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Streszczenie

In this paper we describe a system that makes parallel Java applications fault tole-
rant. Our goal was to develop a system which is both e�cient and transparent to the
programmer. However, we did not aim at providing a solution for all classes of applica-
tions. We have concentrated on applications that use the Java Remote Method Invocation
mechanism, which is the most commonly used communication mechanism for parallel pro-
gramming in Java. Similarly, we considered only the class of parallel programs that take
some input, compute for a long time, and then yield the result. Such programs, for example,
do not interact with users or continuously update �les.

The failures that we consider in our system are crash failures such as server halts,
broken network connections and for some extent also changes in the network relationships.
Our motivation was to avoid having to restart long running parallel computations from
scratch after each crash. Therefore, our system makes globally consistent checkpoints of
the program's state from time to time. If a processor crashes, the whole parallel program is
restarted from the latest checkpoint rather than from the beginning. Since we implemented
special replication algorithms for storage of signi�cant data, like checkpoints, our system
can resist failures of multiple processors.
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Chapter 1

Introduction

The Java programming language is becoming a more and more popular platform for pa-
rallel computing. Although it is not yet as fast as its C and C++ counterparts, it has
several advantages, like portability, �exibility and simplicity. It already dominates in het-
erogeneous environments, like computational grids, where it has to cope with di�erent
operating systems and di�erent network protocols.

Designers of parallel applications frequently ignore fault tolerance, because it requires
much additional e�ort. With the growth in the number of processors in clusters and rapid
development of computational grids, which provide even larger numbers of processors, fault
tolerance is becoming very important. Consider an application that runs on a thousand
CPUs for 12 hours. Even if the mean-time-between-failure of a CPU is 5 years, the chances
of one of them crashing can no longer be neglected 1.

Since the Java programming language, despite its wide capabilities, does not provide
any mechanisms for fault tolerance, there are two options. One is to have the programmer
to explicitly deal with fault tolerance. However, parallel programming is hard enough as
it is, and fault tolerance will certainly add even more complexity. The alternative is to
develop some mechanisms that will make programs fault tolerant automatically, in a way
transparent to programmers. Clearly, the latter option is preferable, although it is in general
di�cult to implement e�ciently.

A failure in non-distributed systems usually results in bringing down the entire appli-
cation. In contrast, the failure in a distributed system is often a partial failure. It happens
when one component in a distributed system fails. The failure may a�ect the proper opera-
tion of some components, while at the same time leaving other components una�ected. Well
designed distributed systems can automatically detect and recover from a failure without
seriously a�ecting the performance.

In this chapter, we take a closer look at techniques for making distributed applications
fault tolerant. We provide some general background on fault tolerance techniques focusing
on the checkpointing scheme.

1.1. Replication

The �rst technique for fault tolerance we address is replication. Replication tries to hide
the occurrence of failures from other processes. There are several types of replication, but
from our point of view the most important are information, time and physical redundancies

1In this case the mean-time-between-failure of one of the CPUs is around 44 hours!
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(see [14]). With information redundancy, data used by the application are replicated on
di�erent nodes. When one of them crashes, data can be restored from backup.

With time redundancy, an action is performed, and then, if needed, it is performed
again. This type of replication is especially helpful when the faults are transient or inter-
mittent.

With physical redundancy, extra nodes or processes are added to make it possible for
the system to tolerate the loss or malfunctioning of some components. Physical replication
can be added on the software or hardware level. We may, for example, have redundant
counterpart processes for services that are sensitive for failures. Physical redundancy is
an expensive approach, but may provide a high degree of fault tolerance. Process groups
are part of the solution for building fault tolerant systems. Having a group of identical
processes allows us to mask one or more faulty processes in that group. A group replaces
one single process. The replication may be organized by means of either primary-based or
replicated-write protocols.

The problem with replication is that having multiple copies may lead to consistency
problems. Whenever a copy is modi�ed, that copy becomes di�erent from the rest. Conse-
quently, modi�cations have to be carried out on all copies to ensure consistency. Exactly
when and how those modi�cations need to be carried out determines the price of replica-
tion.

1.2. Checkpointing

Recording a consistent global state, also called a distributed snapshot, is a basic technique
used for fault tolerance. The checkpointing mechanism is widely used in backward error
recovery systems. Each process saves its state from time to time to a stable storage. To
recover after a failure it is essential that all the local checkpoints are globally consistent. It
means that recovery shouldn't bring up the system to an incorrect state. It is also best to
recover to the most recent distributed snapshot, also referred to as a recovery line.

1.2.1. Independent Checkpointing

The straightforward solution is to allow all processes to record their local state in an unco-
ordinated fashion. This may however make it di�cult to �nd the recovery line. Discovering
a recovery line requires that each process is rolled back to its most recently saved state.
If these local states jointly do not form a distributed snapshot, further rolling back is
necessary.

The method of taking local checkpoints independent of each other is referred to as inde-
pendent checkpointing. The main disadvantage of this scheme is connected with computing
the recovery line that requires an analysis of the interval dependencies recorded by each
process when the checkpoint was taken. Such calculations are fairly complex and do not
justify the need for independent checkpointing. Coordinated approach described in section
1.2.2 is much less complicated. Additionally, it often appears that the synchronization is
not the dominating phase of the checkpointing process.

1.2.2. Coordinated Checkpointing

According to its name, in coordinated checkpointing all processes synchronize before writing
their state to a local stable storage. The saved state is automatically globally consistent.
There are many di�erent distributed coordination algorithms like the two-phase blocking
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protocol (for details we refer to [14]). Note that to take a consistent checkpoint of a par-
ticular process we do not have to synchronize all processes, but only the processes that
depend on its recovery. This leads to a notion of an incremental snapshot.

As stated before, coordinated checkpoints gain on popularity mainly because of their
simplicity. Independent checkpointing and message logging (see section 1.3) schemes are
often too complicated and replication too resource consuming.

1.3. Message Logging

Message logging is a technique that is considered to be less expensive than checkpointing
but still enables recovery. The idea of message logging is based on resending messages sent
after the most recent checkpointed state.

This approach works under an assumption of a piecewise deterministic model. In such
a model, the execution of each process is assumed to take place as a series of intervals in
which events take place. An event is, for example, executing an instruction or sending a
message. Each interval in the piecewise deterministic model starts with an nondeterministic
event as receiving of a message. From that moment the execution of a process is completely
deterministic. An interval can be reconstructed in a completely deterministic way when we
know the starting nondeterministic event.

1.4. Summary

Fault tolerance is an important issue for long running distributed applications. A system
is considered to be fault tolerant if it can continue to operate in the presence of errors.

There are di�erent ways of solving the problem of faults. The most straightforward
solution relies on the replication of resources such as processes. The cost of recovery is in
this case limited to the necessary minimum, but the overhead of updating replicas during
normal execution may be expensive.

The checkpointing scheme moves the costs connected with system failure to the reco-
very phase. In general, there are two types of checkpoints. In the independent approach
every process captures its local state without communicating with the others. Problems
start before the recovery. The consistent global image should be composed of the local
checkpoints. This is a nontrivial task, especially when we want to �nd the most recent
consistent global checkpoint (referred to as a recovery line). Because of these limitations a
much simpler coordinated scheme seems to be a better choice.

Message logging is yet another way for providing a distributed system with fault to-
lerance extensions. This approach requires however special assumptions according to the
system behavior and is at least as complicated as independent checkpoints. Message logging
may be a good idea when we have limited space for storing checkpoints.

1.5. Contributions and Overview of the Thesis

Our task were the design and implementation of a system that makes distributed Java
applications fault tolerant without serious loss of performance.

The main contributions of this work are:

� design of a Java byte code transformer which uses advanced compilation time analysis
techniques such as method call graph analysis,
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� global coordination algorithm that takes into account the speci�city of the check-
pointing process and network topology,

� fault tolerant Remote Method Invocation (RMI) [12] which can recover from a system
crash in a completely transparent way,

� mechanisms which allow to initiate checkpoints also inside remote calls,

� implementation and e�ciency tests of all these mechanisms.

The rest of this paper is organized as follows (in brackets we specify the author of par-
ticular chapter). Chapter 2 (Bartosz Biskupski) describes the mechanisms used for making
the process of taking local checkpoints transparent to a user and the execution environ-
ment. Distributed aspects of our framework are presented in chapter 3 (Paweª Garbacki).
Fault tolerant RMI implementation is described in chapter 4 (Bartosz Biskupski). The
following chapter 5 (Paweª Garbacki) reveals the arcana of the subsystem responsible for
handling checkpoints initiated inside remote method calls. Similar projects are presented
in chapter 6 (Bartosz Biskupski, Paweª Garbacki). Chapter 7 (Bartosz Biskupski, Paweª
Garbacki) analyzes the results of e�ciency tests. Chapter 8 (Bartosz Biskupski, Paweª
Garbacki) concludes this paper.

The implementation of particular subsystem was the responsibility of the author of the
chapter that describes it.
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Chapter 2

Local Checkpoints

2.1. Problem statement

A local checkpoint is a state of a user application running on one node, which allows
to restore the application at the point at which the checkpoint was taken. Transparent
checkpointing ideally means that no explicit code has to be provided to save or restore
an application's state. However, there is a di�culty in making transparent checkpoints. A
local checkpoint has to preserve three states:

� Program state: which is the bytecode of the object's classes.

� Object state: the contents of the bytecode of the object's class.

� Execution state: a Java object executes in one or more JVM threads. Each thread
has its own private Java stack (see �gure 2.1). A Java stack stores frames. The JVM
creates a separate frame for each invoked method and destroys it when a method
completes. Each frame contains its own local variables, operand stack on which JVM
saves partial results of computations and program counter (in short: PC), which
indicates the next instruction to be executed.

Frame

...................

operand_1

operand_m

pc

variable_n

..................

variable_1

Java stack

Figure 2.1: Java stack
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The Java language supports preserving of the �rst two states. By de�ning a custom class
loader, necessary classes can be downloaded. Object state is preserved using serialization
mechanisms. The only problem concerns execution state capturing and reestablishing, due
to the lack of built-in mechanisms in Java. An application, on a bytecode level, has access
only to the current method frame and therefore there is no straightforward way to preserve
the whole Java stack.

To deal with this issue several techniques have been proposed (see chapter 6.1). We
have chosen the technique used in the Brakes [4] project with some new improvements
and modi�cations. This algorithm uses a Java post-compiler, which transforms bytecode
by inserting additional code blocks that do the actual capturing and reestablishing of the
current thread's state. The basic idea of this state capturing mechanism is to save the
current method frame (local variables and program counter), then immediately return
from that method and repeat this process for all methods on the method's stack. State
reestablishing is accomplished by reconstructing the user application from scratch. Each
method's frame is restored (one by one) and the already executed code is skipped by the
additional code inserted by the code transformation algorithm. After the reconstruction
user application continues its execution at the point where it was interrupted.

2.2. Code Transformation Algorithm

This section describes the code transformation algorithm. Each computation is associated
with a separate Context object into which its execution state is captured and from which
its execution state is later reestablished. A computation is also associated with a number
of boolean �ags, which indicate the current execution mode. A computation can be in
one of three di�erent modes of execution: running (normal execution), capturing (before
serialization) and restoring (after deserialization). These �ags can be in�uenced by the
programmer. The programmer has to use the internal capture (or make checkpoint)
method in order to set the capturing �ag and initiate state capturing.

Inside every method additional code that saves the method's frame is inserted (see
�gure 2.2)1. Every method invocation is followed by a code block that checks if the com-
putation is in a capturing state (its capturing �ag is set) and if so, it saves in the context
its operand stack, local variables, last performed invoke-instruction (LPI), and then im-
mediately returns to the previous method on the stack (return instruction removes the
current frame from the stack). This process is repeated until the thread is back where it
started (on the bottom of its method's stack). At that time, the thread's context contains
the whole trace the thread followed.

In the example from �gure 2.2, f() method in the Foo class invokes b() method from
the Bar class which in turn invokes our system's internal capture method. The capture

method sets the capturing �ag and initiates state capturing. When the application leaves
the capture method, the inserted code block is executed. It stores b()'s local variables
and capture method's index in the context and returns from that method. The application
continues from the next instruction in the f() method which is the inserted code block.
Again, it saves f()'s method frame and returns to the previous method. Finally, the user
application ends when it returns from the main method.

1Examples come from [4]
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if isCapturing() {
  store stack frame into
    context;
  store artificial PC as
    LPI−index;
  return;
}

    java.util.Vector v = new Vector();

LPI

LPI

      ...

    ...

 

public class Foo {
  private Bar bar = new Bar(...);

    // calling method
    int l = 0;
    java.util.Date today = ...;

    if (...) {
      boolean test = false;

    }
    int k = 5 * bar.b(today);
    ...

public class Bar {
  public int b(java.util.Date date) {
    // top frame’s method

    ...
    return ...;
  }
}

}
  }

  public void f() {

if isCapturing() {
  store stack frame into
    context;
  store artificial PC as
    LPI−index;
  return;
}

Go to previous stack frame

    Computation.capture();

Figure 2.2: State Capturing

Go to next stack frame

if isRestoring() {
  get LPI from context;
  switch (LPI) {
    ...

      load stack frame;

    ...
  }
}

    case invoke_capture:

      goto invoke_capture;

if isRestoring() {
  get LPI from context;
  switch (LPI) {
    ...
    case invoke_b:
      load stack frame;
      goto invoke_b;
    ...
  }
}

LPI

LPI

      ...

    ...

 

public class Foo {
  private Bar bar = new Bar(...);

    // calling method
    int l = 0;
    java.util.Date today = ...;
    java.util.Vector v = new Vector();
    if (...) {
      boolean test = false;

    }
    int k = 5 * bar.b(today);
    ...

public class Bar {
  public int b(java.util.Date date) {
    // top frame’s method

    ...
    return ...;
  }
}

}
  }

  public void f() {

    Computation.capture();

Figure 2.3: State Reestablishment
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Accordingly, inside every method additional code that restores the method's frame is
inserted (see �gure 2.3). When the thread is to be restored, a new thread is started and
the restoring �ag is set. The �rst stack frame is restored (local variables and operand stack
are reestablished) and the thread jumps to this method's LPI. This causes invoking the
next method on the method's stack. The situation is repeated until the thread reaches the
method that started capturing. The capturing �ag is then cleared and the thread continues
its execution like nothing happened.

In the example from �gure 2.3, f()'s method frame is restored (local variables like l,
today and v are restored) and the application jumps to the invocation of b() method.
The b() method is invoked and similarly its method frame is restored and the execution is
continued at the invocation of capturemethod. Since the internal capturemethod changes
the execution state to the normal execution (clears the restoring �ag), the inserted code
block that follows capture's invocation is not executed.

Figure 2.4 presents a �ow diagram for example source code, where the order of taken
actions is given in circles and squares respectively for state capturing and reestablishing.

foo

barthread t(i)
f() b()

context(i)

restore

switch
2

3

2

1

3

1

b()

f()

call stack t(i)

reestablishingcapturing

Figure 2.4: Flow diagram for state capturing (numbers in circles) and reestablishing (num-
bers in squares)

2.3. Methods Call Graph

One of the improvements we have made to this algorithm over the original one from the
Brakes project is building the method's call graph to modify only methods and method
invocations that can lead to execution state capturing. Algorithm 1 presents the process
of building the methods call graph.
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Algorithm 1 Building methods call graph

1: procedure buildCallGraph(Class rootClass, Method rootMethod)
2: begin

3: if captureSet.contains(rootClass, rootMethod) then
4: return

5: end if

6: captureSet.add(rootClass, rootMethod)
7: for each (C, M) which can invoke (rootClass, rootMethod) do
8: buildCallGraph(C, M)
9: end for

10: for each superclass C which rootClass extends do
11: if C contains rootMethod then
12: buildCallGraph(C, rootMethod)
13: end if

14: end for

15: for each interface I which is implemented by rootClass do

16: if I contains rootMethod then
17: buildCallGraph(I, rootMethod)

18: end if

19: end for

20: end

The algorithm builds the set of all <class, method> pairs which invocation can lead to
state capturing. It begins from the method which starts the actual state capturing (in our
case it is capture or make checkpoint). Then, it �nds all methods in all classes which can
invoke that method and recursively starts from those methods. However, during compile-
time the real object's class is not know � it can be either the declared one or one of its
subclasses. Similarly, if a method is invoked on the interface, the real class of the object
is not known � we only know that the requested class implements (directly or not) that
interface. Therefore, all super classes and implemented interfaces which contain processed
method have to be added to the set. Finally, the transformer rewrites only invocations
of methods which exist in the generated set. The detailed comparison of our improved
transformation algorithm with the original one from the Brakes project is the subject of
section 7.5.

2.4. Static Fields Serialization

The Java object serialization mechanism does not support serialization of static �elds
in classes, because such �elds do not correspond to any speci�c object. However, our
checkpointing mechanism requires that all objects have to be preserved. In our case it would
be convenient to serialize static �elds as well. Therefore, we developed a Java bytecode
post-compiler, which adds this feature to our system.

Our transformation algorithm searches for static �elds in each user class and adds two
methods: one for saving all static �elds into the context and one for restoring them from
the context. Finally, it adds to the user's main class a method that calls these methods in
all user classes that contain static �elds. After this transformations it is possible to preserve
both object state and all static �elds.
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2.5. Limitations

Unfortunately, it is not possible to achieve full transparency in state capturing. Firstly,
not all objects can be preserved. There are many non-serializable Java classes, like classes
responsible for accessing sockets and �les. There are also some classes, which are location
dependent, like RMI stubs, which have hard coded IP address and port number of remote
object. We addressed this problem in our system by introducing Persistent RMI which is
a location independent RMI and is described in details in chapter 4.

Secondly, transformation algorithms cannot handle native methods, since they extract
thread execution state at the bytecode level.

Thirdly, although possible, our algorithm can not deal with state capturing during the
execution of an exception handler. The major di�culty here is dealing with the finally

statement of a try clause because the return address from a subroutine is not known during
compile time.

Finally, should Java API libraries (i.e. from java.* packages) be modi�ed or not? In
most cases it is not necessary, since library calls do not initiate state saving by themselves.
The exception to this are library calls that result in a callback to the application code.
For example when using graphical packages, like Swing or AWT, events cause callbacks
in user application code. We decided not to transform these classes what means that
the programmer should not initiate state capturing inside any event handler used for the
standard Java API libraries (i.e. handler for a mouse click).
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Chapter 3

Distributed Checkpoints

3.1. Problem statement

In the previous chapter we addressed the issue of taking local checkpoints. Local means
that all the threads we want to serialize are running within the same address space. We
extended the applicability of our solution to the class of distributed applications by using
the coordinated checkpointing scheme (see section 1.2.2). As its name suggests, in coor-
dinated checkpointing all the threads running on di�erent machines have to synchronize
before writing their state to the stable storage. The advantage of global coordination is
that the saved state is automatically globally consistent (see chapter 1). However, global
coordination in the nondeterministic distributed environment is not a simple problem, es-
pecially when we are thinking in terms of e�ciency and reliability. Let us point some of
the problems connected with coordination of Java processes:

� portability as main design goal limits us to standard Java communication mecha-
nisms. Remote Method Invocation (RMI) � the most popular way of remote process
communication does not o�er group communication facilities such as broadcasting or
multicasting;

� we have to deal with a situation when either multiple threads initiate the state
capturing exactly at the same time or the time interval between the �rst and last
request is non-negligible;

� our goal is to provide extensions for fault tolerance. It also concerns (of course to
some extent) the coordination phase. We should take also into account a possibility
of a crash during coordination.

In the further part of this chapter we describe the components of our global check-
pointing subsystem starting from a distributed barrier.

3.2. Centralized Approach

In this section we present our solution for the global coordination problem. We need a kind
of a distributed barrier that will assure consistency of the captured state. The Java pro-
gramming language o�ers thread synchronization by means of monitors. The synchronized
keyword in the signature of a method guarantees that it will be executed by not more than
one thread at the same time. It is much harder to synchronize processes in the distributed
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environment. The concerns usually center around performance and how to re-coordinate if
something breaks.

The straightforward solution for thread coordination problem in the distributed envi-
ronment is to implement the remote object with a synchronized barrier method. Such
an object can then be exposed through the RMI interface. Threads (running on di�er-
ent machines) that invoke the barrier method can be suspended until all of them declare
readiness. The node where the coordination service is installed is called a coordinator node.

This simple algorithm has some drawbacks. First of all, one node (the coordinator) is
outstanding. It has to gather synchronization requests from all other processes. Because of
this fact the coordinator node is often referred as a bottleneck node.

Another, more subtle problem may be considered when talking about speci�c types
of applications. The distance between nodes in the distributed system is usually not the
same. The well designed system may make use of network topology to increase e�ciency
and reliability. For instance, if some of the components are located on the other end of the
world, it would be nice if we could group them together and then, using one or two method
calls, synchronize this group with the rest.

Last but not least, the centralized scheme does not make use of speci�city of our task.
Checkpoints are very rarely initiated at the same time at di�erent nodes. This observation
can be used for optimizing the synchronization process.

Till now we concentrated on the disadvantages of the centralized scheme. Of course
there are advantages as well. This algorithm is optimal when considering the number of
messages sent or remote method calls. Another, often ignored, but quite important issue
is the simplicity. Simple usually means easy to implement.

3.3. Neighborhood

To improve e�ciency and reduce synchronization delay we introduced the con�gurable
component that allows the user to tune up our system according to the network topology.
Neighborhood function de�nes the rules of control messages routing inside our system. As
we mentioned before in this chapter, Java RMI does not support a group communication.
In the situation when broadcasting has to be done at the software level, it is reasonable to
map the physical network interconnection scheme to the software communication model.

Figure 3.1 shows some basic network topologies and exemplary neighborhood functions.
Broadcast is always initiated at the node 0. Messages are sent along the arrows, �rst to
the node with the smallest identi�er.

The diagram 3.1(a) shows the simplest situation � physical network topology is mapped
directly onto the logical scheme. It takes 4 time units to complete the broadcast under as-
sumption that sending a message takes one time unit. The sending phases look as follows:

1. 0 sends message to 1

2. 0 sends message to 2, 1 sends message to 3

3. 2 sends message to 5, 1 sends message to 4

4. 2 sends message to 6

In the diagram 3.1(b) every two nodes are connected to each other. The message sending
phases de�ned by the neighborhood are:

1. 0 sends message to 1
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Figure 3.1: Network topologies and neighborhood. Straightforward network interconnection
to neighborhood mapping (a), Ethernet-like bus (b) and multi-cluster scheme (c).

2. 0 sends message to 3, 1 sends message to 2

3. 0 sends message to 5, 1 sends message to 4, 2 sends message to 6

Finally, �gure 3.1(c) presents the most complicated variant of two fast local networks
connected with slow links. There are following message sending phases:

1. 0 sends message to 1

2. 0 sends message to 6, 1 sends message to 2

3. 1 sends message to 3, 2 sends message to 4

4. 3 sends message to 5

Note that broadcast could be �nished in 3 instead of 4 time units. Node 0, which is idle
during third and fourth phase, could be used for sending the message to node 5 in the
third phase. However, this variant requires sending one more message over the slow link,
that may introduce bigger overhead than the additional phase.

The intuitive meaning of the neighborhood function should be clear now. We introduced
the notion of neighborhood for the purpose of the next section where we describe the global
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barrier synchronization. To assure the correctness of the coordination algorithm, we have
to limit the set of all possible neighborhood functions to a class that satis�es the following
conditions:

� the neighborhood function de�nes a graph that is a tree,

� the neighborhood function is a function of three parameters � actual node number,
root node number and total number of nodes.

The �rst point should be clear � we are using our virtual interconnection structure for
broadcasting. There is no point in having cycles in the graph. The second sentence states
that all children nodes of a particular node should be determined by its own identi�er,
identi�er of the root node and total number of nodes in the graph. Note that this condition
requires global ordering of nodes.

3.4. Distributed Coordination Algorithm

Because of the limitations of the centralized algorithm and speci�city of checkpointing
subsystem we decided to design own distributed coordination algorithm that best �ts our
needs. As mentioned in the previous section there are some observations we may make to
improve the robustness of our solution. These are the design goals of our algorithm:

� make use of di�erent network topologies,

� take into account that time interval between the �rst and the last checkpoint request
may be long and use this time for useful synchronization work,

� tolerate some faults that occur during coordination phase. Coordination phase is the
period between the �rst participant declares its readiness for global coordination and
the last participant is resumed after coordination.

According to chapter 2 all local threads on every node are synchronized locally before
initiating the distributed checkpoint. This situation is presented in �gure 3.2.

Algorithm 2 is our proposition for barrier synchronization that coordinates processes
involved in the global state capturing process.
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Figure 3.2: Local and distributed barrier. Situation before synchronization (a), local threads
synchronized on every node (b) and global barrier (c).
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Algorithm 2 Global barrier synchronization

Require:

n_nodes � number of all nodes
node_no � actual node number

Ensure:

processes on all nodes reached the barrier
1: if got message SYNCHRONIZATION_REQUEST(coordinator) then
2: wait for SYNCHRONIZATION_CONFIRMATION(global_coordinator)

3: else

4: coordinator := node_no

5: for all neighbor in neighbors(node_no, node_no, n_nodes) do
6: local_coordinator := process SYNCHRONIZATION_REQUEST(node_no) at

neighbor

7: if local_coordinator.getPriority() > coordinator.getPriority() then
8: coordinator := local_coordinator

9: end if

10: end for

11: if coordinator == node_no then

12: global_coordinator := node_no

13: else

14: wait for SYNCHRONIZATION_CONFIRMATION(global_coordinator)

15: end if

16: end if

17: for all neighbor in neighbors(node_no, global_coordinator, n_nodes) do
18: process SYNCHRONIZATION_CONFIRMATION(global_coordinator) at neighbor

19: end for

There are few things that should be explained about algorithm 2. The neighbors(
actual_node, root_node, total_nodes) function computes the set of actual_node node
descendants when the root node of the broadcasting structure is root_node and there is
total_nodes nodes in general.

The coordinator of the whole process is elected dynamically. The synchronization
phase may be initiated by multiple processes by means of broadcasting the SYNCHRO-

NIZATION_REQUEST message, but it is a task of one node to con�rm global synchroniza-
tion by sending the SYNCHRONIZATION_CONFIRMATION message. Messages are parametrized
with the identity of their creator. This fact brings another observation � broadcast trees
may vary, depending where the initial message was created. global_coordinator variable
contains the identi�er of the elected coordinator that will �nally send the SYNCHRONIZA-

TION_CONFIRMATION message.

The process message at node is a complex construct that consists of message sending
and processing at destination node. The processing may return a value.

To understand why the algorithm guarantees that there is only one coordinator elected
let us now look at the message processing phase. Algorithm 3 describes it in detail.

Note that broadcast of message message is continued only if receiver at the actual node
did not get the message with higher priority yet (checked in line 2). By this condition we
are trying to limit the number of redundant messages sent.

If the message we got was sent by a process with a higher priority than any of previously
received messages, the coordinator is determined by the neighbors of actual node.
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Algorithm 3 Message processing

Require:

message � message to be processed
n_nodes � number of all nodes
node_no � actual node number

Ensure:

returns coordinator of the subtree de�ned by neighborhood function and rooted in
actual node

1: coordinator := message.getCreator()
2: if got message SYNCHRONIZATION_REQUEST(local_coordinator) and

local_coordinator.getPriority() > coordinator.getPriority() then
3: return local_coordinator

4: else

5: local_coordinator := coordinator

6: for all neighbor in neighbors(node_no, coordinator, n_nodes) do
7: new_coordinator := process message at neighbor

8: if new_coordinator.getPriority() > local_coordinator.getPriority()
then

9: local_coordinator := new_coordinator

10: end if

11: end for

12: if local_coordinator <> coordinator then

13: return local_coordinator

14: else

15: wait for application running on local node to invoke barrier

16: if in the meantime got message SYNCHRONIZATION_REQUEST(local_coordinator)
such that local_coordinator.getPriority() > coordinator.getPriority()
then

17: return local_coordinator

18: else

19: return coordinator

20: end if

21: end if

22: end if

At last, our algorithm should synchronize all the nodes, so at some point (line 15) we
have to wait for the application part, we are responsible for, to invoke global coordination
request.

Algorithms 2 and 3 try to implement some kind of heuristic for minimizing the number
of messages sent and synchronization delay. By synchronization delay we mean the di�er-
ence between the time when the last process invoked the barrier function and the time
when the last process left the barrier.

The e�ciency depends not only on the neighborhood function, but also on the barrier
noti�cation scheme. For example, when there is one process that is much faster than the
others, the SYNCHRONIZATION_REQUEST can be delivered to every node before any of them
will even invoke the barrier function. The coordinator will be known already in the initial
phase of the algorithm and we will not have any redundant messages at all. When the
processes at all nodes run more or less at the same speed we may have race conditions.
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The synchronization delay is dependent on the neighborhood function probably even
more than redundant messages overhead. When we use a `smart' one that groups together
nodes with similar characteristics according to barrier synchronization initiation times, we
can achieve good results.

3.5. Communication Scheme

One thing that needs to be speci�ed in order to fully understand the algorithms described
in the previous section is the communication scheme. To use the advantages of parallel
broadcasting we decided to base our system on parallel synchronous messaging. Parallel
synchronous means that communication with neighbors is synchronous, but messages are
sent to di�erent neighbors in parallel. The initiator is blocked until all its descendants
accepted the message. Senders are implemented as separate threads and are reused across
di�erent synchronization phases. The sender's life cycle is showed in �gure 3.3.
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send

Communication initiator
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Figure 3.3: Senders. Before sending Message Initiator has to obtain a Sender from Sender
pool (a), Sender takes care of communication (b), Initiator returns Sender to Sender pool
after Message was delivered.

3.6. Taking Coordinated Checkpoints

We have described the distributed synchronization algorithm. Now we will discuss its ap-
plication to the coordination of distributed checkpoints. Taking globally consistent check-
points in our distributed environment is nothing more than adding synchronization barriers
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to the scheme described in chapter 2. Of course these synchronization points have to be
added in appropriate places.

First, we are synchronizing all the processes running on di�erent nodes just after they
initiated the state capturing. Just after means that all local threads on all machines have
to be suspended on top of their Java stacks.

The second coordination takes place just before starting the application. Again, just
before means after all threads rebuild their Java stacks and are about to carry on with the
suspended computations. In fact the system is in exactly the same state when the �rst and
second synchronization take place.

At �rst sight two synchronization phases can be reduced to only one. However, a sce-
nario in which a thread �rst captures its stack, then synchronizes and �nally saves the
checkpoint into stable storage can lead to inconsistencies. One barrier is not enough when
we want to capture the state inside synchronized methods. If we skip the coordination
before taking the checkpoint, we can end up with a checkpoint that sees more than one
active process inside synchronized method. On the other hand, omitting barrier after state
capturing may result in the race condition and prevent some processes from fully restoring
their Java stacks.

State capturing in remote method calls requires two additional synchronizations. For
details see chapter 5.

3.7. Storage

We use the term stable storage in regard to a component responsible for persisting check-
points. Stable storage is a subsystem whose task is to guarantee availability of supervised
data even if some of its elements fail. We want to have our system not only software but
also hardware faults resistant. To ful�ll this requirement we decided to use replication.

Again, in order to allow the end user for tuning up the system the node mapping

function was introduced. The idea is similar to the neighborhood. However, computing
descendants in a broadcast tree is replaced by determining nodes where checkpoint should
be stored.

Figure 3.4 shows the arcana of data storing phase.

We may think about stored data in terms of local checkpoint. Note that data are always
saved on the local node �rst. This decision will be explained in the next section.

Data retrieving is presented in �gure 3.5.

If a node is down we just skip it and try to contact the next one.

We implemented two di�erent storing systems. One is based on the �le system, the
other keeps all data in the random access memory.
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Figure 3.4: Data storing. Checkpointing process has to decide where to place the Checkpoint
data (a), Node Mapping function determines locations of backups (b).

3.8. Faults During Checkpointing Phase

Our task was to provide a framework for fault tolerance in the distributed environment.
Highly reliable system should be aware of the fact that some of its components may also
be a subject of di�erent faults. In our situation, when processes can declare readiness for
global checkpoint at arbitrary point in time, it is even more important. Table 3.1 shows
which kind of faults our system can deal with.

The column and row headers of the above table may require explanation. Phrase �before
�rst/second barrier� describes a set of faults that occurred before the �rst node reached the
�rst/second barrier. �After �rst/second� barrier characterizes all the faults that occurred
after the last node left the barrier synchronization function.

+ means that system will be able to recover if fault occurs during this phase,

� means that we do not give any guarantees according to success of the recovery process.
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Table 3.1: Fault tolerance coverage regions

1 2 3 4 5

Support level + + � � +

1: Before �rst barrier begin 2: First barrier begin � �rst barrier end
3: First barrier end � second barrier begin 4: Second barrier begin � second barrier end
5: After second barrier end
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The problem with phases marked with minus signs lies in our policy according to
checkpoints' storage. We do not use any versioning system. Only the newest checkpoints
are stored. Somewhere between �rst and second barrier coordinators running on every node
take a local checkpoint. If the fault occurs when some of the processes have already stored
new state in the stable storage and some of them not, there is no consistent data available.

3.9. Distributed Fault Detection and Recovery

In this section we describe the recovery algorithms we used in our system. Algorithm 4
presents the arcana of the recovery process.

Algorithm 4 Distributed recovery

Require:

n_nodes � number of all nodes
node_no � actual node number

Ensure:

processes on all nodes recovered to the latest consistent global checkpoint
1: coordinator := node_no

2: for all node in 0..n_nodes - 1 do

3: if node is not a faulty node then
4: local_coordinator := process FAULT_DETECTED(node_no) at node
5: if coordinator.getPriority() < local_coordinator.getPriority() then
6: coordinator := local_coordinator

7: end if

8: end if

9: end for

10: if coordinator == node_no then

11: for all node in 0..n_nodes - 1 do

12: if node is faulty node then
13: backup := node_mapping(node)
14: process RECOVERY_REQUEST(node) at backup

15: end if

16: end for

17: for all node in 0..n_nodes - 1 do

18: if node is not a faulty node then
19: if node <> node_no then

20: process RECOVERY_REQUEST(node) at node

21: end if

22: end if

23: end for

24: process RECOVERY_REQUEST(node_no) at node_no

25: end if

The recovery phase, like the barrier, needs a global coordinator. We use the similar
approach and elect the coordinator dynamically. FAULT_DETECTED message carries an iden-
ti�er of the node where it was created. RECOVERY_REQUEST message instead is labeled with
the identity of a node that should be recovered.

One thing that may be unclear in presented algorithm is the need for distinguishing
between faulty and non-faulty nodes. We assume that errors do not occur too often one after
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another, so to reduce the costs of recovery we drop the old checkpoints before restarting the
application. This condition requires recovering faulty nodes before rolling back the others
to the last consistent checkpoint.

The algorithm of processing the RECOVERY_REQUEST message is straightforward. We
just read the checkpoint from stable storage and restart the application on the appropriate
node. The node_mapping function, as explained before, points out the node where the
backup of part of the application we want to recover is located.

Now it should be clear why it is wise to keep a copy of the latest checkpoint locally.
Backup storage should be used to recover processes that crashed on remote machines.
Properly working parts of the application can resume computation on the same machine
they were before. In this case the recovery requires hardly any network communication �
all data are stored locally.

Our system contains a component which is responsible for replicating checkpoints on
di�erent machines. For simplicity this functionality was skipped in the description of algo-
rithm 4.

There are four situations that initiate recovery process. Firstly, the user application
can explicitly invoke the scanning procedure that will check which nodes are down. This
action is usually taken if the application part running on one node can not contact another
node. Secondly, our framework can notice breakdowns of some elements when it performs
global barrier synchronization. Thirdly, crash of a remote object may be discovered by
fault tolerant RMI subsystem. Finally, there is a dedicated thread running on every node
which task is to check periodically whether all remote processes are up and running.

The components responsible for resurrection of the application from the checkpoint are
called activators (see �gure 3.6).

3.10. Summary

In this chapter we revealed distributed aspects of our checkpointing scheme. We presented
algorithms we used and motivated crucial decisions. Some of our ideas are general purpose
solutions, but most of them are based on the speci�city of distributed checkpointing model.
In the following chapters we will present extensions to the model described here.
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Chapter 4

Fault Tolerant Remote Method

Invocations

4.1. Introduction to Remote Method Invocation mechanism

Distributed systems require that computations running in di�erent address spaces, poten-
tially on di�erent hosts, be able to communicate. For a basic communication mechanism,
the Java programming language supports sockets, which are �exible and su�cient for ge-
neral communication. However, sockets require an application programmer to design and
implement protocols to encode and decode messages for communication between the client
and the server. The design of such protocols is inconvenient and can be error-prone.

The Java programming language provides an alternative for sockets, which is the Re-
mote Method Invocation (RMI) mechanism. The main advantage of this mechanism over
plain sockets is the comfort of its use. It gives the programmer an illusion of calling just
normal methods and does not engage the programmer into complicated communication
details. Therefore, it became the most widely used mechanism for distributed computing
in Java. In this section we brie�y describe RMI. For a complete description of RMI, see
Sun's RMI speci�cation [12].

RMI applications often consist of two parts: a server and a client. A typical server
application creates a number of remote objects, makes references to those remote object
accessible, and waits for clients to invoke methods on those remote objects. A typical
client application gets a remote reference to one or more remote objects in the server and
invokes methods on them. RMI provides a mechanism by which the server and the client
communicate and pass information back and forth.

From the programmer's point of view, each remote object provides an interface con-
taining all methods that can be called by clients on that remote object. The programmer
does not have to be aware of details of a remote method invocation, but simply calls meth-
ods on that interface. What actually happens is that the programmer calls methods on
a local stub object implementing that interface, which plays the role of a proxy between
the client and the server. The stub object establishes a connection with the remote object
on the server, passes serialized method's parameters and returns a deserialized server's
response. The stub object signals all errors which may occur during a remote method call
by throwing an exception, which should be caught in the application.

Before a client application can call methods on a remote object, �rst it has to somehow
obtain a remote reference to that object. It can use one of two mechanisms. An application
can register its remote objects with RMI's simple naming facility, the rmiregistry, or the
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application can pass and return remote object references as part of its normal operation.
Figure 4.1 shows a distributed application that uses the RMI registry to obtain a

reference to a remote object. The server calls the registry to associate a name with a
remote object's reference. The client looks up the remote object's reference by its name in
the server's registry and then invokes a method on it.

Client

								

					Server

registry

RMI (register)

RMI (lookup)

RMI (call)

Figure 4.1: Remote Method Invocation

4.2. Problem Statement

Java Remote Method Invocation (RMI) is the primary model for distributed computing in
Java. However, while Java RMI promotes access transparency and location transparency
of remote servers to clients, it does not provide fault tolerance mechanisms to render faults
transparently to the application. Instead, the occurrence of a fault in the system is exposed
to the application, requiring application programmers to provide additional mechanisms
to ensure correct, reliable and highly-available operation, even in the presence of faults.

A typical way to create a custom remote object is to extend the UnicastRemoteObject
class. When such an object is instantiated, it is exported to a speci�ed port number and
since that time it is available for remote clients. Clients call methods on local stub objects
to access remote objects. Each stub holds a remote reference object responsible for the
whole low-level communication with the remote object. A stub class is generated using
rmic Java tool. Stub objects are serializable and therefore can be sent to other machines
in the network and used by them as long as remote object is working. Each remote object
is uniquely identi�ed by three parameters that are assigned to its stub's remote reference
during instantiation:

� IP address,

� port number,

� unique ObjectId, which is assigned during instantiation, so each instance of the same
class is uniquely identi�ed.
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All these properties make remote objects location dependent. When a machine on which
the remote object is located fails, then all stubs corresponding to that object owned by
the clients will become incorrect and their use will cause an error. Therefore, we developed
mechanisms for Fault Tolerant RMI.

4.3. Our Solution

RMI registry 1 RMI registry 2

RefStore 1 RefStore 2

Broken
Remote
Object

Recovered
Remote
Object

Stub

1
1

1
1

22

4

53

Figure 4.2: Fault Tolerant RMI

Our system was designed to have no single point of failure. In order to achieve this,
components of our system use replication and checkpointing mechanisms.

4.3.1. Replicated RMI Registry Server

The �rst layer of our Fault Tolerant RMI forms a replicated RMI registry server (see �gure
4.2). It is replicated for fault tolerance in the read-one, write-all fashion, which means that
clients (in this case the clients are RefStore servers described in the next section) have to
propagate changes to all replicas, but they can read from only one of them (A.Tannenbaum
and M. van Steen in their book [14] present several replication algorithms). When one
replica crashes, the rest will still serve clients. When either a new or a recovered replica
is started, it will automatically update itself by retrieving data from other replicas. The
locations of all replicas are stored in the environment variables propagated to all nodes
when the application is started.
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4.3.2. Replicated RefStore Server

The essence of our Fault Tolerant RMI lies in the use of a replicated server, which we
called RefStore. It is responsible for storing pairs of <old (incorrect) remote reference,
new remote reference>. Alike our RMI registry, it is also replicated for fault tolerance
in the read-one, write-all fashion. In order to be found, each replica of the RefStore
server registers itself in the replicated RMI registry server (1). Our system provides a
PersistentUnicastRemoteObject class which extends the UnicastRemoteObject class
and is used for creating fault tolerant remote objects. Instances of this class are stored
in a checkpoint together with the rest of the user application. Each time they are deseria-
lized from the checkpoint due to the failure of the original host, a new remote reference,
containing new remote object's location, is sent to all replicas of the RefStore server (2).

4.3.3. Fault Tolerant stubs

Our system provides also a Java bytecode post-processor for transforming stub class �les.
After transformations stubs do not raise an exception when they cannot locate remote
object (3), but they initiate the recovery process. When the application is being recovered,
stubs obtain a new remote reference from one of the replicated RefStore servers (4) and
after the recovery they use it for accessing the remote object (5). The transformation
algorithm adds to each stub's class �le an additional ping method that tries to get in
touch with the remote object and in the case of failure it fetches the new remote reference.
The ping method is invoked during the recovery process on every stub object in the user
application.

4.3.4. Checkpointed RMI registry

User applications which adopt Remote Method Invocation model typically use the RMI
registry for exchanging remote references to their remote objects. Since the node on which
standard Java RMI registry runs may fail, thus causing faults in the whole distributed
application, user applications should use a fault tolerant RMI registry. However, it may
not be the replicated RMI registry, because it has to be strictly consistent with the ap-
plication. Consider the following situation. An application makes a checkpoint, registers a
remote object in the RMI registry and after that it crashes. It is recovered from the last
checkpoint and once again it tries to register an object in the RMI registry but it will
not succeed because the RMI registry already has that object registered. Therefore, we
developed the RMI registry which is checkpointed together with the whole user applica-
tion. Our system provides classes that are equivalent to the standard Sun's Naming and
RegistryImpl classes.

Our RMI registry implementation uses our system's checkpointing facilities. It extends
PersistentUnicastRemoteObject, it uses our stub class transformer for making its stub
objects fault tolerant, thus after a crash it registers itself in the RefStore server. Moreover,
it registers itself in the replicated RMI registry server, so our Naming class can easily �nd
it without knowing its physical location.

4.4. Wrappers

Our system provides `wrapper' classes for each of the standard RMI class, like Unicast-

RemoteObject, Naming, LocateRegistry. Wrapper classes have the same interface as the
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original ones, however they cooperate with our system to make the user application fault
tolerant. Standard Java classes are replaced with wrapper classes transparently to the
programmer by the transformation algorithm.

4.5. Summary

Our RMI extensions make a distributed application, which uses RMI mechanisms, tolerant
for faults in a transparent way. An attempt to invoke a method on a remote object located
in a broken process does not anymore result in an exception propagated to the application,
but it initiates a recovery process. Since the broken process with its remote objects can
be recovered on any host, stub objects held by clients will fetch new remote references
pointing at new remote objects locations.

Each component of our RMI system is either replicated or checkpointed, thus there is
no single point of failure. Moreover, since none of the actions taken by our RMI extensions
in�uence the application, our fault tolerant RMI is also transparent.

It should be stressed that our solution is not fully tolerant for faults. Theoretically it
may happen that all replicas crash and the system will not be able to function. In practice,
however, a su�cient number of replicas should assure high enough fault tolerance.
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Chapter 5

Checkpoints in Remote Method Calls

5.1. Introduction

The solution for making Java applications fault tolerant, which we presented in previous
chapters is quite �exible. However, there is a class of programs for which the rules user
has to obey are too strict. One of the most annoying limitations is the restriction, that the
checkpoint request can not be invoked while residing inside a remote method call.

In this chapter we present a mechanism for serializing the execution state of a dis-
tributed Java thread. The notion of a distributed thread is de�ned later in this chapter,
but intuitively the previous sentence states, that now the checkpoint can cross the borders
of one virtual machine.

The solution we are going to present is fully integrated with the distributed checkpoint-
ing framework described in chapter 3.

5.2. Distributed Threads

When using a distributed control �ow model like Java RMI one should take into account
shift of semantics. There are many examples that show di�erences between Java RMI and
�normal� Java programming. Let us mention the separation between class and interface of
a remote object, the pass-by-copy semantics of non-remote arguments to a remote method
invocation and the inherently more complicated failure modes of remote method invocation.
These are all results of the shift of semantics that may lead to unexpected results, if the
programmer did not take these di�erences into account.

In this chapter we are studying a very particular kind of shift of semantics � shift

of thread semantics. We may experience this problem when we try to adapt a local Java
program for execution in a distributed environment. A thread is often de�ned as a sequen-
tial �ow of control within a single address space. For us this de�nition is not convenient.
The notion of distributed thread has already been introduced in the Alpha distributed
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real-time OS kernel at CMU [3]. D. Jensen has identi�ed the notion of distributed thread
as a powerful basis for solving distributed resource management problems. We borrow the
de�nition of distributed thread from this work:

A distributed thread is the locus of control point movement among objects
via operation invocation. It is a distributed computation, which transparently
and reliably spans physical nodes, contrary to how conventional threads are
con�ned to a single address space.

We may simplify this de�nition and describe the distributed thread as a logical sequential
�ow of control that may cross physical node boundaries. As shown in �gure 5.1, the dis-
tributed thread is physically implemented as a concatenation of local threads performing
remote method invocations when they transit JVM boundaries.
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Node B
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Figure 5.1: Distributed Thread

Distributed threads o�er a general concept for distributed computation entity. There-
fore we decided to add extensions for serialization of a distributed execution state on per
distributed thread base.

5.3. Distributed Identity

In a local execution environment the JVM thread identi�er o�ers a unique reference for a
single computation entity. Distributed threads execute as �ows of control that may cross
physical node boundaries. Once the control �ow crosses system boundaries a new JVM
thread is used for continuing execution. Java itself does not o�er any interfaces that allow
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us to recognize two local threads as parts of the same distributed thread. We extended
Java programs with the notion of distributed thread identity. Propagation of globally unique
identities allows for identi�cation of local computations as parts of the same distributed
computational entity.

Points we took into consideration while designing our distributed identity implementa-
tion:

� no execution time overhead is introduced when we are not performing remote method
calls;

� the only overhead is connected with the remote method call event. It means that our
solution should not have any in�uence on remote method execution time measured
from the moment of invoking the local thread responsible for executing method's
body till returning from this method;

� no execution time overhead is introduced when the remote thread's control �ow can
not lead to state capturing and this behavior can be predicted by method call graph
analysis.

The identity is assigned to a distributed thread at its creation time. This behavior
is integrated with our thread instantiation engine. It means that the programmer is not
aware of her threads being modi�ed. The distributed identity itself carries the following
information:

Creator identi�er Identity of the node where the distributed thread was created. More
precisely � the node, where the oldest (with regard to creation time) local thread
contained within the distributed thread was started;

Unique local thread identi�er Identi�er, that is unique across all the threads created
on the same node. This is introduced only to guarantee global scope uniqueness of
thread identities that is achieved by combining creator identi�er with local thread
id.

The internal structure of a distributed thread identity is illustrated in �gure 5.2. The
creator identi�er points in this case to a local thread t1. The identity is propagated with
remote method calls that result in creation of local threads t2 and t3. The dictionary that
maps local threads to corresponding identities is distributed. It means that node B holds
the information only about the thread t2 and node C only about the thread t3.

5.4. Distributed Context

In chapter 2 we de�ned the context object as a container for saved data. When we are work-
ing with local threads only, one context object for one thread is enough. In a distributed
environment having one context per distributed thread is not enough unless we have one
centralized database of contexts. The problem lies in the Java serialization mechanism.
Serialization semantics guarantees �one step� consistency of references. It means, for in-
stance, that deserializing the same object twice will result in instantiation of two di�erent
Java objects. This limitation requires saving state of all local processes in one common
checkpoint.

In a distributed environment we can not base our solution on passing the context objects
between nodes. This action requires serialization of contexts that may, as explained before,
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destroy referential integrity. To deal with this problem in an elegant way we introduce
a notion of distributed context. Distributed context may be simply de�ned as a set of all
�ordinary� context objects of local threads that belong to one distributed thread. For better
understanding see �gure 5.3.

As stated before, one of the main design goals of our framework is to minimize the
overhead connected with execution of the inserted byte code. Chapter 2 describes the quite
complicated and time-consuming process connected with starting a new thread. Several
data structures have to be created to associate a context with a thread. Now imagine, that
these steps have to be repeated every time we invoke a remote method. The overhead may
be non-negligible.

Our solution uses so called lazy binding. It means that the remote thread registers in
our middleware only when the checkpoint is initiated. The corresponding computation and
context objects will not be created unless state capturing is requested. No modi�cations
in the Java stack saving or restoring scheme are required.

The crucial di�erence in state capturing and restoring of the remote thread lies in the
context object's storing policy. If the context belongs to a remote thread, it is stored in
a dictionary data structure under a key representing the thread's distributed identity. By
doing so we are able to identify local contexts that belong to one distributed thread.

5.5. Distributed Thread's State Capturing

After explaining our task and introducing new terminology we can describe the process of
capturing the state of a distributed thread. The idea is quite simple, but the correct and
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robust implementation poses many di�culties.
State capturing is done in phases. Every phase corresponds to making a checkpoint of

one of the local threads that are parts of the same distributed entity. The stack frame saving
method is the same as the one described in the chapter dedicated to local checkpoints. The
di�erence lies in the actions performed on the remote method call and exit.

Our algorithm behaves di�erently regarding whether state capturing was initiated or
not. To make things more clear these cases will be described separately.

During normal execution the semantics of distributed control �ow is as follows:

1. the distributed identity is created for every thread registered in the checkpointing
subsystem, but is used only by the entities that perform remote method calls;

2. the distributed identity, once assigned to a thread, stays the same during its lifetime;

3. every remote method call is labeled with a distributed identity of the invoker;

4. the distributed thread identity is stored in the internal data structures of our system
until execution of a remote method is �nished.

Problems start when we initiate state capturing inside a remote method call. Check-
point manager residing on every node synchronizes with other nodes only if all local threads
declared readiness. Now local threads may be suspended waiting for the results of a remote
call. Remote threads have to be coordinated on top of their (remote) stacks, because of
the same reasons as local threads (synchronized methods) � for details see chapter 3. The
solution is to contact the originator node and con�rm state capturing initiation at the
remote location. One question remains � how to identify the creator? The pointer to a
creator node is included in the remote identity not only to guarantee uniqueness but also
for being used as a key in the nodes' database.

Now consider �nested� remote method calls. In this context nested means one remote
call invoked inside another remote method call. We need a mechanism to inform local
threads on the path of the remote invocation that the distributed thread, they are part of,
is in the state capturing phase. Contacting explicitly all the nodes on the path of the remote
call is not possible since the distributed identity contains only the identity of a creator node.
We solved this problem with the help of the Java error mechanism. Before returning from
the remote method the isSwitching �ag indicating state capturing is checked. If it is
set, instead of returning the result, we throw a special type of exception. This exception
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can then be captured on the node where remote call was initiated and additional steps
may be taken in order to prepare the local thread for taking the checkpoint. We decided
to use exceptions as a distributed isSwitching �ag for two reasons. Firstly, no overhead
is introduced during normal execution. Secondly, exceptions can be almost transparently
integrated with existing implementations (see section 5.6).

The graphical illustration of the described process is presented in �gure 5.4.
Distributed state reestablishing uses a similar concept as capturing. The additional

set of instructions is invoked on the beginning of every remote method. It is easy to
check whether we are inside the recovering phase by looking for a local context associated
with a remote thread identity. The context object may be removed when we invoke the
nested remote call or after full reconstruction of the distributed thread's state. This action
guarantees that the next call of the same method will not be misinterpreted as part of the
state reestablishing phase.

At the end of this section we address the issue of synchronization points. As stated in
chapter 3, only two global barriers are needed when checkpoints in remote calls are not
allowed. We claim that enabling the feature of state capturing in the remote calls needs
two additional synchronization points.

One of them has to be added just before saving local checkpoints into a stable storage.
The state of a distributed thread is distributed conceptually and physically. It consists of
the states of all local threads, that are part of one distributed entity. Before saving the
local data structures of a particular node, we have to make sure that there are no running
local threads, that are part of distributed entity. Barrier synchronization just before the
global checkpoint guarantees this behavior.

The second coordination point is required just after storing local checkpoints. This time
the reason is not as obvious as before. In the description of the recovery phase we mentioned,
that object containing the context of a local thread, which is part of a distributed thread is
removed when we invoke nested remote method call during the stack rebuilding phase. As
a consequence, some data, that should be part of a local checkpoint, may be lost, because
one thread is faster than the other.

Claims that to capture the state of a distributed thread we just need to save the local
states of the corresponding local threads are not so far from the truth. The next section
describes brie�y the modi�cations in byte code that are needed in order to support the
new checkpointing features.

5.6. Byte Code Transformers

The byte code transformer had to be extended in order to deal with our new thread
serialization scheme. The modi�cations are conducted in two phases. Each of them is
served by a separate sub-transformer.
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5.6.1. Remote Method Transformer

In order to extend the functionality of the checkpointing framework, the semantics of
remote method calls had to be slightly modi�ed. We need to be able to identify a sequence
of, not necessarily local, method calls as one (distributed) control �ow. On account of this
requirement the distributed identity was introduced. The task of the transformer, we are
going to describe, is to modify remote methods in such a way, that the distributed identity
can be sent along with the parameters of the remote method call.

The solution we propose is simple � the signature of a remote method is extended
by adding the additional parameter � distributed thread identity. However, we promised
that the overhead will be connected only to remote calls and will not in�uence the local
control �ow.

Remote method transformer creates a wrapper for every remote method. More precisely,
the wrapper is a new method with the signature of the transformed one extended by the
distributed identity. The body of the new method looks like in the example below.

public m_return_type wrapper_for_method_m(m_arguments, DistributedIdentity di)

{

registerRemoteThread(di);

m_return_type result;

try {

result = m(m_arguments);

} catch (Exception e) {

throw e;

} finally {

unregisterRemoteThread();

}

return result;

}

Remarks:

� registerRemoteThread()method, when invoked during normal execution, is respon-
sible only for registration of a distributed identity in internal data structures of our
system. Invocation during the recovery phase is much more complicated. Then the
task of this method is to make the thread responsible for handling the remote call
look like every other local (recovering) thread. We may call this step lazy binding;

� unregisterRemoteThread() is symmetric to registerRemoteThread(). During nor-
mal execution it just removes the distributed identity from the internal data struc-
tures. State capturing causes storing the context object and throwing a special type
of exception, that indicates state capturing in a remote call. Note, that this method
does not need any arguments. When invoked, the local thread is already known to
the middleware;

� the wrapper is used only if the method was called using the RMI protocol. The
original method is still available for local calls;

� the finally block of try-catch statement is evaluated regardless whether a check-
point was thrown or not.
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Additionally, for every class that is transformed, the remote interface is generated. This
interface contains signatures of all wrapper methods that were added to the discussed class.
The reasons are strictly technical. Wrapper methods are exposed through Java RMI. Ac-
cording to the RMI speci�cation every remote method should be mentioned in an interface
that extends java.rmi.Remote.

5.6.2. Stub Transformer

Java RMI uses a standard mechanism (employed in RPC systems) for communicating
with remote objects: stubs and skeletons. A stub for a remote object acts as a client's local
representative or proxy for the remote object. The caller invokes a method on the local
stub, which is responsible for carrying out the method call on the remote object. In RMI, a
stub for a remote object implements the same set of remote interfaces that a remote object
implements. In the Java 2 SDK, Standard Edition, v1.2 an additional stub protocol was
introduced that eliminates the need for skeletons in Java 2 platform-only environments.
Instead, generic code is used to carry out the duties performed by skeletons in JDK1.1.
Stubs and skeletons are generated by the rmic compiler.

The stub is an ideal place for our extensions, if they are to be invisible for the application
programmer. The task of a stub transformer is to modify remote method calls in such a
way, that passing the remote thread identity as one of the parameters is possible.

Beside having some additional features, our stub transformer is able to:

� generate the wrapper class for method arguments that are of primitive type. Every
Java basic type has corresponding serializable class that may be marshaled and sent
through the network;

� present to a user typical low level communication exceptions in a more convenient
way.

Our compiler translates every remote method call to the corresponding wrapper method
call. Exceptions thrown to indicate state capturing trigger actions that simulate local
checkpoint request.

5.7. Overhead

The solution we presented has zero overhead when no checkpoints are initiated inside re-
mote method calls. Some burden is connected with remote calls that can lead to the state
capturing. This overhead is however rather theoretical than practical. Costs of extend-
ing method signature by the distributed identity parameter, one hashtable lookup on the
client side and one hashtable insert on the server side introduce negligible overhead. Since
checkpoints are stored along the path of the remote calls, the slowdown connected with
initiating checkpoint on the remote node is also hardly visible.

5.8. Conclusions

The goal of this chapter was to present extensions for the fault tolerance mechanisms that
eliminate some restrictions according to the placement of the state capturing initiation
statement. The class of applications, that may be easily integrated with our system, was
extended by allowing the programmer to invoke the checkpoint request also inside the
remote method calls.
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To model the actual situation we have to go one abstraction level up and think in terms
of distributed rather than local threads. Notions of distributed identity and distributed
context allow for treating a distributed thread as a set of local threads for which the
system was originally designed.
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Chapter 6

Related Work

This section presents a summary of relevant related work and places our project in this
context. Although work on fault tolerance has a long history, we have not found any research
projects in this area that use Java as a programming language for parallel computing. Since
our approach is tightly related to the Java programming language, we had to come up with
our own solutions for many problems. However, we discovered that many projects in the
area of mobile agents address similar problems as our system.

6.1. Java Thread Migration

A major di�culty connected with transparent agent migration is preserving the execution
state across migration. When developing our system we encountered the same problem �
we had to preserve the state of the application in the checkpoint. Methods that address
this problem can be divided into three categories.

The �rst category includes methods that modify the Java Virtual Machine. Such a
modi�cation exposes all necessary information, like the whole Java stack and program
counter, and allows to preserve and restore them. Projects based on this idea include
Nomads [13] and Sirac [2]. A major disadvantage of this methods is lack of portability.
It is a problem, since our system was designed to work in a grid environment where it is
not possible to assure that each machine in each cluster has the same version of the Java
Virtual Machine.

The second category includes methods that make use of the Java Platform Debugger
Architecture API. When the JVM is executed with special parameters, this API gives
the programmer access to many internal JVM structures (including the Java stack). This
method is very promising, but unfortunately, right now, only few Java Virtual Machines
allow to use this API together with enabled Just In Time (JIT) compiler (probably only
Sun 1.4 JVM supports it). Turning the JIT o� introduces very big performance overhead,
which is unacceptable for parallel computing. The CIA [7] mobile agents platform uses this
technique.

The third category includes all kinds of pre- and post-compilers that instrument the
code. They make the thread migration portable across standard JVM platforms although
they introduce additional overhead. Our system uses the code from the Brakes [4] project
as it was described in detail in section 2.2. Another transformation algorithm we considered
to import into our system was used in the JavaGoX [10] project and is described in the
next section. Projects JavaGo [11] and Wasp [5] use source code level approach.
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6.1.1. JavaGoX code transformation algorithm

The JavaGoX [10] project uses basically the same execution state reestablishing algorithm
as the one used in our system. The di�erence lies in the execution state saving algorithm.
When the execution state capturing is requested, a special exception is thrown. This ex-
ception indicates that a program is in a state capturing mode. Each method invocation is
surrounded by a try-catch clause, which catches the special state capturing exception and
propagates it to the caller of the method after saving the current stack frame (see below
for example pseudo code). This process is repeated until the exception reaches the bottom
of the stack. Unfortunately, the operand stack is cleaned each time an exception is thrown
and inside an exception handler it is not anymore available. To deal with this issue, the
operand stack is copied to temporary local variables before every method invocation, but
it makes this algorithm slower than the one used in our system.

A pseudo code of Fibonacci function (before the JavaGo transformation)1:

public class Fib {

public static void fib ( int v1 ) {

if (v1 <= 1)

return 1;

else {

int v2 = fib(v1 - 2);

return v2 + fib(v1 - 1);

}

}

}

A pseudo code transformed for state capturing:

public class Fib {

public static void fib ( int v1 ) {

if (v1 <= 1)

return 1;

else {

int v2;

try {

v2 = fib(v1 - 2);

} catch (Notify e) {

ST_Fib_fib s = new ST_Fib_fib();

s.EntryPoint = 1;

s.v1 = v1;

e.append(s);

throw e;

}

try {

return v2 + fib(v1 - 1);

} catch (Notify e) {

ST_Fib_fib s = new ST_Fib_fib();

s.EntryPoint = 2;

s.v1 = v1;

1The example comes from [10]
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s.v2 = v2;

e.append(s);

throw e;

}

}

}

}

6.1.2. Source Code Modi�cation v.s. Byte Code Transformation

Although developed transformation algorithms work both on a source code and a byte
code level, we have chosen byte code transformation for our system. A source code trans-
formation is rather limited compared with a byte code transformation. First of all, with
a source code transformation, it is not possible in Java to extract the complete execution
state of a running thread. It is, for example, not possible to inspect the values that are on
the operand stack of the current executing method. One way out is to modify the source
code in such a way that before each method invocation the operand stack is copied to
temporary local variables. Consider the following piece of code:

x = foo() + bar();

To save the result of foo, the above expression is split up in advance as follows:

tmp = foo();
x = tmp + bar();

Secondly, a byte code transformation is more e�cient in terms of time and space over-
head, due to the higher precise control o�ered at the bytecode level. Low-level bytecode
instructions make it easier to manipulate the control �ow in a program. For example, to
prevent re-execution of already executed method code during reestablishment we skip the
already executed code with a simple goto instruction. This instruction is however not
available at the source code level. Some transformations introduce instead a huge amount
of if statements to organize the skipping of already executed code.

Thirdly, a bytecode transformation gives more �exibility. For example, at the bytecode
level, it is possible to skip the execution of default super-call within the constructor, while
this is not allowed at the source code level.

Finally, the source code for third party libraries is not always available and in such
cases bytecode transformation is the only option.

6.2. Distributed State Serialization

There were not many attempts for serialization of distributed Java applications. This sec-
tion discusses the Distributed Brakes project [16].

The goal of the project is the development a mechanism for serializing the execution
state of a distributed Java application that is programmed by means of an Object Re-
quest Broker like Java RMI. To validate their research, the authors built a prototype for
repartitioning distributed Java applications at runtime. This mechanism enables apply-
ing of existing partitioning methods at any point in an on-going distributed computation.
Runtime repartitioning aims to improve the global load balance or network communica-
tion overhead of a running application by repartitioning the object con�guration of the
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application dynamically over the available physical nodes at run-time. Existing work o�ers
this support in the form of middleware platform with a dedicated execution model and
object migration support that aligns well with run-time repartitioning. A disadvantage
of this approach is that existing ordinary RMI-based applications, which have obviously
not been developed with support for repartitioning, must partially be rewritten such that
they become compatible with the programming model of the new middleware platform.
The approach of the Distributed Brakes project is to develop a byte code transformer that
transparently adds new functionality to an existing Java application such that this appli-
cation becomes automatically repartitionable by the external monitoring and management
architecture. The repartitioning component, although it has many interesting aspects, lies
outside the scope of this paper.

Distributed Brakes uses a byte code transformer that extends Java programs with the
notion of distributed threads, more speci�cally distributed thread identity. In the rest
of this section we refer to this transformer as the DTI transformer. Distributed thread
identity is, in this context, a serializable class that implements an immutable, globally
unique identi�er. In comparison with the notion of distributed thread identity introduced
in chapter 5, the distributed identity implemented in the Distributed Brakes system does
not encapsulate any additional information.

To achieve propagation of distributed thread identities, the DTI transformer extends
the signature of each method with an additional argument � distributed identity. The
signature of every method invoked in the body of the methods must be extended with the
same identity argument too. For example, a method f() of a class C is rewritten as2:

// original method code

void f(int i, Bar bar) {

...

bar.b(i);

...

}

// transformed method code

void f(int i, Bar bar, D_Thread_ID id) {

...

bar.b(i, id);

...

}

where D_Thread_ID is the class of distributed thread identity. When f() is called the
D_Thread_ID is passed as an actual parameter to f(). Inside the body of f(), b() is
invoked on bar. The body of f() passes on its turn the D_Thread_ID it received as an extra
argument to b(). This way the distributed thread identity is automatically propagated with
the control �ow from method to method. Dynamic integration with a distributed object-
based middleware such as Java RMI is simply achieved if the stub classes are generated
after the DTI transformation has been performed.

Note, that in this solution not only remote but also local methods have to be modi�ed
which of course introduces additional overhead even if no remote methods are called.

To deal with distributed threads, the local implementation of the context manager was
adopted. Distributed Brakes manages one Context object per distributed thread (see �gure

2The example comes from [16]
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6.1). The appropriate Context object is looked up with the current thread identity as a
hashing key.
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Figure 6.1: Context per Distributed Thread (adopted from [16])

However, in order to allow the context manager to manage Context object on a per
distributed thread basis, the static bottleneck interface for inspecting distributed thread
identity had to be introduced. Figure 6.1 motivates clearly that the implementation of the
context manager must become distributed now. Figure 6.2 sketches the architecture of such
a distributed implementation.

Capturing and restoring code blocks still communicate with the bottleneck interface of
the local context manager, but the captured execution state is now managed per distributed
thread by a central distributed thread manager. The distributed thread manager manages
global �ags that represent the execution state of the distributed application as a whole.
These global �ags are kept synchronized with the �ags of the local context managers.

The solution used here and in particular the idea of having one common Context for
all local threads that are part of one distributed identity is not �exible. The problem,
that discards Distributed Brakes as a framework for taking distributed checkpoints, is
connected with sharing Java objects by di�erent threads. If we want to capture a state
of more than one thread in one checkpoint we have to guarantee consistency of data. In
particular it means that the state of all threads running inside one Java Virtual Machine
has to be serialized in �one serialization step� (the reasons were explained in chapter 5).
In Distributed Brakes however, the execution state of a thread is written to a distributed
context frame by frame. The Java stack frame is sent out to the distributed task manager
just after being captured. This approach is adequate when the middleware is used for
tasks that require capturing the state of one distributed thread at once, such as runtime
repartitioning.
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Figure 6.2: Distributed Architecture of the Context Manager (adopted from [16])

Distributed Brakes is an interesting extension that provides the original Brakes sys-
tem with distributed thread's state capturing functionality. We borrow the notions of
distributed thread and distributed identity from this system.
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Chapter 7

Measurements

7.1. Introduction

In this chapter we evaluate the middleware providing fault tolerance for distributed Java
applications. Since inserted byte code introduces not only time but also space overhead we
measure as well the loss of performance as the byte code blowup. To get a representative
picture, we did tests on di�erent types of applications. We �rst describe our evaluation
environment, and then present the performance �gures of our Java fault tolerance mecha-
nisms.

7.2. Evaluation Environment

The performance results presented here were obtained on a DAS-2 ([1]) cluster computer.
The cluster we used contains 72 homogeneous nodes. Each node contains:

� two 1-GHz Pentium III processors, 16 KByte L1 cache, 256 KByte L2 cache,

� at least 1 GB RAM (2 GB for two �large� nodes),

� a 20 GByte local IDE disk,

� a Myrinet interface card,

� a Fast Ethernet interface (on-board).

The cluster is running on Red Hat Linux release 7.2 with kernel 2.4.18. Tools included
in IBM Java 2 Standard Edition version 1.4.0 release were used for compiling and running
evaluated applications. Each presented test was repeated at least three times and the
average of results was considered.

7.3. Applications

We selected the applications based on the criteria that they are challenging to the check-
pointing subsystem, i.e. they use a complicated control �ow scheme and gather much
temporary data. Making these programs fault tolerant manually requires non negligible
e�ort.

We used four applications in this study: ASP, SOR, TSP and Shallow Water. The
applications vary widely in their complexity. For example ASP and SOR are relatively
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simple while Shallow Water consists of several advanced mathematical transformations
(Fast Fourier and Legendre).

Our applications di�er greatly in the type and frequency of synchronization, the degree
of sharing data, the communication scheme, the degree to which the data domain of a
particular process changes over the length of a program execution, and the granularity of
exchanged data. The diversity of our application suite ensures that the results of this study
are representative of a large class of programs, rather than being speci�c to a single type.

7.3.1. Successive Over Relaxation

Our Successive Over Relaxation (SOR) uses a simple iterative relaxation algorithm. The
input is a two-dimensional grid. During each iteration, every matrix element is updated to
a function of the values of neighboring elements. In this case, the function is an average of
the four neighboring elements. To avoid overwriting an element before neighbors use it for
their computations, we use a �red-black� approach, wherein every other element is updated
during the �rst half-iteration, and the rest of the elements are updated during the second
half-iteration. The work is parallelized by assigning a contiguous chunk of rows to each
process. Exchange of data between processes is therefore limited to those pages containing
rows on the edge of the chunks.

The implementation we used for tests has several con�gurable properties. They include:

matrix size number of columns and rows of the matrix we are going to compute;

iterations number of iterations to calculate. One possibility is to detect termination au-
tomatically;

communication inter-node communication scheme. Possible options allow for either syn-
chronous or asynchronous communication;

communication thread type this parameter is enabled if and only if we use the asyn-
chronous communication scheme. There are two possibilities. One is to start a new
thread every time we want to send data to our neighbor. Other allows us for reusing
a single thread.

In the original SOR algorithm after every phase processes running on di�erent nodes
synchronize on a global barrier to guarantee that no data will be removed before they are
used. In the variant we used, the problem of premature deletes was solved by locking data
on per-node basis.

7.3.2. Shallow Water

The Shallow Water application (known as Parallel Spectral Transform Shallow Water
Model � PSTSWM) is a message-passing Java program that solves the nonlinear equations
on a rotating sphere using the spectral transform method. The shallow water equations
in the form solved by the spectral transform method describe the time evolution of three
state variables: velocity, divergence, and a perturbation from an average geopotential. The
velocities are computed from these variables. Shallow Water advances the solution �elds
in a sequence of time steps. During each time step, the state variables of the problem are
transformed between the physical domain, where the physical forces are calculated, and
the spectral domain, where the terms of di�erential equation are evaluated.

52



Transforming from physical coordinates to spectral coordinates involves performing a
real fast Fourier transform (FFT) for each line of constant latitude, followed by integration
over latitude using Legendre transform (LT) to obtain the spectral coe�cients. The basic
outline of each time step is described below.

1. Evaluate non linear product and forcing terms.

2. Compute forward Fourier transform of non-linear terms.

3. Compute forward Legendre transforms.

4. Advance in time the spectral coe�cients for the state variables.

5. Evaluate sums of spectral harmonics, simultaneously calculating the horizontal ve-
locities from the updated state variables.

6. Compute inverse Fourier transform of state variables and velocities.

The parallel algorithms in PSTSWM are based on decompositions of the physical
and spectral computational domains over a logical two-dimensional processor mesh of size
PX�PY . Initially, the longitude dimension of the physical domain is decomposed over the
processor mesh row dimension and the latitude dimension is decomposed over the column
dimension. Thus, FFTs in di�erent processor rows are independent, and each row of PX
processors collaborates in computing a �block� of FFTs. Similarly, the Legendre transforms
in di�erent processor columns are independent, and each column of PY processors collab-
orates in computing a �block� of Legendre transforms. The computation of the nonlinear
terms at a given location on the physical grid is independent of that at other locations.

7.3.3. Traveling Salesman Problem

In the Traveling Salesman Problem (TSP), the goal is to �nd the shortest route for a
salesman to visit (exactly once) each of the n cities in his territory. The algorithm we
used for our measurements uses a tree to structure the space of possible solutions. A node
of the tree represents a partial tour. Each node has a branch for every city that is not
on this partial tour. The parallel algorithm uses a manager process which traverses the
top part of the tree, up to certain depth D. For each node on depth D, the manager
generates a job to be executed by a worker processes. A job consists of the evaluation of
the subtree below of the given node. E�ectively, the searched tree is distributed among
several processes. The manager process searches the top D levels: one or more worker
processes traverse the nodes at the lower N � D levels. In order to reduce the number of
searched branches workers exchange between each other information about the shortest
path already found. The workers can skip parts of the tree below nodes which represent
partial tours already longer than the global minimum. However, exchanging information
about the global minimum introduces additional communication overhead.

Since in the algorithm we described, there is no obvious synchronization point where
the global checkpoint could be done, we used the timer to request the checkpoint (and thus
global synchronization) once every chosen time period.

7.3.4. All-pairs Shortest Paths Problem

In the All-pairs Shortest Path (ASP) problem, the goal is to �nd the length of the shortest
path between any two nodes in a given graph. The standard solution to this problem uses
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an iterative algorithm. It assumes that nodes are numbered sequentially from 1 to N (total
number of nodes). During iteration k it �nds the shortest path from every node i in the
graph to every node j that only visits intermediate nodes in the set [1..k]. During iteration
k, the algorithm checks if the current best path from i to k concatenated with the current
best path from k to j is shorter than the best path from i to j found so far. After the last
iteration, the resulting path between every node i and every j is the shortest one because
it may visit any other node from the set [1..N].

The standard algorithm uses a sequence of matrices for storing lengths of all these
paths. Each iteration is represented by a new matrix. Matrix element (i, j) corresponds to
the currently shortest path between nodes i and j. In a parallel version of this algorithm,
each processor takes care of some of the rows of the matrices. When a process �nishes
computing the row, it sends it to all the others. A process should not start working on
iteration k until the value of row k from k-1 iteration is available.

In order to make this algorithm fault tolerant, we instrumented the code with additional
instructions. Whenever a process starts a new iteration, it checks if a checkpoint was
requested by any other processor and if so, it synchronizes with the others in order to make
a global checkpoint. A global checkpoint is requested by a process whenever it reaches a
certain iteration.

7.4. Results

7.4.1. Performance overhead of the normal execution

In this section we present the time overhead introduced by the byte code transformations
applied to the distributed SOR, ASP, TSP and Shallow Water algorithm implementations.
More precisely, we are describing the overhead introduced by instrumenting the applica-
tion's byte code with additional if statements after method calls that may result in state
capturing and the overhead connected with replacing standard Java RMI with our fault
tolerant counterpart.

Parallel programs usually use one of two kinds of communication models: synchronous
or asynchronous. Synchronous communication occurs when a process sending data cannot
continue until the message has been successfully delivered to the receiver. The standard
Java RMI supports only synchronous message passing, which usually causes big perfor-
mance overhead. In order to use asynchronous communication, a programmer has to ex-
plicitly create a separate Java thread responsible for sending messages. This can be done in
one of two ways. A new thread can be created each time a message is sent or one thread can
be reused (the thread has a queue for send requests and serves them one by one). All three
types of communication types have been implemented in the ASP and SOR algorithms
and therefore we have tested them with our system.

Figures 7.1 � 7.7 present the performance overhead of our transformations for each
tested algorithm. For every case we have two plots. One of them compares the execution
times of the original and transformed application when no checkpoints were taken. Note,
that normally applying the postprocessor to the program code that does not contain make

checkpoint statement will not modify the byte code at all. To constrain the byte code
modi�cations we placed the make checkpoint statement inside a conditional block that
was never executed. The second subplot presents the same overhead in a normalized form.
The plots show the relation between the number of nodes used for computation and the
execution time.
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Figures 7.1, 7.2 and 7.3 present three sets of experiments on the SOR algorithm for
matrix 1000x10000 and 200 iterations. The �rst one uses synchronous communication. As
one could expect, the overhead increases with the number of nodes used in computation.
This fact may be explained in many di�erent ways. The SOR algorithm works in phases.
During the n-th phase every process �rst performs computations on the local data, sends
results and waits for results from other workers. Each of the if statements added after
method calls that may lead to a state capturing is executed once per phase. The highest
noticed execution time overhead was 9%.
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Figure 7.1: The performance overhead of byte code transformations of a single thread per

node variant of distributed SOR application
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Figure 7.2: The performance overhead of byte code transformations of a thread pool variant
of distributed SOR application

The second set of experiments was based on asynchronous communication scheme with
a thread pool (a pool of threads which are reused for sending messages). The results are
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presented in �gure 7.2.

For the given SOR implementation, there are three application threads per node. One
is responsible only for computation. Communication with neighbors is served by separate
threads on one dedicated thread per neighbor basis. These threads are reused in di�erent
phases of the computation. The sender threads are created once � on the application
startup and stay active until the end of the computation. Because of their longevity, the
communication threads have to be checkpointed with the application. When a thread is
registered in our framework several data structures as the Context and the Computation

objects have to be created. Some overhead is introduced also by the statements added by
the postcompiler. Now not only the main thread (responsible for computation), but also
the sender threads include make checkpoint request. To support serialization of those
threads corresponding method calls have to be modi�ed. The results, however, show that
these actions does not in�uence the performance and the overhead is even lower than in
the previously considered case. The maximal noticed execution time overhead was 5%.

The most complicated variant of the distributed SOR application we used for testing,
starts a new thread for every data send request. The results presented in �gure 7.3 are
again very similar to previous tests and reach 6% for 24 nodes.
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Figure 7.3: The performance overhead of byte code transformations of a new thread per

message variant of distributed SOR application

The results of the ASP algorithm (�gures 7.4 � 7.6) show that the standard Java
implementation is not appropriate for parallel programming. Rather than getting speedups
with the growing number of processors, we got slow-downs. It can be explained by the
fact that the ASP's implementation we have tested, uses binary trees for broadcasting
messages to all processors. When a process wants to broadcast a message to all other
processes, it sends it to two of them which in turn send it to other two processes which
have not received this message yet, and so on. Finally, all processors receive a copy of
the message. However, this introduces performance overhead when using the standard
Java RMI implementation. Each time a process receives an object (which actually is the
message), it deserializes it, serializes it again and propagates to the next processes. Since
serialization and deserialization of Java objects is very expensive, it causes big performance
overhead. When the group of processors to which a message has to be broadcast is growing,
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the performance overhead of every broadcast request increases causing observed speed-
downs. This problem has already been addressed in the Ibis [9] project, where the Java
serialization mechanisms have been noticeably improved.
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Figure 7.4: The performance overhead of byte code transformations of a synchronous vari-
ant of distributed ASP application

As for the SOR algorithm, the All-pairs Shortest Path (ASP) algorithm's implementa-
tion that we used, can be executed in three di�erent modes. For each test we used matrix
1000x1000. Figure 7.4 shows the results for synchronous communication. The performance
overhead in this case is very unstable � for 20 nodes the results did not show any overhead
at all, but for 8 nodes we measured the overhead of 15%. The variety of results is proba-
bly due to a very frequent communication between nodes, which causes nondeterministic
behavior of the application.

The second set of experiments (�gure 7.5) was based on asynchronous communication
with a thread pool. Here, the results are much more stable than for the synchronous mode
and vary around 9%.

The third set of experiments (�gure 7.6) on the ASP algorithms uses asynchronous
communication with a separate thread for each message sent. In this case, the overhead
started at the level of 10% for 4 nodes and was decreasing with the growing number of
processors. Finally, it was not visible at all.

The TSP application is much simpler than ASP. It uses only synchronous communica-
tion and the overhead of our transformation algorithm is negligible � the highest noticed
was less than 2% (see �gure 7.7). The if statement inserted by the byte code transforma-
tion algorithm is executed only once each time a job is fetched by the worker process from
the server process. Since processes do not communicate with each other as frequently as in
the ASP or SOR algorithms, the overhead caused by our transformation algorithm is not
so visible.

The Shallow Water application is much more complicated from a mathematical point
of view than the previous algorithms. At the same time the distributed �ow control of
water molecules' positions computation is easier to analyze. The algorithm consists of
several iterations which are further divided into steps. After each step all the processes
running on di�erent nodes perform global barrier synchronization. There are no separate
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Figure 7.5: The performance overhead of byte code transformations of an asynchronous
with thread pool variant of distributed ASP application
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Figure 7.6: The performance overhead of byte code transformations of a new thread per

message variant of distributed ASP application

sender threads that need to be synchronized before checkpoint, so the byte code compiler
transforms the methods of one thread only. All these circumstances explain extremely low
overhead below 1% for tests on 1728 molecules. The details can be found in �gure 7.8.
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Figure 7.7: The performance overhead of byte code transformations of distributed TSP
application
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Figure 7.8: The performance overhead of byte code transformations of the Shallow Water
distributed application

7.4.2. Performance overhead of taking distributed checkpoint

In this section we analyze the delays of checkpoints. More precisely, we measure the time
interval between the last checkpoint request and the last thread resumption (after check-
point). The plots present the delay as functions of the checkpoint size and the number of
nodes involved in the global synchronization.

Figure 7.9 shows the dependency between the size of the saved data and the time
needed for taking globally consistent checkpoint for our applications running on 20 nodes.
Since the size of the applications data vary during the execution, we measured the size of
the checkpoint.
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Figure 7.9: The time of the checkpointing phase as a function of data size

For all the tests described in this section we used the most complicated setup, namely
asynchronous communication with a thread pool. TSP and Shallow Water are exceptions
as they do not allow for modifying the communication method. Our system has a con�-
gurable option that allows to specify the replication factor, that tells how many times the
checkpoint should be replicated. Higher number means higher reliability. In other words,
replication factor is the number of nodes that may crash without making the system unable
to recover. However, more replicas means also bigger overhead of the serialization phase.
In our tests we used the lowest possible replication factor value � 1.

Note that the graph in �gure 7.9 has logarithmic scales on both axes. The function we
are plotting is monotonic so log-log plot keeps the relation of original data. As one could
expect, the time of a checkpoint can be approximated by a linear function of data size.
If we look closer we may notice that our plot is in fact composed of two linear functions.
For smaller checkpoints (less than 3MB) the time needed for capturing the state of the
distributed application grows slower than for bigger data. For smaller checkpoints the time
depends mainly on the e�ciency of state saving extensions. Checkpoints, that contain huge
amounts of data move the overhead from the data serialization to data sending and storing
phase. This may explain the di�erences in performance behavior.

Figure 7.10 shows the in�uence of increasing the number of nodes on the time needed
for taking a global checkpoint.

The size of the checkpoint was approximately the same for all con�gurations � 500KB.
SOR and ASP use pooled send threads for communication. All the applications indicate
very similar characteristics in regard to the length of the checkpointing phase. The algo-
rithm is quite insensitive to increasing the number of processors involved. Deeper analysis
of SOR and ASP cases reveals groups of node numbers with similar characteristics. These
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Figure 7.10: The time of the checkpointing phase as a function of the number of nodes

groups are delimited by numbers of nodes that are powers of 2. It may be explained by
the characteristics of the synchronization algorithm. The neighborhood function used for
purpose of presented tests de�nes a broadcasting structure in a form of the binary tree.
Processes running on di�erent nodes should synchronize in logarithmic time. Obtained
results show that our algorithm can deal with bigger number of nodes without much loss
on performance. Furthermore, the overhead of the checkpointing phase when a number of
participating nodes is increased depends not only on the global synchronization. Threads
running on di�erent nodes may need di�erent amounts of time for capturing their state.
The oscillations of the state serialization times may accumulate and introduce visible de-
lays. These facts may explain the results obtained for the Water application where the
overhead for 20 nodes is lower than for 16. The best results were obtained for the TSP
algorithm. In this case there is almost no overhead connected with increasing the number
of nodes.

7.4.3. Performance overhead of the recovery process

When a distributed application crashes, our system allows to recover it. However, before
the recovery process can be initiated, the failure of the process has to be noticed by another
process. It happens when the global checkpoint is requested (all nodes try to synchronize)
or earlier when the other process fails to send a message to the broken process (our fault
tolerant stubs detect an error). When one of these situations happens, the recovery process
is initiated. The entire process of recovery consists of several steps. First of all, the coor-
dinator process scans all processes in order to discover which of them are alive. All alive
processes are informed about the result of this scan. Processes which keep checkpoints for
broken processes are requested to recover them. In order to do that, they contact an acti-
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vator processes (responsible for restarting the processes), send them the latest checkpoint
and request restarting that checkpoint. Then, all alive processes request their activators
to restart them using the latest checkpoint (which they keep in the memory). When an
activator process receives the restart request together with a serialized checkpoint, it saves
the checkpoint in a �le on the hard disk, starts the application in a new Java Virtual
Machine and passes the �le name where the checkpoint is saved to this application. The
application reads the checkpoint from that �le and reestablishes its state.

In our tests we were killing one of the processes and we measured the time of the reco-
very of the entire distributed application. Since the time necessary to discover the failure of
the process is entirely application dependent (depends on the frequency of communication
between processes), we did not include it in our measurements. We have measured the
time elapsed since the �rst process noticed the failure until all processes recovered and
continued the execution.
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Figure 7.11: The recovery time as a function of checkpoint size

Figure 7.11 presents the relationships between the average size of the checkpoint and
the recovery time for each tested application. Notice that all of them are presented on the
log-log scale due to the exponentially growing checkpoint sizes chosen by us. We measured
the size of saved data (checkpoint) that had to be restored. We tested checkpoints up
to 64 megabytes, which in the case of the TSP and the Shallow Water applications were
arti�cially increased by adding big dummy arrays of data to the application. All tests show
that for checkpoints smaller than one megabyte the recovery time increases much slower
than for larger checkpoints, although for both intervals the increase is linear. We expect
that for checkpoints smaller than one megabyte the recovery time is in�uenced mostly by
global synchronizations of processors and starting a new Java virtual machine. The high
reliability of the global coordination algorithm used here decreased its e�ciency. For bigger
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checkpoints the overhead is caused mostly by hard disk access when an activator process is
recovering the application. Each node of the DAS-2 cluster consists of two processors and
each of them is executing a separate JVM with a di�erent computation. The disk access
is a bottleneck when both computations at the same time transfer big amounts of data to
and from the same hard disk. When the checkpoint size increases, the disk access time also
increases extending the whole recovery process.
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Figure 7.12: The recovery time as a function of the number of nodes

Similarly, �gures 7.12 present the relationship between the number of nodes and the
recovery time for each tested application. They all show that the recovery time depends
in a linear way on the number of processors, however the recovery time increases very
slowly. The bigger number of processors cause longer global synchronization times and
bigger probability that one of the processors will slow down the whole recovery process
(the rest will be waiting for that process).

Note that we did not present the �gures of the real-time overhead of the checkpointing
and recovery phases, because it depends on the frequency of making a checkpoint. Moreover,
our system was designed for large-scale applications running for a long time and the total
execution time of example programs is too short.

7.5. Methods call graph improvements

In this section we compare the original transformation algorithm used in the Brakes project
with the version improved by us. We optimized the original Brakes algorithm by rewriting
only invocation of methods which can lead to the checkpoint request (see chapter 2.3 for
details). Figure 7.13 shows the gain in the performance when using methods call graph for
described parallel programs running on 8 nodes. The results show that the performance
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of the TSP application increased over 30% and the performance of SOR over 10%. Since
the TSP application uses a recursion, it has many method calls which are rewritten by the
Brakes algorithm, though they never lead to a state capturing. Our optimized algorithm
did not improve the performance of ASP and Shallow Water applications. Since these
applications does not have many method calls in the main computation loop, our algorithm
reduces only few if instructions that do not have big in�uence on the overall performance
of the whole application.
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Figure 7.13: Methods call graph performance improvements

Table 7.1 shows the comparison between the total number of rewritten methods when
using the original Brakes algorithm and our optimized version for all four described parallel
algorithms. Note that many of saved method call transformations occur in the initialization
code and therefore does not in�uence the performance.

Table 7.1: The comparison of the number of rewritten method invocations with and without
the methods call graph analysis

Application Original Brakes algorithm Our algorithm
ASP 36 6
TSP 37 2
SOR 53 5
Shallow Water 52 5

The results clearly show that the original Brakes algorithm does much unnecessary
method rewriting and thus causes too much performance overhead.
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Chapter 8

Conclusions and Future Work

We have described a system for making parallel Java programs fault tolerant. Since the
system was implemented in pure Java without any modi�cations in the Java Virtual Ma-
chine, it is portable across di�erent Java Virtual Machine implementations and operating
systems. Our system is transparent to a very high extent for the most popular class of
parallel Java programs that take some input, compute, communicate between each other
using the Java RMI, and yield a result.

In order to make an application fault tolerant, a programmer has to provide only an
explicit code which calls the blocking make checkpoint method in all user threads on
every computation node. The programmer may use a timer to request a checkpoint every
some time or explicitly call it after �nishing some computations to make them persistent.
However, for more complicated parallel programs it may require some e�ort. When a
thread is waiting on a semaphore for data from other nodes, it may happen that it will
never wake up if those nodes are already blocked on the make checkpoint request. It
may happen for both local and remote threads. In order to prevent such a situation, it
is sometimes necessary to wake up all threads before making a checkpoint. In the future
it would be convenient to eliminate this impediment. It might be possible to implement
a clever bytecode post-processor which uses heuristic techniques to insert an appropriate
code to prevent such situations in a way transparent to the programmer.

Our system cannot deal with standard Java classes that are not serializable. Among
others they include classes for accessing sockets, �les and operating system resources. When
our state capturing algorithm encounters an instance of one of these classes on its way (on
the Java stack), an exception is raised and the checkpoint request fails. Similarly, instances
of these classes cannot appear as object's variables, because serialization of such an object
causes an error. In our system, the programmer has to take special precautions when using
non-serializable classes. Instances of these classes can be used only inside methods that
never appear on the Java stack when state capturing is initiated. In the future, it would be
convenient to improve our system, such that a programmer would not have to care about
it. Paper [17] describes an approach based on automatic generation of serializable wrapper
classes for resource classes by using techniques similar to the compile-time re�ection. The
wrapper objects would have the same functionality, would be serializable and perform re-
initialization procedures at the recovery. An application could use these wrapper classes
instead of the original classes.

There is also a small limitation of the state capturing algorithm, which does not allow
to initiate state capturing during the execution of an exception handler. This limitation
was described in section 2.5 and should be �xed.
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The big advantage of our system is the ability to resist a crash of even a number of
processors at the same time. Checkpoints may be duplicated on several machines and all
external components, like the RMI registry are replicated for fault tolerance. The upper
limit on the number of processors which can fail between two successive global checkpoints
is con�gurable, but setting it too high may in�uence the performance of the system.

Since checkpoints can be initiated also inside remote method calls, our system can
be integrated with applications that use RMI for something more than data transfer.
Part of the framework responsible for the mentioned functionality is the client side stub
postprocessor.

Finally, the tests show that our system has very low performance overhead during
the normal program execution (without making checkpoints) which even for complicated
parallel programs usually does not exceed 10% and for many programs is not visible at all.
The overhead of making a global checkpoint is also very low assuming that it is made in
reasonable time intervals � it is increasing very slowly with the number of processors. The
recovery time, although it is not that important assuming that faults are not too frequent,
is much worse but can be improved in the future by reducing the number of disk accesses.

We believe that the system we developed can be used with success for large-scale parallel
computing.
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