peers (A to B, D and E to C). Nodes B and C work in
pull mode and thus do not exchange information with each other.

It is worth mentioning that nodes are not statically assigned to push or pull areas. In
a real environment a graph of connections between nodes changes as nodes join and leave
the network. Additionally, the next time the same peer joins the network, it may receive a
di�erent id, which in�uences its placements in the overlay network. Nevertheless, some nodes
may always be leaf nodes, resulting in an increased (relatively to pull nodes) network tra�c.

25

3

5 2

1

7

A

D

E

B

C

D:2

E:3

Pull areaA:7

Push area

Figure 4.9: Minimum-cache in mixed approach

3

2

1

min value

5

7

A

D

E

B

C

D:2

E:3

A:7

(a) submission of the query

3

5 2

1

7

A

D

E

B

C

D:2

E:3

A:7

(b) query propagation

3

5 2

1

C:1

7

A

D

E

B

C

D:2

E:3

A:7

(c) collecting answers

3

5 2

1

C:1

7

A

D

E

B

C

D:2

E:3

A:7

(d) returning the answer

Figure 4.10: Query without constraints in mixed approach

26

Queries with and without constraints are all processed in a way similar to the pull ap-
proach. A node propagates the query to all its peers within the pull area. For the remaining
peers (i.e. peers from the push area) cached information is used.

Figure 4.10 presents an example query realization. Node B, after accepting the query (see
Figure 4.10(a)), forwards it to node C, its only peer within the pull area (Figure 4.10(b)).
Node C returns the answer immediately, as it has information about all its peers cached.
The answer (min of 1 at C) is sent back to B (Figure 4.10(c)). Next, node B computes the
minimum of: received value from C, cached value about A and its own value. Finally, it
returns the answer (min of 1 at C) to the user (Figure 4.10(d)).

The mixed model reduces communication overhead of the push model, increasing perfor-
mance (both query time and quality of answers) of the pull model at the same time. The
quality of information in this approach is expected to be better than in the pull approach,
but worse than in the push model.

27

Chapter 5

Evaluation

In addition to proposing a P2P Grid monitoring system architecture, we evaluated its
prototype implementation. In this chapter we describe this implementation together with the
testbed we used. We present and discuss results of the conducted tests.

5.1. Prototype implementation
For the prototype implementation of the proposed architecture, Pastry and Scribe (see

Section 2.3.3) have been used. For an overview of the system design � see Figure 5.1.

APPLICATION

NODE NODE NODE NODENODE ...NODE

PASTRY

SCRIBE

measurements

queries

USER

queries answers

Figure 5.1: Prototype implementation

All three layers of the system (Pastry, Scribe, and application) will now be described in
detail.

Pastry

Pastry provides an infrastructure for organizing all the nodes into a network. It handles
nodes joining and leaving the network, and thus keeps instability of the environment under
control. In addition, Pastry routes messages, supporting any kind of communication between
nodes.

29

When using Pastry (or any other P2P without any centralized service), the bootstrapping
issue arises. A new node starting its operation needs to know whom should it contact in order
to become part of the overlay network. To solve this problem, we create a bootstrap group.
It consists of nodes expected to be on-line most of the time. Their network addresses are
registered under a single well-known name, using DNS.

While initiating, nodes retrieve the bootstrap group from DNS and try to join the overlay
network, using one of the obtained addresses. In case none of the peers can be contacted,
the node (given that it is a member of the bootstrap group), initiates a new Pastry network.
Other nodes have to wait for one of the bootstrap peers to become reachable.

We assume that it is relatively easy to identify at least a few stable nodes within a group
of interested hosts. However, it is not required for all the hosts from the list to be on-line all
the time. Failure of all but one will still provide joining nodes with needed service. Failure of
all will only disable new nodes from joining, but will not destroy the existing network.

Additionally, maintaining the bootstrap group requires minimal administrative work �
only the DNS entry has to be modi�ed, in case some nodes need to be replaced, removed or
added.

Another advantage of using round-robin DNS scheme is load balancing [1]. Each time a
DNS-server is queried, it will return a reordered list, causing successive nodes to be directed
to di�erent bootstrap peers.

However, DNS servers are not obliged by the standard to implement round-robin in the
described manner. Servers may return the same list each time they are queried or reduce the
list to one of its elements.

Scribe
The middle layer of our system is Scribe. It uses Pastry's message passing API to establish

and maintain a multicast tree. Each of the nodes subscribes to the same topic and thus the
Scribe tree spans over the entire overlay network.

Scribe introduces a hierarchy into the network. In our architecture, however, the tree is
used to structure the network rather than to bene�t from the parent-child relations. All the
nodes are treated equally, as peers. Scribe o�ers simply one of the easiest ways to overlay the
network with an acyclic graph � see Figure 5.2.

PASTRY

SCRIBE

Figure 5.2: Role of Pastry and Scribe in the prototype implementation

30

Application
The application is laid on top of Scribe and is responsible for processing client queries. It

also maintains the infrastructure for optimizing the processing and is responsible for imple-
menting the three processing strategies.

Whenever the user submits a query, the application collects appropriate measurements
from the nodes. It uses the intermediate layers (Scribe and Pastry) to communicate with the
nodes in the network. As soon as all the information is collected, the application returns the
answer to the user.

5.2. Tests setup
In this section we describe the testbed used in the evaluation. We start with explaining

what simpli�cations to the architecture described in the previous section were made. Then
we discuss PlanetLab � the environment we used. The section continues with the description
of our e�orts to stabilize this extremely unstable environment, followed by the de�nition of
the quality of information � the basis for comparing di�erent models. Finally, we present the
methodology of our tests.

5.2.1. Simpli�cations
In order to establish a framework for comparing di�erent approaches to query processing,

several assumptions and simpli�cations have been made. We decreased complexity of the
network structure and concentrated on queries of type minimum only.

The network structure
The most important simpli�cation of the system architecture is reducing the graph to

the tree and choosing only the root node to answer the queries. It signi�cantly simpli�es
the implementation of approaches that use a cache (push and mixed). The node, instead of
calculating aggregated information for each of its peers, has to present the information about
its subtree to the parent node only � see Figure 5.3.

3

5 2

1

7

A

B

C

D

E

C:1

A:7 C:1
B:5 D:2

E:3
C:1

C:1

(a) network of peers

3

5 2

1

7

A

B (root node)

C

D

E

C:1
D:2

E:3

A:7

(b) tree

Figure 5.3: Simpli�cation of the network structure

Arrows connect children to their parents. In this example, B has been selected as a root
node. Children present aggregated information only to their parents. For example, node C
sends information about minimum in its subtree (consisting of nodes C, D, and E) to its
parent � node B. Consequently, each node caches information not about every subnetwork,

31

it is connected to, but only about subtrees represented by its children. For example, node C
caches information from D and E, but does not have any information from its parent, node
B.

The parent-children relationship is retrieved directly from Scribe's multicast tree.

Minimum only
It is worth mentioning that minimum and maximum aggregation are very similar and thus

one of them can be omitted. Additionally, we prefer minimum over union, since we expect it
to reveal most signi�cant di�erences between the presented approaches.

Therefore, from the information aggregation methods described in Section 3.3, we chose
only minimum to be implemented and omit maximum and union.

5.2.2. Environment
We have chosen PlanetLab as a testbed for evaluating our system. PlanetLab is a

planetary-scale network, currently consisting of 685 machines in 332 sites spread over 25
countries. See Figure 5.4 for the visualization of nodes distribution.

Figure 5.4: Current (27-06-2006) distribution of nodes in PlanetLab

The most important advantage in using PlanetLab is that experiments can be conducted
under real-world conditions, and at a large scale. Applications using PlanetLab are widely
distributed over the Internet, across multiple administrative boundaries.

Our application used PlanetLab machines to build 4 trees of di�erent sizes. We evalu-
ated our system on each of the trees separately. The characteristics of constructed trees are
summarized in Table 5.1.

The hop-latency is the latency between pairs of nodes in the tree (between a child and its
parent). The path-latency is the latency between the node in the tree and the root node. For
both, we present their average and maximum value as well as the standard deviation (denoted
by σ). All the latency values are in milliseconds.

Tracking these values will allow us to examine the in�uence of the latencies in the un-
derlying TCP/IP network on the e�ciency of communication in the P2P overlay network.
Furthermore, as stated in Sections 4.2 and 4.3, the quality of information is expected to be

32

nodes sites nodes hop-latency path-latency depth
per site avg max σ avg max σ avg max

10 8 1.3 78 172 59 78 172 59 1.0 1
40 30 1.3 91 242 59 104 324 67 1.1 2
80 61 1.3 73 304 67 120 434 81 1.4 3
160 103 1.6 88 348 78 148 553 98 1.7 2

Table 5.1: Sets of nodes used in tests

directly connected to the average travel time of messages through the network in case of the
push approach, and maximum travel time in case of the pull approach.

Nodes for the experiments have been chosen so that the number of sites was as high as
possible. We managed to achieve the nodes per site factor as low as 1.6 for the tree of 160
nodes. This ratio for all nodes in PlanetLab is 2.1. We tried to minimize the number of
child-parent TCP/IP connections within the same local area, because we wanted to build a
large-scale system being able to work under many di�erent conditions. Using many LAN
connections inside trees would strongly in�uence the results.

For the visualization of nodes distribution for our tree of 160 nodes see Figure 5.5(a).

(a) visualization of nodes distribution

 0

 5

 10

 15

 20

 0 100 200 300 400 500 600

nu
m

be
r

of
 n

od
es

latency [ms]
(b) hop-latency histogram

 0

 5

 10

 15

 20

 0 100 200 300 400 500 600

nu
m

be
r

of
 n

od
es

latency [ms]
(c) path-latency histogram

Figure 5.5: Tree with 160 nodes

33

Characteristics of the largest tree will now be described in detail. Figures 5.5(b) and 5.5(c)
present the distribution of hop and path-latency for our 160-nodes tree. Latency values are
grouped by 10 ms.

Hop-latency values are mostly low, 90% of measurements fall below 200 ms, whereas 90%
of path-latency values fall below 300 ms. Only 10 paths (i.e. 6%) have latency below 20 ms.
The path-latency distribution within the range of 0-200 ms is balanced.

5.2.3. Assuring reproducibility
Testing applications in such an unstable environment as PlanetLab is not an easy task. In

order to improve reproducibility of our tests, we introduced several additions to our system.

Generators

Our prototype implementation uses arti�cial generators as a source of measurements. In
this way, we gain full control over the frequency and value of the measurement. Still, they
mimic real sensors.

The generator is parameterized by the average interval between reporting new values to
the system (I). The real interval is drawn with the Gaussian distribution with the mean value
of I. The standard deviation is adjusted in such a way that approx. 99.7% of drawn values
fall into the range of 50% to 150% of I. For outliers, the range boundaries are used.

The generated measurement values, in turn, are always in the range 〈0, 10000〉. They
are randomly drawn in a similar manner to the interval. The previous value is always the
mean for generating the new one. Again, the standard deviation is chosen in such a way that
approx. 99.7% of the distribution falls into the range of 1250 from the mean value. The initial
value is chosen randomly with Gaussian distribution with the mean value of 5000.

The parameters values are chosen so that the generator would mimic the behavior of the
CPU load sensor.

Fixed nodes id

Pastry assigns ids to the nodes randomly. Consequently, each time the node joins the
network, it most probably will receive a di�erent id. Since Scribe multicast tree structure
strongly depends on these ids, we decided to generate them di�erently. In our implementation,
node id is computed as a SHA hash of the node's hostname.

As a result, each run of the application on the same set of hosts should result in the same
tree built by Scribe (for very large sets, however, the tree structure may depend on the order
the nodes contact the bootstrap group).

Root node

Our system, built on top of Pastry and Scribe, is able to deal with temporarily limited node
responsiveness, which can occur due to increased CPU load or decreased network bandwith.
The root node of the multicast tree, however, should remain stable throughout the tests.
Otherwise, signi�cant variance of results would be observed.

Scribe generates an id for the group based on the name provided by the application. To
�x the root node (the rendez-vous point for the group), we chose the same basis for generating
both the group and the root node id, namely the hostname. For our tests, we have chosen
planetlab1.cs.vu.nl to be the root node.

34

5.2.4. Quality of information
Because of network latencies and software overhead, the answer to a query may become

outdated, especially when the generator interval is low. The ability to compare the quality
of information served by di�erent approaches becomes a crucial issue. Therefore we de�ne
staleness of information as the time passed since the acquired information has stopped being
correct. The precise de�nition will follow.

As stated in Section 5.2.1, our system implements only `minimum' aggregation. Conse-
quently, we provide all the de�nitions in the context of minimum values and queries. Addi-
tionally, we assume that we have a set of nodes, each generating values at random points in
time.

Real minimum at the given point of time t is the minimum of values from all nodes at
time t. The real minimum consists of the value and the list of nodes reporting this value.

Observed minimum is the value reported by the application as the minimum value for the
network. The querying node records this value together with the index of the node the value
originates from and the time it was generated by that node.

Staleness of an observed minimum at a given time ts is equal to 0 only if the real minimum
at ts is equal to the observed value and the originating node of the observed value is in the
list of nodes for the real minimum. If the observed minimum was correct at the time it was
observed, but was not accurate at ts, the staleness is the di�erence between the given time
ts and the time of the �rst real minimum after the observed. Finally, if the observed value
has never been accurate, the staleness is the di�erence between ts and the time the value was
observed.

For the example calculations of the staleness see Figure 5.6.

A:4 B:3 B:1 A:4

staleness
for A:4

t0 t1 t2 t3

I II III IV

node B

real minima

node A

time

36 1

4

7

Figure 5.6: Staleness

In this example we have two nodes (A and B) generating new values at random points in
time. The �gure reveals also real minima for every section, e.g. A:4 for I, meaning value of 4
at node A. For this example we assume that the observed value is A:4 and for this value we
calculate and plot the staleness.

In section I, the observed minimum is correct, i.e. the value (4) is equal to real minimum
and the node (A) is in the list of nodes of real minimum. Thus, the staleness is equal 0 for
t ∈ 〈t0, t1〉.

At t1 the new real minimum is present. Thus, the observed minimum A:4 is no longer
accurate. Since t1 is the time of the �rst real minimum after the observed minimum, the
staleness for t ∈ 〈t1, t2〉 is t− t1.

In section III, the observed value is still inaccurate. Although the real minimum changed

35

(to B:1), the time of the �rst real minimum after the observed minium remained the same.
Thus, the staleness for t ∈ 〈t2, t3〉 is t− t1.

Finally, at t3 node B generates the new value of 7. Thus, the global minimum changes
again to A:4 and the observed value becomes accurate once more. Thus, staleness for t > t3
is 0.

5.2.5. Time
Most of the PlanetLab nodes synchronize time with time servers. Unfortunately, many

nodes in the network do not synchronize at all or show signi�cant inaccuracy in their clocks.
In order to calculate the staleness of information and thus be able to compare di�erent results,
time di�erences between clocks in the network have to be computed.

In our system, the root node is responsible for analyzing data from all the other nodes.
Consequently, the root node has to compute time di�erences between its clock and clocks
of other nodes. To achieve that, we perform a very simple exchange of timestamps between
nodes � see Figure 5.7.

tr

t1 2t

client

root

Figure 5.7: Computing time di�erence

In the �gure, the root node contacts one of other nodes (client). After establishing the
connection, the root node sends a request to the client, storing the time of this communication
(t1). The client returns it current time � tr. The root node timestamps this information upon
receiving (t2).

Based on three collected values (t1, tr, t2), the root node is able to estimate the latency
(L) with the given node and, most importantly, the time di�erence (∆t). They are computed
as follows:

L = t2 − t1,

∆t = t1 − (tr − L/2) .

The latency is estimated as the round-trip time of a very small TCP-packet, containing
only timestamps. The time di�erence, in turn, is computed as a di�erence between root clock
value in t1 and estimated client clock value at the same point of time.

This approach is based on the assumption that asymmetry of links between nodes is
negligible and one-way trip time can be estimated by the half of the round-trip time.

5.2.6. Test methodology
Building each of the four trees used in our tests required a few steps. First of all, our

application had to be started on the set of nodes. Then, Pastry initialized all its required
connections and Scribe constructed the multicast tree. At that moment, the tree was set up.
Next, the root node investigated the tree structure, collecting information about depth and
latencies. Finally, it could contact each of the nodes in the tree to compute time di�erences.

36

The entire starting process was taking as much as 20-30 minutes for the tree of 160 nodes.
The Pastry phase was taking only a couple of minutes. Then, Scribe needed up to 15 minutes
to stabilize the tree, since it periodically checks for the best known parent and needs to
exchange a few messages to optimize the tree structure. Finally, the application needed 5 to
10 minutes for calculating the latencies and time di�erences.

For each tree a series of tests was conducted. We tested performance of our system for
each approach (pull, push, and mixed) and several values of generators interval (400, 500, 600,
700, 800, 900, 1000, 1500, 2000, 3000, 4000, and 5000). Every single test was programmed for
one minute and was repeated three times, from which the average performance was computed.
The results are presented in the next sections.

5.3. Pull approach
In the pull approach no information cache is maintained. Every query has to be answered

by collecting current measurement values from the entire tree. For detailed description of the
architecture see Section 4.2.

The tests were conducted as follows. For each tree size and each interval three runs of tests
were executed. In each run the root node was submitting queries asking for the minimum
value in the tree. A single run consisted of 30 queries submitted at the rate of 1 query per
2 seconds. The interval between queries was chosen high in order not to introduce too much
overhead to the system and not to in�uence the performance. This decision was motivated by
the observation that the pull approach is most suitable for systems with relatively low query
rate.

For each answer returned by the system its staleness was computed. Additionally, we
tracked time the system needed to answer the query.

5.3.1. Staleness and query time
Figure 5.8 presents the overview of the results. The graphs show the average staleness

and the average propagation time (log-scaled Y-axes) in relation to generator intervals for
di�erent tree sizes.

 10

 100

 1000

 10000

 0 1000 2000 3000 4000 5000

st
al

en
es

s
[m

s]

interval [ms]

10
40
80

160

(a) staleness

 100

 1000

 10000

 0 1000 2000 3000 4000 5000

qu
er

y
tim

e
[m

s]

interval [ms]

10
40
80

160

(b) query time

Figure 5.8: Staleness and query time vs. interval in pull approach

We observe signi�cant di�erences in the quality of information between trees of 10 and
40, as well as between 40 and 80 � see Figure 5.8(a). However, the di�erence between 80 and

37

160 is noticeable smaller. This can be explained by the fact that the di�erence in maximum
path-latency acts similarly.

Furthermore, we observe that the average staleness tends to decrease with the increase of
the interval. It also seems to be relatively stable for larger (above 1000 ms) intervals. We
present detailed values of average staleness in Table 5.2.

tree staleness for intervals
size 400-900 1000-5000
10 193 102
40 716 474
80 1314 1056
160 1627 1394

Table 5.2: The average staleness for pull approach

The results suggest that the larger our system grows the worse is the quality of service it
provides and the less sensitive to generator intervals it is.

Figure 5.8(b) depicts the query time. It con�rms the intuition that the query time does
not depend on the interval. Furthermore, it shows that the query time increases with the size
of the tree. This relation will be investigated in detail in the following section.

5.3.2. Tree size
The graphs in Figure 5.9 show the relation between the tree size (expressed in the number

of nodes and the maximum path-latency) and both the query time and the staleness. Fig-
ure 5.9(a) shows the staleness averaged over all intervals for di�erent tree sizes. The graphs
in Figure 5.9(b) show the query time in milliseconds (averaged over all generator intervals)
for di�erent tree sizes.

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600

 0 20 40 60 80 100 120 140 160

st
al

en
es

s
[m

s]

average path latency [ms]

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600

 0 100 200 300 400 500 600

st
al

en
es

s
[m

s]

maximum path latency [ms]

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600

 160 80 40 10

st
al

en
es

s
[m

s]

number of nodes
(a) tree vs. staleness

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 20 40 60 80 100 120 140 160

qu
er

y
tim

e
[m

s]

average path-latency [ms]

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 100 200 300 400 500 600

qu
er

y
tim

e
[m

s]

maximum path-latency [ms]

 0

 500

 1000

 1500

 2000

 2500

 3000

 160 80 40 10

qu
er

y
tim

e
[m

s]

number of nodes
(b) tree vs. query time

Figure 5.9: Tree characteristics vs. query time in pull approach

We can observe that our expectation expressed in Section 4.2 is plausible. Indeed, the
quality of information (measured with the staleness) is linearly proportional to the maximum

38

path-latency in the tree. The query time reveals the same relation to the maximum path-
latency. Multiplying the maximum path-latency by the factor of 2 most probably results in
doubling the query time and the staleness.

We can also note that the number of nodes itself has rather indirect in�uence on the query
time and the staleness. The relation does not seem to be linearly proportional.

5.4. Push approach
Nodes in the push approach cache information about the minimum value in the subtrees

represented by their children. Therefore, the minimum queries can be answered immediately.
For the detailed description of this approach see Section 4.3.

The tests of this approach were conducted by running the system for 60 seconds, 3 times for
each tree size and interval. During each run, the nodes were constantly exchanging information
in order to update their caches. For the test period, we measured the staleness of information
in the root node at every millisecond. The question we wanted to answer was `what quality
of information can be expected by users submitting queries at random points in time'.

Additionally, we tried to investigate the overhead that our system introduces by measuring
the number of messages per second. We also measured the average propagation time of
information through the tree. We start, however, with investigating the delivery of events to
the root node.

5.4.1. Event delivery
Figure 5.10 presents the fragment of one of the test runs on the tree of 160 nodes for the

1500 ms generator interval.

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 2000 3000 4000 5000 6000 7000

va
lu

e

time [ms]

real values
observed values

2 3 4

5 6 7

1

c
a

b

(a) real and observed values

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 2000 3000 4000 5000 6000 7000

st
al

en
es

s
[m

s]

time [ms]

2 3 4 6 71 5

(b) staleness

Figure 5.10: Values and their staleness in push approach

Figure 5.10(a) visualizes the real values (global minima) and the values reported by the
system to the root node (observed values). Arcs with numbers mark the most interesting errors
the system makes. Figure 5.10(b) presents staleness of information for the same period. In
both �gures, lines with arrows split the period into several periods.

In the �rst period the system reports an incorrect value to the user. It has its re�ection
in the staleness of this information. Since this information was never correct, its staleness in
the beginning of period 1 is non-zero. Naturally, it grows throughout the period.

39

Arc a denotes a simple delay in the event delivery to the root node. The real minimum
needed approximately 200 ms to be delivered to the root node and to be considered an observed
value. Thus, in period 2, the staleness equals 0.

At the beginning of period 3, the real value changed. The system, however, still served the
same value. Again, throughout the entire period the staleness grows with each millisecond
starting with 0.

Arc b marks an interesting event reordering. The value of 1400 was considered observed
minimum after the value of 1050. The real values came in reversed order. Consequently, the
observed minimum of 1400 was stale from the very beginning, i.e. from the moment it was
considered as the answer.

Period 5 begins with a late delivery of the value of 600, denoted by arc c. The system
started to serve this as an observed value when it stopped being the real minimum. Conse-
quently, its staleness is non zero throughout the entire period.

Period 6 is the time of system serving accurate information, thus staleness is 0. However,
the next period is the time needed by the root node to be informed about a change in the
real minimum. Throughout this period, the system serves an inaccurate information. Thus,
the staleness grows.

5.4.2. Staleness and propagation time
The staleness and propagation time for each interval and tree size is depicted in Figure 5.11.

Y-axes for the staleness and the propagation time are log-scaled.

 1

 10

 100

 1000

 10000

 100000

 0 1000 2000 3000 4000 5000

st
al

en
es

s
[m

s]

interval [ms]

10
40
80

160

(a) staleness

 100

 1000

 10000

 100000

 0 1000 2000 3000 4000 5000

pr
op

ag
at

io
n

tim
e

[m
s]

interval [ms]

10
40
80

160

(b) staleness

Figure 5.11: Staleness and propagation time vs. interval in push approach

In Figure 5.11(a), we observe relatively low di�erences in staleness between di�erent tree
sizes for intervals above 1000 ms. For lower intervals, however, the staleness tends to increase
dramatically with the decrease of the interval. We present detailed values of average staleness
in Table 5.3.

tree staleness for intervals
size 400-900 1000-5000
10 31 18
40 70 35
80 75 64
160 10389 140

Table 5.3: The average staleness for push approach

40

The staleness for generator interval of 500 ms for our largest tree was as high as 22 seconds.
This extreme value was caused by the tremendous amount of events in the tree. The system
became overloaded by all the messages it had to process. Our system was not able to handle
the overwhelming amount of events for the interval of 400 ms. Therefore, we do not present
results for this interval for the largest tree.

Figure 5.11(b) reveals the extreme propagation time for events in the tree of 160-nodes.
For all other trees, this value is relatively stable independently of the interval. For the largest
tree, however, it grows extremely, reaching the value of 42 seconds for the interval of 500 ms.

5.4.3. Communication overhead
In order to thoroughly investigate the impact of the communication overhead on the

system, we present the number of messages per second rate for the root node and average for
the entire tree. The results are depicted in Figure 5.12.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0 1000 2000 3000 4000 5000

av
er

ag
e

m
sg

s-
in

/s

interval [ms]

10
40
80

160

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0 1000 2000 3000 4000 5000

av
er

ag
e

m
sg

s-
ou

t/s

interval [ms]

10
40
80

160

(a) average number of messages per second

 0

 20

 40

 60

 80

 100

 120

 140

 0 1000 2000 3000 4000 5000

m
ax

im
um

 m
sg

s-
in

/s

interval [ms]

10
40
80

160

(b) maximum msgs-in

Figure 5.12: Messages per second in push approach

Figure 5.12(a) presents the average number of messages per second. The average is com-
puted over all nodes in the network and presented in two graphs: incoming and outgoing
messages separately. Interestingly, this number depends only on the interval, not on the size
of the tree. This can be explained by the fact that adding a child to the tree increases messages
per second rate at its parent and grandparents, but contributes a value of 0 to the average at
the same time.

The graphs reveal that the number of messages is inversely proportional to the interval.
Increasing the interval by the factor of 2, decreases the number of messages per second by the
same factor.

The more interesting observation come from Figure 5.12(b). First of all, we observe that
the maximum number of incoming messages per second grows with the tree size. Secondly,

41

for each tree size the interval is inversely proportional to the maximum number of messages,
with exception of the largest tree.

As we can see, the relation between the interval and the message rate for the tree of 160
nodes is not proportional below the interval of 1000 ms. For intervals in the range 500-1000 ms
it behaves very strangely. Most probably this is caused by too large communication overhead,
as a relatively steep increase in message rate between intervals of 1000 and 900 ms may
suggest. As we could see in Figure 5.11(b), this resulted in a signi�cant delays in messages
delivery.

5.4.4. Tree size
The �nal evaluation of the push approach is investigating the relation between the tree size

and both the propagation time and the staleness. The results are presented in Figure 5.13. The
staleness and the propagation time is averaged over intervals within the range 1000-5000 ms,
as those could be considered as representative for the stable system.

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

 0 20 40 60 80 100 120 140 160

pr
op

ag
at

io
n

tim
e

[m
s]

average path-latency [ms]

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

 0 100 200 300 400 500 600

pr
op

ag
at

io
n

tim
e

[m
s]

maximum path-latency [ms]

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

 160 80 40 10

pr
op

ag
at

io
n

tim
e

[m
s]

number of nodes
(a) tree vs. propagation time

 0
 20
 40
 60
 80

 100
 120
 140

 0 20 40 60 80 100 120 140 160

st
al

en
es

s
[m

s]

average path-latency [ms]

 0
 20
 40
 60
 80

 100
 120
 140

 0 100 200 300 400 500 600

st
al

en
es

s
[m

s]

maximum path-latency [ms]

 0
 20
 40
 60
 80

 100
 120
 140

 160 80 40 10

st
al

en
es

s
[m

s]

number of nodes
(b) tree vs. staleness

Figure 5.13: Tree characteristics vs. propagation time in push approach

The relation between path-latency (both average and maximum) seems to be nearly lin-
early proportional. As in the previous approach, this relation is weaker in case of the tree
size.

The staleness shows exponential relation with the tree size expressed in average and max-
imum path-latency. Acquired data, however, do not provide us with su�cient information to
support or reject the expectation from Section 4.3 that the quality of information is propor-
tional to the average and not maximum path-latency.

Surprisingly, the relation between the number of nodes and the staleness seems to be
nearly linear.

5.5. Mixed approach
The mixed approach merges concepts of the push and pull models. Leaf nodes work in

the push mode, the others remain in the pull model. For detailed description of this approach

42

see Section 4.4.
Tests of this model were conducted similarly to the pull approach. The root node was

submitting minimum queries at a �xed interval of 2 seconds. The answers were recorded,
together with their staleness and time the system needed to answer them.

In this series of tests, however, we skip the tree of 10 nodes. Since its depth was 1, the
mixed approach in this case was reduced to the push mode. Simply, each node in such a tree
is a leaf node of the root node. Consequently, the push area spans over the entire tree.

5.5.1. Push and pull zones
The crucial observation for tests are sizes of the pull and push areas in our trees. Their

characteristics are shown in Tables 5.4 and 5.5.

tree push hop-latency
nodes nodes avg max σ

40 35 (88%) 93 242 65
80 66 (80%) 63 304 63

160 146 (91%) 87 348 79

Table 5.4: Push area in mixed approach

tree pull path-latency depth
size nodes avg max σ avg max
40 5 (12%) 88 156 65 1.0 1
80 16 (20%) 131 267 58 1.1 2

160 14 (9%) 108 302 72 1.0 1

Table 5.5: Pull area in mixed approach

An interesting observation is that the largest (in terms of the average depth, the number
of nodes, and the average path-latency) pull area belongs to the middle-sized tree.

5.5.2. Staleness and query time
Figure 5.14 summarizes the tests results. It presents the staleness and the query time on

the log-scaled Y-axes in relation to generator intervals.

 10

 100

 1000

 10000

 0 1000 2000 3000 4000 5000

st
al

en
es

s
[m

s]

interval [ms]

40
80

160

(a) staleness

 100

 1000

 10000

 0 1000 2000 3000 4000 5000

qu
er

y
tim

e
[m

s]

interval [ms]

40
80

160

(b) query time

Figure 5.14: Staleness and query time vs. interval in mixed approach

43

Again, as in the previous approach, both the staleness and the propagation time seem
to be relatively stable across di�erent intervals. The only exception is our largest tree. For
intervals from the range 400-1000 ms the staleness grows rapidly to the value of 1.8 seconds
for the interval of 400 ms. The similar rapid growth can be observed for the query time,
reaching the value of 4.1 seconds for the same interval.

We present detailed values of average staleness in Table 5.6.

tree staleness for intervals
size 400-900 1000-5000
40 82 36
80 339 253
160 1238 82

Table 5.6: The average staleness for mixed approach

As in the push approach, there are some di�erences between low and high generator
intervals. They are signi�cant for the largest tree size.

We can also observe in Figure 5.14(a) that the tree of size 80 behaves surprisingly bad and
the largest tree acts surprisingly good for the intervals greater than 1000 ms. The possible
explanation for that is the size of the push area.

As the previous sections showed, the pull approach seems to give more balanced results
for di�erent intervals, whereas the push approach tends to show signi�cant di�erences in the
quality of information between lower and higher intervals.

The pull area for the tree of 80 nodes (20%) is remarkably larger than for the tree of 160
nodes (9%). This might be the reason for worse yet more stable results for the 80-nodes tree.

On the other hand, the wide push zone in the largest tree is the rapid decrease in the
quality of information for lower intervals (below 1000 ms), typical for the push approach.

5.5.3. Communication overhead
As in the push approach, the maximum incoming messages per second rate acts strangely

for low intervals and large trees. Figure 5.15 presents the relation between the message rate
and intervals for di�erent trees.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 1000 2000 3000 4000 5000

m
ax

im
um

 m
sg

s-
in

/s

interval [ms]

40
80

160

Figure 5.15: Messages per second in mixed approach

As we can see, the maximum messages per second rate is signi�cantly larger for the 160-
nodes tree. As in the push approach, the system probably becomes �ooded by the number of
messages it has to process and consequently, the quality of service decreases.

44

5.6. Comparison
In this section, we present the comparison of di�erent approaches at the per-tree basis.

We do not present the tree of 10 nodes, since the mixed approach was not evaluated for that
tree.

5.6.1. Quality of information
At �rst, we look at the quality of information for di�erent tree sizes and intervals. Its

values are visualized in Figure 5.16.

 10

 100

 1000

 10000

 100000

 0 1000 2000 3000 4000 5000

st
al

en
es

s
[m

s]

interval [ms]

pull
mixed
push

(a) 40 nodes

 10

 100

 1000

 10000

 100000

 0 1000 2000 3000 4000 5000

st
al

en
es

s
[m

s]

interval [ms]

pull
mixed
push

(b) 80 nodes

 10

 100

 1000

 10000

 100000

 0 1000 2000 3000 4000 5000

st
al

en
es

s
[m

s]

interval [ms]

pull
mixed
push

(c) 160 nodes

Figure 5.16: Staleness in three approaches

For the 40-nodes tree (see Figure 5.16(a)), we observe that results of the mixed and push
approaches are very close to each other. This was caused by the fact that in that case the
tree in the mixed approach was practically reduced to the push approach, since the push area
covered 88% of the nodes.

The results in Figure 5.16(b) are closest to our expectations. The quality of information
for the mixed approach is clearly worse than in the push approach and signi�cantly better
than in the pull model.

Figure 5.16(c) presents the problems both push and mixed approaches had with low gener-
ator intervals. The staleness grows massively for intervals within the range 400-1000 ms. We
can also observe that in this case, as in the case of 40 nodes, the push and mixed approaches
give similar results. The push area in the mixed approach was as large as 91%, which might
have been the cause.

The largest tree shows an interesting feature of the mixed approach. It allowed the system
not to get over�ooded by communication in lower intervals. The mixed approach returned
similar results to the pull approach and the quality of information did not decrease as ex-
tremely as in the push approach. For intervals above 1000 ms, in turn, the mixed approach
was as good as the push approach.

5.6.2. Query time
The query time for di�erent trees is depicted in Figure 5.17. Naturally, its value for the

push approach is 0, since the system is always capable of returning the immediate answer.
The query time in the mixed approach for all trees is signi�cantly smaller than in the pull

model. Moreover, the query time depends strongly on the size and the characteristics of the
pull area, which is only a fraction of the entire tree in the case of the mixed model.

Figure 5.17(c) con�rms that the mixed approach behaves oddly when the interval is
smaller. It inherits the weakness of the push approach and is not able to handle huge event
tra�c e�ciently.

45

 100

 1000

 10000

 0 1000 2000 3000 4000 5000

qu
er

y
tim

e
[m

s]

interval [ms]

pull
mixed

(a) 40 nodes

 100

 1000

 10000

 0 1000 2000 3000 4000 5000

qu
er

y
tim

e
[m

s]

interval [ms]

pull
mixed

(b) 80 nodes

 100

 1000

 10000

 0 1000 2000 3000 4000 5000

qu
er

y
tim

e
[m

s]

interval [ms]

pull
mixed

(c) 160 nodes

Figure 5.17: Query time in three approaches

Figures 5.16 and 5.17 together show that the staleness and the query time are bound.
Decreasing the query time (by using a di�erent approach) results in a better quality of infor-
mation.

5.6.3. Communication overhead
To see the trade-o� between the quality of information and the communication overhead,

we will now compare the maximum incoming messages per second rate for the mixed and
push approaches � see Figure 5.18. Naturally, there is no communication overhead for the
pull approach.

 0

 20

 40

 60

 80

 100

 120

 140

 0 1000 2000 3000 4000 5000

m
ax

 m
sg

s-
in

/s

interval [ms]

mixed
push

(a) 40 nodes

 0

 20

 40

 60

 80

 100

 120

 140

 0 1000 2000 3000 4000 5000

m
ax

 m
sg

s-
in

/s

interval [ms]

mixed
push

(b) 80 nodes

 0

 20

 40

 60

 80

 100

 120

 140

 0 1000 2000 3000 4000 5000

m
ax

 m
sg

s-
in

/s

interval [ms]

mixed
push

(c) 160 nodes

Figure 5.18: Maximum messages per second in three approaches

The tree of 80 nodes shows that the smaller the interval is, the larger the di�erence
between messages rates for the mixed and pull approaches. The value of 123 messages per
second for the push approach at the interval of 400 ms is signi�cant. It results in a message
being delivered to the root node every 8 ms. Processing capabilities of the node might be a
serious limitation.

Nevertheless, the relation between maximum messages per second rate and the interval
seems to be accurate � it is inversely proportional, as for the 40-nodes tree in Figure 5.18(a)
and the mixed approach in Figure 5.18(b). It suggests, that although the system was seriously
loaded, it was still capable of processing all the messages on time. Consequently, we do
not observe any staleness breakdown for low intervals in the case of 80 nodes as we see for
160 nodes. It might suggest that implementing a method of dealing with the overwhelming
network tra�c (e.g. dropping some messages) could make the system resilient to large tree
sizes and low intervals without loosing too much of the quality of information.

Since our system does not control the communication amount, we observe a breakdown
of the maximum messages per second rate for low intervals for the 160-nodes tree � see Fig-
ure 5.18(c). This behavior was already discussed in Section 4.3. Most probably it was caused
by the overwhelming communication overhead. The TCP/IP queues became overloaded and
messages were signi�cantly delayed.

46

Chapter 6

Conclusions and future work

6.1. Conclusions
This thesis presents the architecture and evaluation of a peer-to-peer Grid monitoring

system. The concept of P2P network has been incorporated into the system in order to
assure scalability, robustness, and manageability.

The architecture proposal has been preceded by a thorough study of existing Grid mon-
itoring systems and other relevant systems. As a result, we have identi�ed and classi�ed
possible types of queries a Grid user may want to submit. We have proposed two categories
of queries: direct measurements and resource discovery. The latter encompasses advanced
queries with resource selection and rankings. We have also concluded that a decent Grid
monitoring system should concentrate on the e�cient and convenient support of advanced
resource discovery queries and regard direct measurements as a supplementary information.

Furthermore, we have classi�ed types of information Grid monitoring system has to process
in order to answer user queries. We have identi�ed node measurements, job queues, and
network measurements.

The proposed system architecture emphasizes resource discovery queries. It uses P2P to
deal with the environment instability, as well as to assure scalability of the system. Addition-
ally, P2P overlays the network with an acyclic graph, which our system exploits. We have
proposed three approaches to answering queries: push, pull, and mixed. The push approach
maintains a cache, thereby allowing for immediate answers. The pull model does not require
additional communication and answers queries by collecting information from the entire tree.
The mixed approach joins the two concepts by splitting the network into two collaborating
areas: the push zone and the pull zone.

In order to evaluate the architecture, we have introduced the de�nition of staleness as
an indicator of the quality of information returned by the Grid monitoring system. We have
prototyped the architecture to test the proposed approaches. The implementation uses Scribe
� the application level multicast protocol. We have established a testbed using PlanetLab
resources and tested our system on the networks of 10, 40, 80, and 160 nodes. During the
experiments, we have tried to relate the quality of information to the tree size and the interval,
at which new measurements are delivered to the system.

The pull approach has shown a noticeable trade-o� between the staleness and the interval.
Additionally, this approach has revealed a linearly proportional relation between the staleness
and the maximum path-latency in the tree.

The push model, in turn, has shown that the staleness depends on the interval. For lower
values of the interval, the staleness grows signi�cantly. For larger values, it behaves relatively

47

stable. Additionally, we have noticed that the communication overhead becomes an important
problem for low intervals and large tree sizes.

Finally, the e�ciency and the quality of information in the mixed approach strongly
depend on the size of pull and push zones. The larger the pull area is, the more stable and
less accurate the results are, the less communication overhead is introduced, and the longer
the query time is.

Our tests have con�rmed the intuition that the immediate answers and the high quality
of information come at the price of communication overhead.

We conclude that the mixed approach is the most promising one. A system of desired
quality of information and the communication overhead can be built by appropriately splitting
the network into push and pull zones. Therefore, the system can be easily customized to meet
the speci�c requirements of the given environment.

6.2. Future work
For future work we propose two paths: further evaluation and/or implementation.
As for evaluation, simpli�cations made by our work can be relaxed and tested. In partic-

ular, relaxing the assumption that only the root node can submit queries should be further
investigated. Additionally, testing the e�ciency of tree pruning for queries with constraints
might give interesting results.

Extending the prototype into the complete application would require designing sensor
modules, prediction library, and implementing all types of queries and aggregation.

However, most interesting and tempting direction is considering the self-adaptive Grid
monitoring system. Such a system could have two levels of adaptation: queries and the
environment.

The self-adaptive Grid monitoring system might choose the query answering strategy
(push, pull, or mixed) accordingly to the current query load. Implementing this behavior in
the distributed manner seems to be challenging.

The environmental self-adaptation, in turn, would involve the network deciding which
strategy to use (push or pull). The decision would be made locally (by single nodes or group
of nodes) and be based on e.g. the quality of network connections with other nodes. The node
would then switch from the push to the pull approach when it discovers that the latency to
a given node has signi�cantly decreased.

48

Appendix A

Software archive

This appendix describes the content of the software archive being an attachment to this
thesis and gives instructions on how to compile and run the application and how to perform
tests.

Archive
The content of p2pgms.tgz is as follows:

1. compile � a script to compile the source code and build the jar �le.

2. freepastry.params � a con�guration �le for the Pastry.

3. MANIFEST.MF � a manifest �le de�ning `main-class' of the project.

4. p2pgms.jar � the compiled and ready to run project.

5. pastry.jar � Pastry library (ver. 1.4.4) required to run the project.

6. run � a script for running the project.

7. src/ � the directory with the source code of the project. The class containing the
main method is d.Main, the most important Scribe class is d.MyScribeClient. The
remaining classes are organized in the following packages:

• d.cache � classes responsible for maintaining the cache in the push approach,
• d.msg � all the message classes in the project,
• d.pullQueries � classes responsible for query processing in the pull and mixed

approaches,
• d.tools � classes for latency and time di�erences computations,
• tests � generator as well as tests logic for the root node.

Compiling
The project requires pastry.jar for compilation. The script compile invokes the Java

compiler with the proper classpath. Additionally, it builds the project jar �le (p2pgms.jar).

49

Running
For starting the application, run can be used. It simply invokes java -jar p2pgms.jar.
The application retrieves the bootstrap group from the DNS. It uses pastry.mejdys.glo-

bule.org domain name, which can be con�gured in the attribute DNS_NAME of the class
d.Config. The application tries to contact any of the hosts in the retrieved list. If none can
be contacted, and the host determines it belongs to the bootstrap group (its name is simple
in the list), a new Pastry ring is started.

It is important to start the nodes in the proper order, i.e. to �rst start one of the bootstrap
nodes. Then, preferably, the rest of them should be started, and �nally, the remaining nodes.
This will assure e�cient network joining procedure.

Each node, after the successfull start, allows for giving commands to it. Only the root
node's console should be used. It accepts the following commands:

• m � collects time di�erences with all nodes in the tree,

• s � starts tests in the push mode,

• l � starts tests in the pull mode,

• p � starts tests in the mixed mode,

• t � collects information about the tree,

• ? � prints help.

The testing scenario is as follows:

1. Start all the nodes and wait till the tree stabilizes. Mind, that since the application was
prepared to the tests only, it does not handle the changes in the tree structure properly.
Thus, during the early stage of initialization, when lots of nodes are joining the network,
some commands may fail.

2. Collect the tree information (option t).

3. Collect the time di�erences information (m).

4. Perform tests. This step can be repeated many times.

5. Finish the application by killing it at each node.

50

Bibliography

[1] Brisco, T. DNS Support for Load Balancing. RFC 1794 (Informational), Apr. 1995.

[2] Carzaniga, A., Rosenblum, D. S., and Wolf, A. L. Design of a scalable event
noti�cation service: Interface and architecture. Tech. Rep. CU-CS-863-98, Department
of Computer Science, University of Colorado at Boulder, September 1998.

[3] Castro, M., Druschel, P., Kermarrec, A.-M., and Rowstron, A. Scribe: A
large-scale and decentralized application-level multicast infrastructure. IEEE Journal on
Selected Areas in Communication (JSAC) 20, 8 (Oct. 2002), 100�110.

[4] Drost, N., van Nieuwpoort, R. V., and Bal, H. E. Simple locality-aware co-
allocation in peer-to-peer supercomputing. Accepted for publication at GP2P: Sixth
International Workshop on Global and Peer-2-Peer Computing, May 2006.

[5] Foster, I., and Iamnitchi, A. On Death, Taxes, and the Convergence of Peer-to-Peer
and Grid Computing. In Proceedings of the 2nd International Workshop on Peer-toPeer
Systems (IPTPS'03) (February 2003), pp. 118�128.

[6] Hoschek, W. Peer-to-peer grid databases for web service discovery. Concurrency:
Practice and Experience 00 (2002), 1�7.

[7] Lua, E. K., Crowcroft, J., Pias, M., Sharma, R., and StevenLim. A survey and
comparison of peer-to-peer overlay network schemes. IEEE Communications Surveys &
Tutorials 7, 2 (April 2005), 22�73.

[8] Maassen, J., van Nieuwpoort, R. V., Kielmann, T., Verstoep, K., and den
Burger, M. Middleware Adaptation with the Delphoi Service. Accepted for publication
in Concurrency and Computation: Practice & Experience, 2005.

[9] Massie, M. L., Chun, B. N., and Culler, D. E. The Ganglia Distributed Monitoring
System: Design, Implementation And Experience. Parallel Computing 30, 7 (2004).

[10] Pallickara, S., and Fox, G. NaradaBrokering: A Distributed Middleware Framework
and Architecture for Enabling Durable Peer-to-Peer Grids. In Middleware (June 2003),
vol. 2672 of Lecture Notes in Computer Science, Springer, pp. 41�61.

[11] Park, K., Pai, V. S., Park, K., and Pai, V. S. CoMon: A mostly-scalable monitoring
system for PlanetLab. SIGOPS Operating Systems Review 40, 1 (2006), 65�74.

[12] Ratnasamy, S., Francis, P., Handley, M., Karp, R., and Schenker, S. A
scalable content-addressable network. SIGCOMM Computer Communication Review 31,
4 (2001), 161�172.

51

[13] Rowstron, A., and Druschel, P. Pastry: Scalable, distributed object location and
routing for large-scale peer-to-peer systems. In Middleware (November 2001), vol. 2218
of Lecture Notes in Computer Science, Springer, pp. 329�350.

[14] Sacerdoti, F. D., Katz, M. J., Massie, M. L., and Culler, D. E. Wide Area
Cluster Monitoring with Ganglia. In Proceedings of the IEEE Cluster 2003 Conference,
Hong Kong (2003), pp. 289�298.

[15] Stoica, I., Morris, R., Karger, D., Kaashoek, F., and Balakrishnan, H.
Chord: A scalable Peer-To-Peer lookup service for internet applications. In Proceedings
of the 2001 ACM SIGCOMM Conference (August 2001), pp. 149�160.

[16] Wolski, R., Spring, N., and Hayes, J. The Network Weather Service: A Distributed
Resource Performance Forecasting Service for Metacomputing. Future Generation Com-
puting Systems 15, 5�6 (1999), 757�768.

52

