
University of Warsaw
Faculty of Mathematics, Computer Science and Mechanics

Kornel Jakubczyk
Student no. 236034

Marauder disks detection

Master’s thesis
in COMPUTER SCIENCE

Supervisor:
dr Janina Mincer Daszkiewicz
Institute of Computer Science

September 2010

Supervisor’s statement

Hereby I confirm that the present thesis was prepared under my supervision and
that it fulfils the requirements for the degree of Master of Computer Science.

Date Supervisor’s signature

Author’s statement

Hereby I declare that the present thesis was prepared by me and none of its contents
was obtained by means that are against the law.

The thesis has never before been a subject of any procedure of obtaining an academic
degree.

Moreover, I declare that the present version of the thesis is identical to the attached
electronic version.

Date Author’s signature

Abstract

Marauder disks are devices suffering from degradation of their performance. They can behave
in this way because of latent errors, more precisely the ones that can be fixed by the hard
drive’s internal logic. Presence of marauder disks can lead to performance problems for a
storage system. Moreover, it can also be an early symptom of a future fatal failure. The
ability of earlier problem spotting would also simplify solving certain problems that the
system administrator might possibly face.

This document describes design and implementation of the marauder disk detection com-
ponent done for the HYDRAstor system, a commercial storage solution provided by the NEC
corporation.

Keywords

Hard disk drives, performance, storage systems, latent errors

Thesis domain (Socrates-Erasmus subject area codes)

11.3 Computer Science

Subject classification

D.4.2 Storage Management
C.4 Performance of systems – Measurement techniques

Tytuł pracy w języku polskim

Wykrywanie dysków maruderów

Contents

Introduction . 7

1. Hard Disks Reliability . 9
1.1. Different Error Causes . 9

1.1.1. Operational Failures . 9
1.1.2. Latent Failures . 10
1.1.3. Source of operation slowdown . 10
1.1.4. Importance for RAID . 11
1.1.5. Disk scrubbing . 11

1.2. Error probability and SMART . 11

2. The HYDRAstor system . 13

3. Requirements and constraints . 15
3.1. Hardware configuration . 15

3.1.1. Cache . 15
3.1.2. Hardware RAID . 15
3.1.3. Physical node layout . 16
3.1.4. Controller interface . 16

3.2. Business requirements . 16
3.2.1. Avoid false-positives . 16
3.2.2. Avoid unneeded disturbance to the system’s operations 16
3.2.3. Limit human actions . 17
3.2.4. Low down-time . 17
3.2.5. Test results accessibility . 17

3.3. Technical requirements and constraints . 17
3.3.1. Integrate well with the HYDRAstor system 17
3.3.2. Adapt easily to a different hardware configuration 18
3.3.3. Detect interference from other software 18

3.4. What is not required . 18
3.4.1. Handling totally unresponsive disks 18
3.4.2. Detecting errors in data . 18

3.5. Previous work . 18

4. Solution . 21
4.1. Two-level testing . 21
4.2. On-line monitoring algorithm . 21

4.2.1. Kernel I/O statistics provided . 21
4.2.2. Selected values for monitoring . 23

3

4.2.3. Choosing the right monitoring interval 23
4.2.4. Running average method . 24
4.2.5. Additional constraint . 24
4.2.6. Reducing false error report probability 24

4.3. Off-line tests . 25
4.3.1. Overview of disks and file system testing tools 25
4.3.2. Method of submitting requests . 26
4.3.3. Selected disk test method . 26

4.4. Impact of DAC . 27
4.4.1. Cache . 27
4.4.2. Background RAID operations . 28
4.4.3. Possibility of a DAC failure . 28
4.4.4. Logical devices layout . 28

5. Technology . 31
5.1. Programming languages used . 31
5.2. Libraries used . 32
5.3. Important aspects of the code design . 32
5.4. Scenario of actions . 33
5.5. Getting information about present disks . 33

6. Design . 35
6.1. Overall module dependency . 35
6.2. DACTool . 35
6.3. Options module . 36
6.4. DiskTester tool . 38
6.5. Tool wrappers . 40
6.6. DisksProblemsData . 40
6.7. DisksConfiguration . 42
6.8. DiskCheck tool . 42

6.8.1. Invoking the tool . 43
6.8.2. Important classes . 43
6.8.3. Clean-up mode . 45
6.8.4. Read results mode . 45

6.9. On-line monitoring . 46

7. Parameters’ evaluation . 49
7.1. On-line part . 49

7.1.1. Foundations of the decisions made . 49
7.1.2. Sample results of the monitoring . 50

7.2. Off-line part . 50
7.2.1. Variability of the tests’ results . 50
7.2.2. Dependency on the space available on disk 55

8. Tests . 59
8.1. Unit tests . 59

8.1.1. Googlemock . 59
8.1.2. Doctest . 60

8.2. Sample integration test scenario . 60

4

8.3. Ensuring correct functionality . 61

9. Summary . 63
9.1. Future work . 63

Bibligraphy . 65

5

Introduction

The purpose of this thesis is to present a method for detecting certain error behaviour that
could happen during hard disks operation, and to provide a way to report it afterwards. A
disk that handles its read and write operations in a very slow way will be called marauder
even if the requests may be successful.

Hard disks drives are very complex devices now. They are capable of performing quite
sophisticated self-healing operations, e.g. relocation of the failed blocks, repetition of a read
with slightly modified head position to use a bit different part of the magnetic material. On
the one hand such recovery steps increase their reliability, but on the other they can increase
the latency of the requests. They can also possibly hide important error symptoms from an
application observing only the fatal failures of the operations. Therefore, a marauder disks
can happen as a result of recovering from certain latent failures of the disk device.

Marauder disk can have a negative impact on the performance of a storage system be-
cause this aspect strongly depends on the underlying hardware. After receiving some error
notification the user can replace the partially broken disk. This would allow a well-designed
storage system to heal itself using the new device.

Moreover, it turns out that probability of fatal disk failure increases drastically after
certain first error symptoms. Thus, decreasing the time of using a marauder disk for data
operations would also increase the reliability of the storage system as a whole.

It can be time-consuming to diagnose presence of a marauder disk because the entire
storage system could be quite complex. However, a hint that the device might be partially
broken would directly present the source of the problem.

The reasons given should explain why an automated utility detecting marauder disks
has been desired. Therefore, such component was created for the HYDRAstor system, an
enterprise distributed storage solution provided by the NEC Corporation. Each storage node
of this system uses hard disks as a main place to keep both user data and metadata. To satisfy
all the requirements, most notably maintaining the resilience of the data, HYDRAstor needs
to perform certain background operations on the informations stored on the disks. Naturally,
the user write and read requests also have to use the hard drives. Because of this the disks
are the important components of the system, and they affect overall performance a lot. This
is why a marauder detection component is important for HYDRAstor. Here its design and
implementation will be described.

The organisation of the chapters is as follows:

1. Hard Disks Reliability – a description of reasons of hard disks’ failures will be provided
to cast some light why a device can behave like a marauder, also will try to underline
why the problem being dealt with is important.

2. The HYDRAstor system – will give a very quick glance on the system that the imple-
mentation will become a part of in order to provide some context for the reader.

7

3. Requirements and constraints – will present the most important both technical and
business requirements that the marauder detection component has to face.

4. Solution – will describe the method that was chosen with some rationale for such
decision.

5. Technology – will tell the reader about certain general aspects that appeared during
the creation of the marauder detection component and about the technology used.

6. Desing – will show general module and class layout, also their responsibilities in the
implementation.

7. Parameters evaluation – some results from the tests of the disks performance done to
choose the required parameters for the marauder detection method will be described.

8. Tests – will give an introduction to the tests that were implemented to prove the
correctness of the implementation.

8

Chapter 1

Hard Disks Reliability

1.1. Different Error Causes

Nowadays hard disks drives have become quite complex devices. They provide high-level logi-
cal block address space that is internally mapped into appropriate blocks. Built-in controllers
can track and correct head position, internally queue and cache pending I/O operations, cal-
culate erasure-coding on the data. Thanks to this, many errors can be fixed internally, and
they do not bother the user. On the other hand, this means that internal device behaviour
is complicated as well. In turn, this can lead to more complex processing in some situations,
most notably under error conditions.

To better understand this problem, let us first take a closer look at the reasons why hard
drives can fail. If the write operation aborts with an explicit error, the application can take
appropriate counter-measures as defined in its high level logic, e.g. fail transaction, drop the
operation, or propagate error to some higher layer.The most interesting situation happens
when device cannot retrieve data that was considered to be stored correctly on the disk.

As described in [Ele09] such disk failures can be divided into two main groups called
operational and latent failures; the categorisation presented there is as follows:

1.1.1. Operational Failures

In this group the error does not affect the data itself, however, the read operation fails so the
information stored cannot be retrieved.

Damaged servo track

Servo tracks are stored on the disk’s surface by its manufacturer. They cannot be normally
rewritten afterwards so their damage is unrecoverable. Because servo tracks are used for the
disk’s head positioning, such error would cause a read failure, even though the data might be
still correct. Servo tracks can be damaged in a similar way as any other ones so the reasons
will be described in the parts following.

Head cannot stay on track

This is an interesting category due to its possibly intermittent nature. Depending on the
current conditions previously observed error may not happen again; the possible causes in-
clude vibration and noise that might have ceased. Because the tracks are not ideally circular,

9

disks have a system for tracking the head position and correcting it accordingly to the track.
Therefore, if the error is repeatable, the disk internal logic may be able to correct it.

SMART limit exceeded

SMART, i.e. Self-Monitoring Analysis Reporting Technology, is an interface provided by disks
that allows to access information about internal hard drive’s errors, especially the ones that
do not cause requests’ malfunction. If their analysis claims that the device is broken, the read
operations will not proceed.

Electronics and head failure

The electrostatic discharge or other reasons can affect the electronics since they are quite
complex in the disk device. Especially, read head can be damaged. Moreover, it can loose its
magnetic properties, for example due to high temperature.

1.1.2. Latent Failures

In this group the actual data is damaged, however, the device and software are unaware
of this happening. Such failures occur if either the write has failed, or data got destroyed
afterwards.

Failed write

If the head is placed too high over the surface, the material may not get magnetised strongly
enough, especially the old data may remain partially detectable. The cause of such error can
be vibration, curiously as low as coming from other disks’ activity.

There is also a non-intermittent version of this problem; happening when head’s slider
changes its aerodynamic properties, for example because of the lubricant, used in the con-
struction of the device, gathering on it.

Bad media is handled by vendors so the faulty regions should be mapped-out with some
padding around. Nevertheless, this process may leave some of the failing blocks in use since
it may be hard to calculate the positioning of the bad sectors. Then any writes done to such
blocks would silently fail.

Data destruction

The first cause is that the data can be damaged by short bursts of heat, that may be caused
by a collision between the head and the surface of the disk where small bumps may be present.

Secondly, scratches and corrosion can be the reason of a failure. Particles from several
sources can be flying inside the disk causing damage to the surface where a write occurred
before.

Finally, in the so–called bit-rotting, the magnetic material may be loosing its properties
as the time passes. However, it is not an important factor in practice.

1.1.3. Source of operation slowdown

Some of the errors mentioned have intermittent nature so a repetition of the operation can
easily solve this. Moreover, disk devices have error handling procedures, for example in case
of a read failure they can retry the attempt with slightly modified head location. Also, if some

10

failed sectors are found they are remapped to the backup ones, changing the data locality,
thus changing performance as well.

The number of such recovery steps taken depends on the model of device. On the one
hand, desktop class disks benefit from the increased reliability, but on the other server class
drives can report the error earlier to reduce the latency in handling user requests.

Nevertheless, an increase of the operations’ duration can happen.

1.1.4. Importance for RAID

Latent failures are a threatening problem for the RAID systems because they can lead to
the so-called double failure scenario. This happens when a silent error in the data remains
undiscovered until another visible failure occurs. Then normally RAID starts reconstruction.
However, as there has been the initial error, the process may not finish successfully, and part
of the data may be lost.

This is why the problem of latent disk failures has to be addressed in the implementation
of the RAID controllers. For example, as described in [RAIDmonitor], it can be done by
monitoring artificially generated disks requests. They are directed to the areas dedicated
solely for this task, and their latency is measured.

1.1.5. Disk scrubbing

A well-known solution used to prevent latent errors is the disk scrubbing technique. It suggests
to periodically read the stored data, even if the user does not ask about them. For example,
such protection mechanism is a part of the HYDRAstor system (see chapter 2).

There is some research being conducted on how to do this efficiently, and how much
protection can be offered. Note that some errors are caused by the operations of the disk
so scrubbing would increase their probability. Nevertheless, the benefits are greater than the
risk of failure introduction, as it is described in [LatentErrors].

For another example of such research, authors of [StaggeredScrubbing] prove in their paper
that due to error locality characteristic scrubbing can be made more efficient by dividing the
disk into small enough sections; then scrubbing can read only part of them unless some
operation indicates a problem.

Also the vendors of the disk hardware do a lot to provide a high quality product. They
design the racks for disks so that heat is reduced by ensuring good ventilation. Another issue
here is the reduction of the vibrations. The shipment and installation procedure should also
concentrate on avoiding early damage to the device.

1.2. Error probability and SMART

The paper [FailureTrends] contains analysis of disks failures and possibilities of making pre-
dictions about it using SMART. They make some observations about distinguishing faulty
devices with SMART data:

• 56% of the failed devices showed no errors of the kinds considered the most significant.

• 36% of the failed devices showed no SMART errors at all. However, a major part of the
disk population showed a non-zero number of such errors, making the possibly weakest
condition of having any SMART failure ineffective.

11

The conclusion that was reached is that SMART is not enough to provide good failure mo-
nitoring.

However, four kinds of SMART errors do cause a big increase in the chances of future
failure. Such analysis allows to infer that monitoring of disk’s non-fatal failures is important
because they may indicate upcoming problems. Therefore, the marauder detection component
should indirectly help to avoid some read failures.

12

Chapter 2

The HYDRAstor system

The HYDRAstor is a distributed storage system featuring global duplicate elimination, pro-
vided by the NEC corporation. To give the reader a general overview, some of its features
will be mentioned here, for a more detailed description refer to [HYDRA09].

The system is designed to support writing backup data with both high throughput and
low latency. By applying proper cutting operation, a stream of data is divided into a stream
of chunks. Now the parts that are already stored in the system can be reused in saving the
current stream. This process is known as the duplicate elimination. The use of the content-
addressing paradigm allows to efficiently implement this, increasing the logical capacity for
the backup data.

Features

A secondary storage solution faces different user requirements than other kinds of storage.
The time window when the data can be saved should be as short as possible because backup
might limit the access to the user’s system. This makes the performance of the write operation
the most critical one as it is the function executed most often. Read throughput is important
for the recovery procedure. HYDRAstor also handles data deletion.

The concept of the distributed hash table is employed to offer a high level of scalability and
error recovery. The first comes from the fact that users can gradually increase the capacity
and performance by adding new servers for storage and handling data access, the back-end is
designed to potentially contain even thousands of nodes. The second means that the system
automatically handles failures of disks, network, entire machines, and even some software
errors. The marauder detection component adds another functionality that would detect an
early disk failure so it is aimed to further improve this particular aspect.

The system monitors resilience of the data stored in it. Therefore, failures are not hidden
until the read operation. It reports a global state with information about how many disks
and machines can be lost before a data loss would occur.

HYDRAstor supports various resilience levels for the data stored in it. This allows the
user to select the right balance between the space taken and the amount of safety. The
Reed-Solomon erasure codes are applied in order to greatly increase the safety of the data.

High availability is achieved by the distributed and decentralized organisation of the
HYDRAstor system; on-line upgrading of software and hardware is another step in this
direction. Extending the system does not require any down-time. A new node can be added
to the system while write operations are in progress. Then their performance increases as the
new machine begins to get utilized. New protocol drivers can be added on-line allowing to
handle a new format of the input data.

13

HYDRAstor does global duplicate elimination, featuring blocks of variable length, what
allows for content-based stream chunking. In this method the fragments generated can be
better adjusted to the patterns in the data by allowing a more intelligent cutting operation.
In effect better ratio of the duplicates found is gained. The elimination process is done in-line,
during the write operation, to increase the performance as duplicated blocks do not have to
be stored again.

The system is composed of server-grade machines that offer high reliability. Each node is
responsible for the portion of the data that is assigned to it proportionally to its abilities. The
load-balancing spreads the components, the elements that contain the data, so that resiliency
and performance are maximized.

This is just a quick enumeration of some of the important features, more details can
be found in other papers([HYDRA09]). The important thing for this work is the fact that
the HYDRAstor system is a commercial high-quality storage solution that utilizes the hard
disks to provide its services, and therefore, it depends on their performance in servicing user
requests.

Location of the marauder detection component in the system

The marauder detection component, which is the subject of this thesis, is located on the
back-end part of the system, where hard disks drives that store the data and handle user
requests are present.

Each machine, forming the grid of the back-end infrastructure, is called a physical node.
It serves as a host for more than one server instantiation, known as a logical node. Each
logical node handles its own hard disks that are going to be monitored to detect possible
marauders. Other logical nodes have much less influence on those drives, and they may be
using different hardware components. Therefore, the main area of interest will be the scope of
a single logical server. However, due to the reasons described in the following chapter, some
actions require knowledge and operations on the level of the physical node.

Location of the elements forming the marauder detection component inside a single phys-
ical node will be presented in chapter four.

14

Chapter 3

Requirements and constraints

The most important requirements that affect the design of the marauder detection component
will be described in this chapter. They can be divided into two main categories: business and
technical ones. Both groups are strongly influenced by the fact that the component will be
part of the HYDRAstor system, described in the previous chapter.

The main requirement of marauder disk detection is to recognise a decrease in disk per-
formance that is not caused by an activity of hardware RAIDs or the operating system, but
indicates an error in the hardware. The main task is to spot a failure of a single device,
however, hinting that the disk controller may be broken would also be useful.

3.1. Hardware configuration

One of the key factors that affect the design of the marauder detection component is the
underlying hardware configuration. In the basic one HYDRAstor logical server uses 6 SATA
hard-disks drives that are connected through a SATA controller, which will be called shortly
DAC. This controller provides vital services for the system, however, its presence causes some
complications to the design of this component.

3.1.1. Cache

Read and write operations normally are cached in the controller in order to increase the
performance. This cache is shared among all the disks. If we now consider a situation when
one device has a significantly worse performance than the rest, the cache would be filled
with requests going to this device. That could slow down requests directed to the other disks
because now they cannot use caching efficiently. This implies that noticing a slowdown of a
particular device does not mean that this is a marauder detected.

3.1.2. Hardware RAID

DAC provides hardware RAID implementation built on top of the physical disks connected.
Such entities are exported as logical devices, similar to the ones representing physical disks.
Thanks to that, the operating system sees them as normal SATA devices so they are very
easy to use by the applications. However, for such controller load on the RAID partition gets
ultimately converted into load on some physical disks, and the operating system does not
have the right knowledge to report it correctly. This introduces a necessity to identify which
logical disks are actually hardware RAIDs and possibly what they consist of.

15

Still, if disk devices are configured into so-called software RAID, implemented by the
operating system, the load on each disk is reported correctly.

To maintain proper data protection RAID’s implementation has to perform certain back-
ground operations, most notably reconstruction of data in case of an error detection. Such
actions generate heavy load on the underlying disks. All these operations are done internally
so the operating system again knows nothing about them.

3.1.3. Physical node layout

A typical physical node layout consists of two disks controllers, each having its own disks and
similar configuration.

Depending on the HYDRAstor system configuration, one DAC can be used exclusively
by one logical server instantiation or shared between more of them. Here arises a need for
information which controller is the given server using, and whether it is shared with any other
logical node.

3.1.4. Controller interface

Hardware vendor provides a command line utility to access disk controller’s configuration. It
is utilized in marauder detection component to read the DAC set-up and current state, also
to perform any required operations.

Different controllers may come with different interfaces and slightly different tools.

3.2. Business requirements

3.2.1. Avoid false-positives

One of the key aspects of the system design is to require as little human supervision as
possible. This reduces the actual cost of using the system, therefore, is a big benefit for the
client. However, as marauder detection component deals with hardware failure, it is justified
to expect some physical actions. The purpose of the design is to suggest some recovery to the
maintenance personnel of the client’s system installation. False alarms would then increase
the cost, and perhaps even worse, they could lead to overlooking the actual correct report.

Please notice that even without disk replacement, the HYDRAstor system as a whole
will function, and it will provide services for the clients, yet perhaps with reduced capacity
or performance. This component should quicken restoration of its full potential. The system
is well and carefully designed to handle replacement of a broken disk with a new working
one. Another benefit of a reaction to the earlier error symptoms is reducing the time period
when a nearly broken device is used, in effect this reduces the possibility of a failure due to
hardware problems.

3.2.2. Avoid unneeded disturbance to the system’s operations

Although detecting marauder disks is, as we can see, desired for the system, it is still an action
performed in addition to the more important ones. During normal operation HYDRAstor
system is busy with handling user requests, and even if there are no such activities, this does
not mean that the system is idle. It may be performing internal tasks that involve checking
and moving data to maintain its resilience, namely also disk scrubbing. As the HYDRAstor
is a distributed system, a machine may be required to take part in actions being initiated on
other servers. With highly utilized system, it would be difficult to find a convenient free time

16

window to perform some additional actions required by the marauder detection. However,
this component is mainly focused on dealing with atypical conditions, during which some
extraordinary actions may be necessary.

In conclusion a combination of unintrusive operations in a normal situation with the
possibility of performing more costly actions when it is required would create a good solution
for the problem of marauder detection.

3.2.3. Limit human actions

Due to reasons described in the previous sections, the marauder detection component should
not require any special operations in case of the system working correctly. However, we can
expect that the user would take some steps in case of a possible disk failure.

3.2.4. Low down-time

High-availability and low-latency are among the key clients’ requirements. This component
cannot be allowed to cause unnecessary drops in handling user requests. Therefore, even if
some errors are suspected, the inactivity time of the machine should be as short as reasonably
possible.

3.2.5. Test results accessibility

The tests’ results should be readable regardless of whether HYDRAstor logical server is cur-
rently running because that logical node may be stopped due to a marauder disk presence.
Also, this data should survive systems restarts and if possible some disk errors. This require-
ment implies that the result access operation cannot be done only in the HYDRAstor logical
server.

3.3. Technical requirements and constraints

3.3.1. Integrate well with the HYDRAstor system

The purpose of the marauder detection component implementation is to provide an additional
useful functionality for the HYDRAstor system. This has a huge impact on the technology
chosen to implement the solution, the libraries used, and on the design.

High level of integration brings some benefits, especially it allows using already imple-
mented elements. Among the most important ones are:

• the build system,

• the framework for unit testing and integration testing,

• the HYDRAstor configuration support.

Actually, this component must use all the facilities mentioned in order to be accepted as part
of the HYDRAstor system.

User interface

All of the user interaction in the marauder detection component is handled in a uniform way
as any other components of the HYDRAstor system. Therefore, the design of user interface
is not presented here. If we would think about classic Model View Controller paradigm, the

17

entire implementation of the marauder detection component, presented in chapter 6, lays in
the Model layer. This allows to limit the communication with the outside components to only
exporting well-defined data objects and allowing to trigger required actions.

Communication is organised in a way similar to the RPC model, requests from the higher
layers are received, and a response may be provided. For the output part, the marauder
detection component only has to decide what part of data will be made available and export
that in form of C++ objects. Then appropriate higher layers will handle the task of presenting
them. The input part is actually reduced to receiving a request to trigger a required action
that can possibly contain some defined parameters.

3.3.2. Adapt easily to a different hardware configuration

With the technology constantly progressing some changes to the hardware are to be ex-
pected, especially using faster and bigger disk devices. However, models of devices that will
be installed in the system should be known beforehand. This will allow to prepare some
configuration for the new components.

3.3.3. Detect interference from other software

Many things can cause disturbance of a single application’s performance. Most notably, the
reasons can be other programs’ activities and some operating system’s actions. Those are hard
to be distinguished from hardware errors if observations are based only on data provided by
one application. This is why a source of information closer to the operating system is needed.

3.4. What is not required

Sometimes, it can be a good idea to state what a component should not do in order to gain
better understanding of its scope.

3.4.1. Handling totally unresponsive disks

This situation is easy to handle, as the failure is a definite one. However, it is important
to remember that it should not cause failures in the operations of the marauder detection
component that can be avoided.

3.4.2. Detecting errors in data

As we already know, before actual failure occurs, there may be a slowdown of performance,
caused by the disk trying to recover from non-fatal errors. Therefore, detecting marauders is
somehow connected to detecting any disk errors. Apart from that, the HYDRAstor system
already contains appropriate countermeasures for detecting and handling read errors so it
makes little sense to duplicate this functionality.

3.5. Previous work

Before the solution proposed will be described in the next chapter, an overview of the previous
work will be provided. It turns out that the topic of disk performance and reliability receives
significant attention. Some aspects have already been presented in chapter 1. The areas of
work connected with marauder detection are:

18

• Analysing latent disk errors, and ways to protect against them, e.g. [IntraDisk], or
[LatentErrors], and other works about disk scrubbing. There is also research on con-
structing better devices done by the hardware vendors.

• Means for predicting disk failures using various artificial intelligence methods, and the
accuracy they can achieve, e.g. [FailureTrends].

• Preventing degradation of performance in RAID systems, also preventing the double
error scenario, an example is given in chapter 1 ([RAIDmonitor]).

• Disk requests’ latency is an important measure in constructing high-performance sys-
tems, i.e. database servers. There are tools for profiling it (e.g. see [ORION]), and also
for monitoring it used by the system administrators.

• Disk performance benchmarks are developed in order to compare various new device
models and file systems. However, both these tasks are not among the requirements of
the marauder detection component.

19

Chapter 4

Solution

4.1. Two-level testing

To meet the requirements stated in the previous chapter a two-level solution has been pro-
posed. The key idea here is non-intrusive monitoring that watches over the disks’ performance.
It can suggest more expensive actions to be taken in order to confirm that observed anomalies
are actually errors.

First part is done using operating system statistics. It is the on-line monitoring that is
being performed while the HYDRAstor logical server is working. It is able to notice symptoms
of a marauder disk presence. However, it is not expected that on-line monitoring suggestions
can be always trusted.

Second part executes short disks’ performance test. It is quite difficult to be reliably
performed together with normal logical node operations so it is done while the required servers
are stopped. Because of this, the off-line test takes more time to execute and effectively uses
up significant resources. In exchange it should provide a result that would be reliable.

Figure 4.1 presents an overview of the physical node’s organisation, where the marauder
detection component is situated; the actual number of elements can differ depending on the
configuration of the system. DAC is a hardware disks controller, described in the previous
chapter.

The figure shows the marauder detection component consisting of the two main parts:
on-line monitoring and off-line tests implementation. The first one is included in the logical
node while the second one is a separate entity. In general, off-line part does not work together
with the logical nodes using the DAC controlling the disks to be tested. The test tool can
have access to all the DACs, also it is possible that two tools would be running at the same
time – each one using a different DAC.

4.2. On-line monitoring algorithm

4.2.1. Kernel I/O statistics provided

In order to avoid pitfalls mentioned in section 3.3.3, a more reliable source of input data is
required. It would have to include the impact of the system activity but also interference
from other applications running on the same machine.

Luckily, the Linux kernel provides some information about performance of disk devices
(for more detailed description see [IOstats]). They are most useful for selecting and tuning
I/O scheduler for the system. Let us take a look at what kind of data they provide:

21

Figure 4.1: Location of the marauder detection component in the HYDRAstor system; it
consists of on-line and off-line parts

1. Number of read/write requests completed – quite interesting, as it shows whether disk
is doing any useful work.

2. Number of requests merged – perhaps useful from the I/O scheduler point of view,
however we do not really care about operating system’s internal actions.

3. Number of sectors read/written – this gives the amount of data that was actually
processed.

4. Time spent reading/writing.

5. Number of requests in progress – not really useful for us, as it has typically low values,
and it depends mostly on the point in time when the statistics have been read.

6. Time spent doing I/O – interesting as it gives us an idea about how active the device
has been.

This list applies to the whole devices, for individual partitions reported data can contain
less positions depending on the kernel version. However, we are interested in summarised
statistics for the entire device.

Statistics data can be obtained by reading the “/proc/diskstats” file, conveniently for all
the disk devices at once. Values are returned in form of 32 bit counters. To use the statistics
the following steps are needed:

• read the proc file,

• wait and measure the real time elapsed,

22

• read the proc file again,

• subtract the counters’ values.

Note that there is a source of some inadequacy between the time measurement and the
moment of doing a read from the file. Implementation has to be aware of the possibility
of an overflow in the counter. It turns out that due to the properties of the integer value
representation, a simple subtraction of 32 bit numbers does this correctly.

During the experiments with these statistics it turned out that they may not be updated
in an uniform way in the environment that the system is running. Regular picks in the number
of requests completed were observed, as if a group of requests was reported as completed in
short amount of time, and after that a new group was started. This implies that the interval
between measurements cannot be too short.

Libraries used by the HYDRAstor system allow to handle statistics gathering almost in
the way that was desired for marauder detection component, they required only an addition
of exporting some values in a raw format.

4.2.2. Selected values for monitoring

It has been decided to concentrate on the number of requests completed by a single disk.
They provide simple to analyse information about whether useful work is being performed
by the hardware. Obviously time has to be taken into account as well. Fortunately, the kernel
I/O statistics include the counter of time during which requests were being processed, and the
actual value to be monitored is the time spent working in relation to the number of operation
successes, this is an approximation of the average request service time. This measure should
significantly increase when a device would become a marauder.

After analysing the statistics provided by the kernel, some observations about possibility
of false positives can be made. The first one is that when a device has a very small number
of requests to process, comparing to its abilities, they can take significantly longer. This is
why utilization of the drive has to be monitored as well. It can be calculated by taking the
active time counter and dividing it by the real time elapsed.

When utilization is too low the measure of average service time is invalidated. As a ma-
rauder disk would take long to process request, the active time would be high, and utilization
should increase. This reasoning proves that such additional check should not influence the
ability to spot the actual error.

4.2.3. Choosing the right monitoring interval

As described before, the method of accessing the kernel I/O statistics requires selecting some
interval between the counters reads. There are some benefits of choosing a longer period:

• The proc file will be read less frequently so it would cause less interference to system’s
operations.

• More requests will be taken into account, in effect an average of more samples will be
calculated giving better result. We expect marauder disks to be showing its behaviour
for some significant period of time.

• Only an approximation of average request service time is available that is calculated
from activity time. However, this counter gets increased also for uncompleted requests.
Too short measure time could lead to an increase in the ratio between request actually

23

completed in the measurement window and the requests only started in it. This could
result in an undesired rise in the average service time.

On the other hand, HYDRAstor system’s behaviour may have phases of performing some
disks activity followed by periods of idle time. In such situation very long monitoring interval
would render the phases indistinguishable. Then the low utilization detection could classify
entire sample as idle time, effectively disabling the monitoring mechanisms.

4.2.4. Running average method

To conquer the problem mentioned before, and still keep most of the benefits of the longer
period selection, taking advantage of the running average properties was proposed. This
involves using a shorter monitoring interval that allows for fine-grained removal of samples
without high enough utilization.

A selected number of non-idle measurements is summarised to form a longer one, giving
the benefit of getting better statistical properties. Samples are organised in a queue; when
a new one arrives, the oldest one is removed. The queue length is determined by the time
span of all the measurements in it, and a decision whether to remove any sample is based on
the length of the real time window that we would like to normally observe. This guarantees
that even if many samples would be rejected, the algorithm would not allow grouping too
distant ones together. Also, such method produces results that are more similar to having a
long monitoring interval from which parts of low disk activity are removed, what is actually
desired here.

4.2.5. Additional constraint

The previous sections describe a reasonable way of monitoring disk activity. However, during
both the artificial and real system tests, it turned out that there is a situation with significant
increase of the average request service time (such monitoring results are presented in figure
7.5). It could happen when after some period of high activity disk quickly becomes idle. The
problem lays in the border sample between the busy and idle time. The utilization may be
high enough to pass the non-idle test described before, and some final requests can take much
longer than expected.

Increasing the sample duration could help a bit, but only by reducing the probability of
such failure. The running average method allows for a simple extension that would handle
this exception. If it detects a few samples with high utilization followed by a sample below
the idle threshold then the last high activity sample is disposed of. Notice that the possible
anomaly can occur in either the last valid sample of the busy period or in the first sample
of the idle time following. Therefore, this additional check together with the low utilization
filtering will invalidate both possibly wrong measurements.

4.2.6. Reducing false error report probability

To give control over the possibility that some rare and unrepeatable error condition would
keep causing monitoring failure while the system is able to work normally one more check is
added. Marauder possibility notification will be generated if error conditions occur frequently
enough. Both the warning number and length of the time window used here are configurable,
as described in chapter 6. This also allows the monitoring system to be closer to what a
human would do when given similar disk performance data.

24

4.3. Off-line tests

The most important factor in implementing the off-line part is providing correct environ-
ment where load on the disk being checked is coming almost exclusively from the test being
performed.

The other important task is finding some balance between the duration and reliability of
the tests. A hard disk contains big amount of data scattered across its surface. As the errors
can affect the device only locally, they may be noticeable only during long test using big parts
of the disk. However due to the requirements stated such approach cannot be taken. As we
will see, write tests are designed to test the space that is most likely to be used in future
requests. The read tests’ role will be to get an overall picture of the entire device.

4.3.1. Overview of disks and file system testing tools

There already exist many tools for performing disk tests. We will shortly describe two for a
quick overview.

hdperf

Hard Drive Performance benchmark is a quite simple cross-platform tool created in an open
source project (see [HDPerf]). However, it provides all the basic functionality. It features
simple random and sequential tests, only reads in the current version. The disk can be divided
into a few (64) zones, for which results are reported separately. This allows to address the issue
of performance being dependent on the physical location on the drive. Another important
feature is the ability to test different sizes of the requests. There have been plans to support
testing disk devices with bypassing the operating system’s cache (by using the O DIRECT
flag in the open system call’s arguments).

Bonnie and Bonnie++

The first one was a very well known disks benchmark application for the Linux system. Later
one is a new branch, created in C++, that delivers support for testing bigger modern disk
devices (see [Bonnie++]). It allows to perform a few kinds of tests, like:

• sequential output, also in mode where data is rewritten,

• sequential input,

• random seek,

• file creation and deletion.

First two kinds support two operating modes – one block or one character at a time. These
benchmarks also measure CPU utilization.

Conclusion

There are even more complicated benchmarks that feature sophisticated checks. Some of them
are designed to prevent certain simple optimizations in the file systems, solely dedicated to
improving performance in artificial scenarios, from affecting the results of the test. This
is important because otherwise benchmark would give unrighteous advantage to one file
system over another. However, the marauder detection component is not really concerned

25

about testing the file system’s performance. This layer will impose a constant impact on the
underlying disks’ performance because it is standardized in the HYDRAstor system.

From quick comparison of the both benchmarks above, it is clear that most of the func-
tionality that is necessary is already included in the hdperf. We are not interested in CPU
usage. Reading one character at a time is not a real world scenario, it tests things like im-
plementation of the standard library. Rewrite test would actually measure benefits coming
from operating system’s cache – but we are not interested in testing the kernel layer. This
convinces us that the test method does not have to be very complicated.

Moreover, due to the low down-time requirement, some further simplifications are desired.
The size of a single disk request can be fixed. It is chosen to approximate a typical operation
of the HYDRAstore system. By using just one length, a greater number of similar requests
can be issued in a limited time. In effect, as an average from a bigger sample is calculated,
the result value is more reliable in terms of representing a chosen type of disk operation.

4.3.2. Method of submitting requests

For performing the test scenarios an appropriate method of submitting disks requests has to
be chosen. It has been decided to use asynchronous input-output because it has good support
in the proprietary library used in the HYDRAstor system.

An important aspect here is the decision to use the mode with the O DIRECT flag set. It
allows to remove the impact of the operating system’s cache on the disk requests. Therefore,
it makes the test more dependent on the hardware and less affected by the upper layers. The
marauder detection component aims to test the disk directly so if by accident some data
would be cached by the operating system then request would finish very quickly, perhaps
causing error in problem detection.

This decision can be further justified by the fact that there are only two disadvantages in
the implementation:

1. Requests have to be aligned to the block size of the operating system and need to have
the length being a multiplicity of this block size. This is a rather unimportant constraint
because the test’s requests can have whatever size and align we want, as their results are
not used. It is only a simple thing to ensure in the implementation. It is not desirable
to test smaller or unaligned requests as they are rarely performed by the HYDRAstor
system, also the operating system can merge and align them appropriately using its
I/O scheduler’s algorithm.

2. Direct mode does not work for remote file systems. This issue affects only some of the
test environments, and it does not occur in the production configuration. With slightly
more careful design of selecting the write path in tests this problem can be simply
avoided.

4.3.3. Selected disk test method

Four kinds of tests were selected, those are sequential and random both reads and writes.
With sequential tests chosen to measure raw throughput and random tests to measure seek
performance it is expected to cover most of the disk functionality.

Write tests

The problem with doing writes on a working system is to avoid accidental corruption of its
data. With a mounted file system direct modifications on the level of block device seems to be

26

really dangerous, especially that there may be some other programs doing their operations,
also a flush of the operating system’s cache may be happening. Because of that, it has been
decided to issue writes through the file system layer. The main advantage of this is safety
and simplicity of reverting all the changes done.

There are two main issues that arise here:

• Necessity of clean-up action – it is vital to ensure removal of the temporary write file
despite any errors that may happen during the test because the HYDRAstor system
monitors free disk space on each device. Some errors are quite likely to happen with a
marauder disk present, for example time-out conditions.

• It would be hard to ensure a fixed location of the write file on a disk, and troublesome
to check its placement afterwards; also the file may get fragmented during write.

The first one has to be dealt accordingly by the design and implementation.
Surprisingly, with the second one comes a related benefit. The location of the write file

should be more or less similar to the location where new data would be placed. This becomes
quite significant because of the requirement of using a short test length. This way we focus
on the disk’s parts whose failure would be most critical for the performance of the system.

Read tests

Testing reads through the file system layer would be quite difficult and would impose many
problems, like:

• finding some files to read,

• dealing with files too short for test,

• finding placement of file on disk because it influences the result.

Here we can take advantage of the Linux’s block devices support. By reading directly from
them, we bypass troubles with checking many files. Please notice that it is not a problem
whether we read from a block that contains some valid data or not because we are not really
interested in checking the read result. Only the performance is important.

A small disadvantage is that super user permissions are required to access such device,
but for safety reasons it is desirable to limit the number of actions and the amount of code
performed with higher privileges.

4.4. Impact of DAC

For both on-line and off-line parts there are important exceptional situations when their
work cannot be performed due to the possibility of generating false positives. As described in
chapter three, DAC provides some level of abstraction internally that we want to take into
account to allow correct marauder detection component’s operations.

4.4.1. Cache

The disks requests are cached in the DAC layer so this strongly affects their performance in a
hard to predict manner. For tests focused on the disks only, it would be beneficial to disable
this functionality. That will be done in off-line testing.

27

However, as the on-line part is functioning together with the HYDRAstor logical server,
the cache has to be enabled. This factor will have to be included in tuning the expected
performance thresholds for the monitoring. This is a key reason why a degradation of a single
disk’s performance could also imply a degradation for some other ones. Because of that on-
line monitoring is not expected to tell exactly which disk is the faulty one. This shows why
a combination with off-line test is designed to solve this problem.

4.4.2. Background RAID operations

To maintain safety of the data stored on a hardware RAID device in case of a disk failure DAC
has to perform a rebuild operation. As this task is done internally, the operating system will
not notice it, and a marauder possibility could be wrongly reported by the on-line monitoring.
Moreover, marauder presence could be incorrectly indicated by the off-line test. Therefore, it
is vital to detect periods of time when the RAID background operations are being performed,
as they may lead to false-positives in marauder detection.

Periodical checking if background RAID tasks are running will be done using a tool pro-
vided by the DAC’s vendor. The information obtained states that either nothing is currently
going on or that some actions are being performed now. With checks frequent enough, we
should be sure that the disks are not busy with any background tasks.

In on-line monitoring a sample is considered to be correct if both the first check before
it reports no activity and so does the first one after the sample. This introduces the need for
delaying processing of a given measurement until a next check of the RAID background tasks
state is performed.

4.4.3. Possibility of a DAC failure

It may rarely happen that degradation of the disk’s performance is not actually caused by
the device but rather by the DAC layer. Although such situation is not a main focus of the
marauder detection component’s requirements, it has to be dealt with. It has been decided
that if in off-line testing too many disks would seem to be broken, they will not be reported
as marauders. Instead an information about too many failures will be given to the user to
let him diagnose the problem. Such approach is acceptable, yet it still requires some human
action. However, such situation probably indicates a serious error condition.

4.4.4. Logical devices layout

RAID logical devices

Because hardware RAID logical devices are build on top of underlying physical devices, any
load on them would translate to some load on the disks. Then disks would appear to be
working slower, but they would be handling other requests in the meantime. The actual
amount of requests submitted would depend on the level of RAID used in configuration,
implementation of the RAID, location of the parity drives for a particular part of data.
Therefore, it is hard to be predicted. Also, one physical disk can be used in a few RAID
configurations.

To prevent this problem, during both on-line and off-line parts’ operations all the logical
devices that are hardware RAIDs will be monitored. If the load on them would be high
enough to influence the results too much, the following actions will be taken: the results will
be invalidated for the off-line tests, and current samples will be removed from the on-line
monitoring.

28

Normal logical devices

Non-RAID logical devices are mapped to the physical disks by the DAC controller. However,
in part of the system configurations more than one logical device can be mapped to a single
disk. Even then most of the requests should be scheduled through a single logical device.

For the off-line tests this is not very important because it is enough to check just the main
logical device, meaning the one containing the stored user data, and distinguishing is not a
problem.

In the on-line monitoring, handling such configurations requires summarising the load of
several logical devices, as the operating system sees each of them separately. Real time is the
same for all the devices, as we read one snapshot of the proc file. There are also two kernel
I/O statistics that are used: number of requests done and active time. The first one can easily
be summed. The second one is impossible to be evaluated correctly so it has been decided to
use a maximum of the available values. This decision allows to stay on the safe side of the
error range in terms of false-positives. As the load on auxiliary partitions should be mostly
small when compared to the load on the main one the introduced error should not affect
marauder detection component’s usability too much in such configurations.

29

Chapter 5

Technology

This chapter will focus on the programming languages and libraries selected for the marauder
detection component together with certain issues that follow that choice. Some decisions
made for the entire implementation of the on-line and off-line parts will be presented here.
The chosen monitoring and testing methods have been described in the previous chapter.
Also a scenario of the actions connected to the marauder detection component will be given
to show their logical order.

5.1. Programming languages used

Most elements of the marauder detection component are implemented in C++. This is a
strongly-typed programming language that offers complex features to an experienced user,
such as support for the so-called meta-programming, partial template specification, virtual
functions, operator overloading, and even multiple inheritance. C++ is very popular, and
there are many good references about it, e.g. [Thinkcpp].

Some benefits of choosing the C++ programming language that help to fulfil the require-
ments set are:

• integration – most of the system and its libraries are already implemented in C++,

• low impact – thanks to the efficiency this programming language offers, the operations
performed by the marauder detection component can use little time and resources,

• correctness – the C++ compilers can do complex static checking.

Python

Considering the requirement of easy adaptation to the hardware change, part of the imple-
mentation was done in Python. This is a weakly-typed scripting language that has been built
around simple syntax, with many good libraries available (see [Python]). Python has gained
a lot of recognition and an increasing number of applications in many fields. It is considered
that it reduces the effort required in certain types of projects.

The part implemented in Python handles communication with proprietary software pro-
vided by the DAC vendor. Basically, it constitutes an adapter layer between possibly incom-
patible DAC controlling software and other parts of the marauder detection component’s
implementation. As each operation invoked here involves at least creating a new process,
whose operations can be quite costly as well, an overhead caused by using Python is rela-
tively small.

31

In exchange, simpler implementation is gained, also it will be easier to incorporate future
changes required to support new hardware.

5.2. Libraries used

Proprietary libraries used in the system

HYDRAstor libraries provide many utilities that help to integrate with the rest of the system
and the test framework. They include things like: logging, exceptions, means to report error
conditions, threading support, handling asynchronous I/O operations, and many others. What
is important, this is all done in an uniform way for the HYDRAstor project.

Boost

Among elements provided by the Boost library that the marauder detection component uses
are things like: functors, smart pointers, and regular expression support (see [Boost]).

Particularly, a library called Spirit was chosen to implement the configuration file parsing.
It allows to specify a grammar purely in C++ code in a way analogical to the BNF notation.
This is implemented using overloading of many operators and meta-programming techniques
(see [Boost.Spirit]). The use of the Spirit library allowed to easily handle quite flexible format
of the configuration file and to simplify the implementation.

5.3. Important aspects of the code design

Testability

It is important to write the code in a way that would enable creating class tests. This in-
volves certain steps during the implementation, some of them are well known object-oriented
programming practices:

• use well defined interface for classes – the better the interface the easier it is to test,

• use abstract interfaces – this allows to replace a class with a stub, in C++ this comes
down to using abstract base classes,

• use functors – they can conveniently replace an interface with one method,

• add simple constructors for testing purposes only – for some classes an empty stub
would not be enough to implement certain tests, such constructor greatly simplifies
creating them.

Object lifetime

With great features of the C++ programming language come some nuisances, the most
important one is the requirement of managing and being aware of the objects’ lifetime.
However, there are some steps that simplify this that are used by the implementation:

• use smart pointers – then lifetime management becomes automatic;

• use functors – they manage their callback object lifetime and ensure proper destruction;

32

• use pointer containers – the Boost library provides a set of containers designed to be
the owners of the pointers held. This assumption allows them to release the managed
memory upon their destruction. Moreover, they provide better performance than stan-
dard containers of smart pointers. What is also important, the use of pointer containers
make the code a bit clearer.

5.4. Scenario of actions

In the next chapter modules used to implement the marauder detection component will be
presented. A scenario with a failed disk device being reported will be described here to provide
an overview of the elements’ interactions.

The initial situation would be the one where the HYDRAstor logical server is running,
and no errors about possible marauders have been spotted before.

• The first active part of the marauder detection component is the implementation of the
on-line monitoring as it is embeded in the server itself. It reads the kernel I/O statistics
and also uses the DACTool to monitor the state of the hardware RAID devices.

• When the on-line monitoring spots a possibility of a marauder disk, it uses a DisksProb-
lemsData class instance to persistently store a warning flag.

• When the components of the HYDRAstor system related to the user interface issue a
request to obtain that flag’s value, a DiskCheck tool is invoked to return the required
data.

• After receiving the notification about a possible marauder disk present, user can choose
to run the off-line tests at the appropriate time. In order to do this, the required
HYDRAstor logical nodes should be stopped, then a request to the DiskCheck tool to
invoke off-line tests should be issued, and finally nodes should be restarted.

• Then the DiskCheck tool will use DiskTester tool to run the tests and DACTool to
monitor the environment. It would store the results using DisksProblemsData module.
Also, the flag set by the on-line monitoring will be cleared.

• Upon receiving a request to read the results stored in the previous step, the DiskCheck
tool will be called again to return the required results.

• Finally, the user can read the results and may take further required actions.

5.5. Getting information about present disks

There is some information about the hard disks that needs to be obtained in order to imple-
ment the solution presented in chapter four. The method for getting this data is described in
this section.

Starting from the top, the file system path to the directory where user data is stored can
be obtained using certain HYDRAstor libraries. This allows to get a list of all the devices we
would want to monitor together with their identification numbers in the operating system.

What we receive here is actually a partition of the operating system’s disk device. However,
on-line monitoring requires checking the statistics of the entire disk, also it is better to use
the name of the whole device in the communicates for the user. This introduces a need of a

33

translation layer that changes the partition name to the proper device. It is currently added
as an extension to one of the system’s libraries.

The next step is to get the model that the DAC’s logical device uses inside the operating
system. It will serve as a key in the translation between operating system’s devices and the
DAC layer. Here an udevinfo Linux command line utility is used, please refer to [udevinfo]
for more details about it.

DAC configuration software is to do the rest of the work. With its help, a set of the logical
DAC devices is obtained, containing the following data for each entry:

1. Logical device model.

2. Flag whether this is a hardware RAID.

3. List of physical devices that are hosting this logical device (there can be more than one
for hardware RAIDs). Each element has the physical disk model specification.

Once all this data is obtained, it may turn out that more than one operating system’s
device is using the same logical device. Nevertheless, all the required information is already
collected, meaning that for each disk that should be tested the following elements are known:

1. the file system path to the directory mounted on it,

2. the number and name of the main device in the operating system,

3. the physical disk model,

4. a list of other operating system’s devices sharing the same physical disk, that is needed
by the on-line monitoring.

List of hardware RAIDs mapped to the operating system’s devices is also obtained during
those steps.

34

Chapter 6

Design

Main modules and classes that constitute the marauder detection component will be presented
here. For a more general description of the methods used see chapters four and five.

6.1. Overall module dependency

Main modules and their dependencies are presented in figure 6.1. DiskCheck tool is the part
that implements off-line testing. On-line monitoring is part of the HYDRAstor logical server.
All the parts depicted there are described in more detail in this chapter. With the exception
of DACTool presented in section 6.2, all elements are implemented in the C++ programming
language.

6.2. DACTool

As it was previously described, this is the part encapsulating proprietary shell interface to
the DAC. It is implemented in Python. DACTool is used as a script taking command line
arguments as an input, and printing results in some fixed format to the output.

It accepts the following arguments:

1. Controller type – allows to support many vendor’s hardware.

2. Controller identifier – tells on which DAC instance to operate.

3. Operation to be executed.

4. Optionally log file location – used mainly for debugging purposes at implementation
phase, also for one of the tests to check if required actions have been invoked.

5. Optionally operation specific arguments.

The supported operations are:

1. Check hardware RAID status – reports if some background RAID tasks are presently
active.

2. Change DAC cache state – Used for off-line testing and clean-up after it to set up and
restore test environment state. Cache should be turned off or on respectively.

3. Get disks models – it is responsible for getting all the disks information required from
the DAC.

35

Figure 6.1: Dependencies of the main modules

The last command is executed in 3 phases. The first one is invoking udevinfo for each
operating system’s disk to map them to the DAC’s logical devices; this is done as part of the
generic implementation. Then current vendor controller utility is called by the appropriate
GenericController subclass returning a map with data about logical devices and a map with
data about physical devices. Finally the generic layer merges all the 3 results obtained so far,
and it prints the data in fixed format to the output.

The internal design is presented in figure 6.2 that shows a class diagram for DACTool.

6.3. Options module

To achieve easier maintenance by simpler configuration procedure, a separate module for
marauder detection component’s specific configuration has been proposed. It has a simple,
but quite flexible, format that consists of:

• a header with version number,

• a group of global options,

• a list of named sections, each one containing a list of named tests.

Each test can have a list of options, each consisting of a pair of a name and value. Also, it
can contain a section of the result values. It was decided that options must have a fixed type,
and the query of option value should return a specified type. This allows to encapsulate type
checking in the options module . To be able to actually use the value its type should be equal
to the required one so returning a variant type here would not be really useful, especially
that the options contain only simple values.

Each non-default test should have an option specifying what kind of test it is. This is
used to create a proper test object, described later.

The value lookup order is designed to support off-line testing semantics when the names
of the sections are used as the disk’s model. When the query for an option with a given name
and type arrives, the following are searched:

36

Figure 6.2: Class diagram of DACTool

1. current disk model section, under a current test name,

2. current disk model section, under a test named default,

3. default section, under a current test name,

4. default section, under a default test.

This allows to specify a minimal set of requirements about the tests’ results in the default
section, disks with unsupported models will be checked using this information.

The layout of option values for on-line monitoring is determined by the assumption that
different disks may have different models. There is a special section for the configuration of
this part that lists all the tests’ names that will be used. For a given disk model the on-line
monitoring code will try to lookup options’ values in the right section. The test name comes
from the list mentioned.

Apart from the representation of a section, a test, and an option container, Options
module has two important classes DiskTestOptions and DiskTestOptionsReader.

DiskTestOptions

This is the main class for storing and manipulating options exported to the other modules.
It has the following capabilities:

• selecting current section and test,

• reading and setting options,

• serialization to text representation, also method printForResults that cuts the results
to parts relevant to currently selected disk model, used to reduce the input and output
data size of off-line tests,

37

• interface to enumerate all the tests in the current section.

DiskTestOptionsReader

Acts like a visitor for a grammar generated with Boost Spirit, handling creation of the
DiskTestOptions objects.

6.4. DiskTester tool

It is the part that is responsible for performing the actual off-line tests described in the
chapter four. Similarly to the DACTool, it is designed to be a command line tool. Because
it has to be able to read the disk’s device file, it is run with superuser privileges. Therefore,
many responsibilities are taken out of this tool and moved to the upper layer. For example
to avoid problems with managing root’s log files, all warning messages are printed to the
standard error stream to be logged later.

To ensure termination after start, this tool takes a lock on a file specified in options. By
leaving the file descriptor opened throughout the program execution, the lock is automatically
released when the program is shuting down. Application should not close any descriptor
leading to this file because it would release the lock. This means that the file used for writing
should not be used for locking as it is closed after one test.

To avoid problems with slow disks in this tool’s execution the options are parsed from the
standard input, the results are printed to the standard output, also using the Options module.
As the tests use the O DIRECT mode, they require proper alignment of disks requests to
the block size. That value is configurable in the options described before.

DiskTester tool performs the following operations:

1. Parse the options from the input stream, their global part should provide important
setup, like current disk model, read and write files’ path.

2. For each test described in the options:

(a) check the test type, and if it is an off-line one,

(b) create proper test object,

(c) execute the test,

(d) store results.

3. Print all the results to the standard output.

The use of the DiskTestOptions class in the process described is presented in figure 6.3.

Classes

The most important one is the BaseTest class. It is responsible for:

• Submitting requests to the disk.

• Calculating results and storing them properly. They are in the form of a number of
operations completed in a given time, plus some additional data.

• Measuring duration of the test, and stopping the test when its time elapses. Execution
time may be longer than the granted time window due to a single unfinished request
by a marauder disk.

38

Figure 6.3: Use of DiskTestOptions in invoking an off-line test

39

It is a base class for all the test classes, that are named: RandomReadTest, SequentialRead-
Test, RandomWriteTest, SequentialWriteTest. Their main concern is opening proper file, and
deciding what request to schedule.

The sequential write test simply appends data to a given file. Random write one reuses the
data generated by the sequential test to do short writes at random location in file. Random
read test does single block reads from randomly chosen locations at the disk.

The most interesting one is the sequential read. It uses a right subclass of a class called
OffsetProvider to choose the read location. The provider currently used divides the disk into
a configurable number of sections, and visits them in a round-robin manner. For each section,
a random offset that is properly aligned is selected.

Error handling

Due to the requirement of not checking data correctness, errors in submitting the disk requests
are generally skipped, with the following two exceptions:

• A few first errors are printed to the standard error output, to indicate in logs that
something went wrong. However, too many messages would decrease performance of
the test so later ones are not logged.

• If the error is caused by the lack of permissions, it is not ignored because such action
could lead to false negatives. One such error means generally that all the requests will
fail similarly, giving very good test result. In such case tool exits with an error.

In case of some internal failure the tool crashes with non-zero exit code and prints proper
message to the standard error stream.

6.5. Tool wrappers

There are C++ wrapper classes for both DiskTester and DACTool. They use system libraries
to create a subprocess, get its exit code, and read the output. Wrappers do low level handling
of some error conditions, but their main concern is parsing the output. They use string
operations and regular expressions from the Boost library to do this work.

Quite important is the logging of errors, that is not done in these tools.

6.6. DisksProblemsData

This part implements storing results of all the tests performed by the marauder detection
component. The information maintained is describing one server instance.

The figure 6.4 presents the hierarchy of elements that can be stored. Classes used here
are mapped to the types exported to the user, as described in section 3.3.1. As they are not
directly accessible, some additional information can be hidden inside them. An example of
such data can be detailed test results stored to allow implementing some of the extensions
planned in future. Each non-abstract class provides the following functionality:

• Serialization in binary format.

• Pretty printing as text, the selected format is the same as used for defining Python
objects. The output can be simply evaluated as a Python expression giving ready to
use objects, this turned out to be useful for integration with the testing framework.

40

Figure 6.4: Storable entities in DisksProblemsData

• The accept method for the visitor pattern, used for implementing the user interface to
the classes.

• They also have time-stamp field to track when the tests took place.

The abstract base subclasses are provided to allow adding new versions of classes in future
in a way compatible with the binary serialization framework. This explains the V1 suffix in
name.

The most important part for the off-line tests results is the disk status that can be one
of:

• CORRECT – disk passed the test.

• CONFIRMED MARAUDER – disk is reported as faulty.

• UNCONFIRMED MARAUDER – disk failed the test, but errors in the environment
have been detected.

• TOO MANY MARAUDERS – too many disks failed the tests; this can indicate a
problem with the DAC.

• UNKNOWN – there was a fatal error in the testing procedure.

DiskTestHistoryList

This class serves as a container for data objects described before. The most important field
is the flag indicating whether the off-line disk test is suggested. This flag is automatically
set by the on-line monitoring and turned off after completion of the off-line test for a single
HYDRAstor server instance.

Data objects are organized in a queue with new messages discarding the oldest. This
gives the ability to present a snapshot of history of results to the user that may be helpful in

41

diagnosing the possible problem. To reduce the amount of data returned by the tests’ history
a filter operation is added. It is responsible for removing off-line test results for disks that are
no longer used by the system, for example after a user would replace a failed device with a
new one.

DisksProblemsData

This class serves as an interface to this part, it implements storing and retrieving operations.
Reads and writes are using a proprietary system’s library; they are directed to a file stored
on a RAID partition. The main benefit of such choice is getting a good implementation of
locking.

Because accessing the file may block current thread for too long, the constructor takes as
an argument an object of an initializer class, that can be returned from another thread. Such
design allows keeping the object under the management of the main thread, and delegating
longer task to other threads that can block safely. This simplifies access control management
in the multi-threading implementation of the marauder detection component.

To ensure proper usage there is an assertion in destructor that checks if there is no dirty
data to be stored.

6.7. DisksConfiguration

This part of the marauder detection component collects and provides all the required data
describing disk configuration in the system. This contains such elements as: file system path,
model key, device name and number, information about hardware RAID devices, also the
path to save the tests’ results. A main class, named DisksConfiguration, is responsible for:

• mapping a disk partition to its base operating system’s device,

• getting the list of all disks used by the HYDRAstor server,

• providing information which operating system’s disks share the same DAC logical de-
vice,

• distinguishing between hardware RAIDs and normal logical devices.

It features two-staged initialization. In the first step HYDRAstor system’s configuration
and libraries are queried, in the second one the data obtained from DACTool is passed to the
object, possibly from another thread.

6.8. DiskCheck tool

This is the main implementation place of the off-line testing. It has 3 work modes correspond-
ing to its main responsibilities:

1. Invoking an off-line test in a proper environment, verifying the test is not disturbed,
and calculating results.

2. Performing clean-up after failure of this tool.

3. Reading test results.

42

Figure 6.5: DiskCheck tool internals

6.8.1. Invoking the tool

The tool is triggered by an external request that is firstly processed by the upper layer. The
following steps ensure a safe invocation of the tool in the run test mode:

1. Get the list of the logical node instances running on one physical node.

2. Get their configuration, and determine whether they share the same DAC.

3. Combine obtained data with a list of the logical nodes that the user wants to test.

4. Call the DiskCheck tool for each DAC separately.

Again, the tool itself works as a command line utility. It uses Boost to parse program
options. They include:

• mode of operation,

• list of servers to check,

• list of servers that share same DAC, but are not going to be checked,

• log directory.

6.8.2. Important classes

The parts constituting the DiskCheck tool are presented in figure 6.5, they will be shortly
described in this section.

43

Managing locking

Because the off-line tests can affect and are affected by possibly more than one logical node
instance, it is necessary to integrate DiskCheck tool with HYDRAstor logical server’s locking
mechanism. A LockManagerContainer has been created for this purpose. It allows for taking
and releasing the locks of the required nodes in a safe manner that guarantees:

• Order of locking is fixed for a given server list – this is required to avoid deadlock.

• Order of unlocking is the reversal of the lock order.

• If failure happens during locking, all correctly locked servers will be unlocked.

MarauderLogic

This class is responsible for interpreting the off-line test results. It receives output of the test
tool, status of hardware RAIDs’ monitoring, and information about background RAID tasks
activity. It compares the outcome test data with configuration, sets the proper error status
in case of disturbance detection, adds results and error notifications to the off-line test data
that will be stored. MarauderLogic object also decides whether to set the status of too many
marauders detected, that is why it has access to the tests results for all disks for the given
server instance.

OfflineDiskTestRunner

Encapsulates the concept of running all the tests for all the logical nodes. This class mostly
delegates all the work to the present SingleSlotTestRunners, described in the next subsection.
It also handles reading disk configuration with a DACTool.

SingleSlotTestRunner

Is responsible for testing and cleaning-up afterwards in scope of a single instance of a HY-
DRAstor logical server. It manages the tests results, both the logic to get them and the
storing mechanism.

It also runs RAID disturbance and background operations checks in separate threads to
validate the test environment. The design of this part is presented in figure 6.6.

The listeners provide a function call operator with proper argument type, and they use
specific logic to calculate the result value. For example, RAID background tasks status listener
will ignore idle status, and will store active status if any is encountered.

To implement environment monitoring separate threads are required as the main thread
is waiting for the test tool to complete. BackgroundMonitor encapsulates multi-threading
aspects; a C++ template allows to achieve better code reuse in its implementation. It works
as follows:

1. Stores an listener object in the constructor.

2. A new thread is started during the start method of the BackgroundMonitor instance.

3. Thread periodically runs proper data providing functor, it passes the result to the
listener.

4. Thread is safely stopped in the destructor – this allows for automatic clean-up when
an exception occurs.

44

Figure 6.6: Off-line testing environment monitoring design

5. Finally, listener object can be used to get the required results.

The results from listeners are interpreted by the MarauderLogic object described before.

6.8.3. Clean-up mode

The clean-up include 3 steps:

1. Terminating any possibly running DiskTester tool. This is done by checking the lock
file and sending a kill signal to the owner of the lock if any is detected.

2. Removing tests’ write files.

3. Enabling the DAC cache.

Normally the clean-up is performed after the test’s successful execution. However, if some
fatal error occurs during the tool operation, system’s locks on logical servers are not released
cleanly. Then during next operation the invalid state will be detected and the DiskCheck tool
will be run in clean-up only mode to recover the previous state.

6.8.4. Read results mode

As previously described in chapter three, tests results should be always accessible. Therefore,
this mode does not require any environment checks or locking.

One more thing left to be decided is the output format. As this is a command line tool,
exporting binary data may cause some problems, for example with logging. DisksProblems-
Data provides a text format for its classes, however, it is not designed to be stable, and it may
not handle future version changes correctly, but binary format overcomes these limitations.
As a solution a serialization of the binary data in the base64 format was chosen. This allowed
reusing existing implementation and keeping the text format simple.

45

Figure 6.7: On-line monitoring design

6.9. On-line monitoring

This is the part that is implemented inside the HYDRAstor server because it is required
to operate together with the logical node. Some issues appear because of that; thread man-
agement is more restricted, especially the main thread of the on-line monitoring component
should not be blocked for too long. Also, clean shut-down must be ensured. The design of
this part is presented in figure 6.7.

MarauderDetector

This is a main class in on-line monitoring that encapsulates all the execution. It also takes
care of most of the requirements mentioned before.

During its operation, a MarauderDetector object periodically calls two actions:

• getting kernel’s I/O statistics,

• checking current RAID background tasks status.

These results are forwarded to the LogicManager object created. To be accepted as part of
the server, it uses proprietary library to do this work – it internally stores and manages tasks
to be executed by a timer class.

I/O statistics are tagged with measurement time-stamps as the objects in the processing
chain may introduce delays.

Apart from tasks executed by the timer there are 3 kinds of operations that can block the
on-line monitoring main thread, for each one of them a special callback class is implemented:

• Reading tests’ result file – the callback returns an initializer object for a DisksProb-
lemsData instance.

• Storing a suggestion to run off-line tests.

• Invoking DACTool to check RAID background tasks status and to get disk model
information.

46

Figure 6.8: MarauderDetector callbacks handling for obtaining the background RAID tasks
status

They are executed in a separate single thread by a special class from the system’s library.
During clean finalization of the server all the timer tasks and callback operations should be
canceled and finished.

The use of the timer tasks and callbacks is presented in figure 6.8.
The initialization of a MarauderDetector object is divided into the following phases:

1. Object constructor sets up the member objects.

2. Delay happens to let the HYDRAstor server start a little bit faster than with initially
started on-line monitoring.

3. Reading tests’ results from the file where they are stored.

4. Obtaining disk configuration.

The initialization is designed to handle the system closing event, even if it is not completely
finished.

DiskMonitorQueue

It is responsible for filtering I/O statistics samples that are affected by the environment
problems. Information about current RAID background tasks status and kernel I/O statistics
are delivered by the MarauderDetector object.

It delays I/O statistics samples until next RAID activity report is obtained. If there has
been a background task detected, the measurements are dropped.

UnwantedActivityMonitor is invoked on the I/O statistics obtained in order to remove
measurements that are done during heavy hardware RAID’s activity.

47

LogicManager

This class acts as a container for all the possible on-line tests. It passes the I/O statistics to
them and collects the results. They can most importantly contain a suggestion to run the
off-line test.

To reduce the dependencies of this class, MarauderDetector object passes a callback for
storing results’ data that encapsulates calls to the DisksProblemsData object.

PerDiskErrorLogic

It handles the current implementation of the on-line testing logic by serving as a container of
the DiskMonitor objects. It is responsible for summarising I/O statistics from all the required
operating system’s disk devices, as described in section 4.4.4.

DiskMonitor

This class is responsible for the on-line monitoring implementation in scope of a single disk.
It uses a few helper classes:

• RunningAvgQueue – implements the part described in section 4.2.4; provides required
statistics for the entire window of monitoring; allows invalidating samples.

• FallingEdgeDetector – implements the part described in section 4.2.5.

• ErrorFrequencyChecker – implements the part described in section 4.2.6.

• StatisticsBacklog maintains a backlog of I/O statistics that is used for more elaborate
error reporting.

The processing flow after receiving an I/O statistics sample can be described as follows:

1. The measurement is passed to the FallingEdgeDetector that returns a list of already
validated samples.

2. For each sample in the list:

(a) sample is inserted to the RunningAvgQueue object,

(b) if the queue is filled:

i. DiskMonitor performs statistics validation for the entire running average queue
window as described in section 4.2.2;

ii. if any warning is generated, it is passed to the ErrorFrequencyChecker object,
and all samples in the queue all invalidated to avoid generation of many errors
for the same sample.

All the errors that are validated by the ErrorFrequencyChecker object are finally passed to
the LogicManager instance.

There are 3 places that can delay error reporting:

• FallingEdgeDetector – only for a few samples’ duration;

• RunningAvgQueue – until a queue is filled;

• ErrorFrequencyChecker – for a specified interval.

However, the introduced delay is pretty small when compared to the expected system’s up-
time.

48

Chapter 7

Parameters’ evaluation

The solution described in the previous chapters requires certain configuration variables. In
case of on-line monitoring they include values used as the following thresholds:

• the average request service time below which monitoring warning is reported,

• the utilization of the disk above which the device is considered to be active,

• the amount of load on a single hardware RAID device that does not disable monitoring.

In off-line tests they include:

• the duration of the check,

• sizes of the reads and writes to submit,

• threshold of the number of requests expected to be done in a successful test execution.

In order to choose proper values for them, the performance of the disk devices has to be
investigated. This chapter presents some results of the tests done for this purpose.

7.1. On-line part

The most interesting issue here is the behaviour of the average request service time, the value
selected for monitoring, during different work loads. The correlation of this I/O statistic with
the other ones influenced the design of the on-line monitoring method.

7.1.1. Foundations of the decisions made

The final decision about on-line monitoring configuration was based on the statistics of the
disks performance gathered during the functional tests of the system. It was necessary to check
them in different physical set-ups to eliminate the possibility of a variation in the behaviour.
This data provided an insight into the service time of disk requests under a typical work load
of the HYDRAstor system.

To verify the results obtained in such way, the values of the operating system’s I/O statis-
tics were also measured during the artificial tests, especially interesting were the observed
anomalies. Such procedure helped a lot in understanding the performance characteristics of
the disks.

49

7.1.2. Sample results of the monitoring

Some results obtained during the I/O statistics monitoring are presented in figures 7.1–7.6.
In those graphs the x-axis indicates time in seconds. The left y-axis shows both utilization
measured in percentage and the average request service time given in milliseconds. The right
y-axis describes the number of the requests processed during a sample time duration.

Figures 7.1 and 7.2 show data obtained during artificial tests performed that imposed
heavy load on the disk device, what is proved by the high value of the utilization parameter.
In the first graph the average request service time is low, what indicates that conditions when
the disk is busy should not worsen the average request time measure.

Figure 7.2 shows an unusual usage scenario that the system is very unlikely to generate in
practice. When the random seek test starts, the average service time increases significantly,
however, these values are still lower than some reasonable threshold, placed at about 30ms.
This indicates that the selected measure depends quite strongly on the type of load on the
disk, however practical results are expected to be better than the ones seen in the graph.

Figure 7.3 presents results gathered during normal operating system work. Even though
the utilization of the disk oscillates, the average request service time is very low. This again
indicates that this measure should behave correctly.

Figures 7.4–7.6 present results found during analysing possible anomalies of the I/O statis-
tics’ values. The first one contains peaks of the average requests service time value, up to
nearly 200ms. However, the utilization of the drive is low what would not happen with a
marauder disk. Therefore, this result shows why such bad samples are filtered out in the
on-line monitoring.

Figures 7.5 and 7.6 present a single peak of the average request service time. The anomaly
occurs at the end of a very busy period for the disk, as indicated by a quick drop of the
utilization parameter’s value. The results presented in the first graph indicate the need for
adding the falling edge detection, described in section 4.2.5, because otherwise a false error
could be reported for the first sample with the peak. The second sample containing the
anomaly will be invalidated by the low utilization criterion. This idle time filter can handle
some of the falling edge scenarios, as shown in figure 7.6. Because of that, the need for adding
the falling edge detection is not present in part of the results obtained during the tests done
for the parameter evaluation.

7.2. Off-line part

The most interesting parameter here is the test duration. It is important to find the balance
between the time required to run the off-line checks and the accuracy of the tests. Also, the
predictability of the results needs to be verified.

7.2.1. Variability of the tests’ results

The tables 7.7–7.10 present the correlation between the test duration and the variability of
the values obtained. For all the test kinds the results show a similar tendency. Naturally, the
number of request completed increases together with the time spent doing them, therefore,
the standard deviation of this value gets bigger as well. However, the observed ratio of the
standard deviation to the average result is practically constant for the presented data. This
suggests that the results can differ between executions, but their variability is normally limited
so a reasonable lower bound of the results can be chosen to serve as a threshold.

50

Figure 7.1: I/O statistics from an artificial test with heavy disk load; the average request
service time is low and stable.

Figure 7.2: I/O statistics from an artificial test; random seeks are started at about 40s. In
practice the average service time value should be lower.

51

Figure 7.3: I/O statistics gathered during operating system work; very low average service
time values

Figure 7.4: I/O statistics gathered during operating system work; low utilization of the disk
causes anomalies in the statistics’ values.

52

Figure 7.5: I/O statistics showing a quick drop of the disk utilization; the sample taken at
50th second needs to be invalidated by the falling edge detection in on-line monitoring.

Figure 7.6: I/O statistics showing a quick drop of the disk utilization; the anomaly occurs
during the period with lower utilization value.

53

Test’s duration average result standard deviation minimal maximal std. dev./average

5s 740,38 66,24 583 814 0,09
7s 1015,63 100,22 740 1118 0,1
8s 1170,35 107,45 895 1290 0,09
10s 1473,44 121,36 1149 1620 0,08
12s 1760,6 150,55 1313 1904 0,09

Figure 7.7: Random Write test done on a partially filled disks. The result presented is the
number of operations done.

Test’s duration average result standard deviation minimal maximal std. dev./average

5s 700,44 46,53 561 753 0,07
7s 981,81 64,79 788 1053 0,07
8s 1129,94 74,34 899 1205 0,07
10s 1410,96 95,34 1098 1493 0,07
12s 1685,31 113,98 1359 1786 0,07

Figure 7.8: Random Read test done on a partially filled disks. The result presented is the
number of operations done.

Test’s duration average result standard deviation minimal maximal std. dev./average

5s 72,92 5,19 58 78 0,07
7s 101,77 6,41 85 108 0,06
8s 117,56 7,6 91 124 0,06
10s 148 9,4 117 157 0,06
12s 177,46 11,26 145 187 0,06

Figure 7.9: Sequential Read test done on a partially filled disks. The result presented is the
number of operations done.

Test’s duration average result standard deviation minimal maximal std. dev./average

5s 48,48 3,56 38 52 0,07
7s 67,85 4,68 56 73 0,07
8s 77,46 5,88 61 83 0,08
10s 97,58 6,74 77 104 0,07
12s 117,02 8,13 92 125 0,07

Figure 7.10: Sequential write test done on a partially filled disks. The result presented is the
number of operations done.

54

Figure 7.11: Random read test results dependency on the test duration and the amount of
disk space occupied before.

7.2.2. Dependency on the space available on disk

The figures 7.11-7.14 present results measured in another experiment. They also show the
dependency between the test duration and the number of operations finished, actually the
average of this value. As it might have been expected, the resulting function turned out to
be very similar to a linear one.

These charts also present the result of the tests done while a different amount of disk
space was available. The lines tagged 0% are executed on nearly empty disks and 100% on
disks being nearly full. A bit surprisingly, the observed impact of the amount of free disk
space on the results is not as big as it might have seemed. It is noticeable only for sequential
write test that produced significantly higher results on empty disks. However, other results
of this test are similar, and these are used to determine the expected threshold.

55

Figure 7.12: Random write test results dependency on the test duration and the amount of
disk space occupied before.

Figure 7.13: Sequential read test results dependency on the test duration and the amount of
disk space occupied before.

56

Figure 7.14: Sequential write test results dependency on the test duration and the amount of
disk space occupied before; the tests on empty disks are significantly faster.

Summary

The results obtained indicate that the threshold of average request service time in on-line
monitoring can be chosen reasonably if the described anomalies are excluded basing on the
utilization statistic value.

For each off-line test kind the time granted to it was chosen so that:

• The sum of all the durations is slightly smaller than the time limit granted for testing
a single disk.

• The standard deviation of the results is small.

• Time given for random write test is reduced to allow the other three ones to run longer.

The sizes of read or write requests were chosen to simulate operations performed by the
HYDRAstor server.

Finally, the threshold of the number of operations successfully done in a test can also be
selected according to the results sometimes obtained for the worst case scenario.

57

Chapter 8

Tests

As the marauder detection component will become a part of the HYDRAstor system, a high
level of verification is required for acceptance. All the tests created are using the system’s test-
ing framework. This allows to easily execute them automatically and periodically to protect
against regression.

8.1. Unit tests

Unit tests were created together with the implementation. They cover nearly all functionality
and error handling code. They serve the following purposes:

• Allow finding an error close to its source. This reduces the time required for debugging
because such tests typically are short and easy to run.

• Check behaviour in conditions that are hard to create artificially.

• Check that certain errors lead to the desired failure. This would be more difficult to do
in the higher layer tests.

• Simplify the implementation process by allowing to execute code that does not provide
all the functionality for the higher layers.

8.1.1. Googlemock

An useful tool for writing class tests is a good mock library. One of the well known ones,
available for the C++ language, is the Googlemock (see [Googlemock]). It allows to simply
specify which methods should be called, with what kind of arguments, and what the results
should be. This library provides more functionality as well, but just these basics are enough
for typical purposes.

Here is an example of a simple test scenario implemented using the mocking library. Its
purpose is to check if DiskMonitorQueue correctly handles different background RAID tasks
statuses and passes appropriate samples to the LogicManager object. The steps of the test
are:

1. Create a mock for the LogicManager object.

2. Specify that the mock object’s method which receives samples would be called certain
number of times. Also the calls have to satisfy a constraint stating that the samples
must contain a specific key that will correspond in the test scenario to the different

59

background RAID tasks statuses possible. This way, for the busy status the number
of the expected method invocations is zero, and for the idle status, it is equal to the
number of samples that should be passed to the LogicManager object in the scenario.

3. Use the mock object to instantiate the DiskMonitorQueue object that is tested.

4. Execute the test scenario using the queue object created before. For each background
RAID tasks status we want to:

(a) call a method of the queue object to set the current status,

(b) add some samples to the queue object; the samples’ keys should correspond to the
status set before.

5. During the mock object destruction if the actual method calls done before differ from
the expected scenario, the test will fail with an exception.

The benefit of such approach is the simple specification of the expected result. Also, this
step is separated from the implementation of the scenario that is executed in the test. Deletion
of the mock object must be ensured because this is when the checks actually happen.

8.1.2. Doctest

For the part implemented in Python there is a very simple and robust framework for unit-tests
called doctest (see [Doctest]). It allows to embed test instructions directly into the comments
of the source code. It features an interesting way of checking commands correctness – for
each line of code it compares the output of the Python’s interpreter with a literal string
provided in the test. Doctest is quite simple to use, also thanks to some tools, the test can
automatically become part of the code documentation.

8.2. Sample integration test scenario

Apart from the unit tests, higher level ones are designed to check the integration between
different layers.

One example of such scenario will be presented. The main purpose of its creation was to
allow testing user requests handling in a situation similar to a running system. The steps of
the test are:

1. Set up a configuration where two HYDRAstor logical servers share a single DAC.

2. Start both servers.

3. Issue a request to read disk test results history, check that it finishes correctly.

4. Issue a request to perform off-line disk testing of one server, check that it fails because
the other server is still running.

5. Stop one server.

6. Repeat steps number 3 and 4.

7. Stop the other server.

8. Issue a request to perform off-line disk testing of one server, and wait for its successful
completion.

60

9. Issue a request to read the results, and check that no marauders were detected.

The success of this test depends on correctness of a few elements that participate in passing
the request so in case of failure it is not obvious where an error happened. However, the
integration between several layers is checked.

There is a similar test scenario that is designed to check what happens when the logical
nodes do not share the same DAC. Then it should be possible to invoke a successful off-line
test of one server while the other is running.

8.3. Ensuring correct functionality

The focus of all the test kinds described so far was merely to check low level implementation
correctness. To make sure that all the modules can interoperate well, and that the proposed
algorithms are correct, functional tests are used.

Firstly, there are many scenarios in which numerous system operations are performed in
various conditions. With the reasonable assumption that the testing hardware is correct, one
can expect that on-line monitoring should not report problems. System functional testing
framework can be used to specify such requirement for all its tests.

Secondly, dedicated functional tests of the on-line and off-line parts are planned. The
most difficult task here is preforming the tests where simulating a marauder disk is desired.
For the off-line monitoring the functional testing framework offers a solution. It provides a
library that allows delaying the read and write requests, in fact simulating the behaviour
expected from a marauder disk. Using this mechanism several test scenarios are planned.

In on-line part this would not provide a correct solution of the problem. However, there are
some possibilities of designing such tests. One idea was to use a virtual machine. Performing
some heavy IO load in the host operating system, would slow down the requests processing
in the guest one, and the reason of this will be invisible in the system running on the virtual
machine.

Another approach, chosen because it allows easier automation of the test execution, is to
insert hooks in the I/O statistics reading library to worsen the results at will. There is still
an important problem that remains to be solved: it is hard to tell what kind of anomalies
would a marauder disk cause, and in effect what should the statistics returned by the test
hooks be like. The solution chosen for the tests provides fake I/O statistics that have high
utilization and low number of requests done. This is the behaviour that defines a marauder
disk.

Additionally, a real instance of a marauder disk had been found in the testing infrastruc-
ture. It has been tested using the developed off-line tool. The results showed a slowdown in
the write test, what turned out to be expected from the analysis of the previous performance
of the disk.

61

Chapter 9

Summary

A combination of the on-line and off-line parts seems to be a reasonable solution to the
problem that the marauder detection component tries to solve, especially considering the
requirements stated. On the one hand, the weak point of the on-line monitoring is not showing
exactly which disk has failed, what is not an issue for the off-line test. On the other hand off-
line part is too expensive to be invoked frequently, yet the on-line one can work continuously.
As we can see a solution composed of both elements can overcome the problems they have
separately, and it still provides most of the benefits that each of them has.

Even though the implementation is quite specific to the HYDRAstor system, as it is
highly coupled with its design and libraries, the solution approach described here is general
enough to be used in other storage systems, or in any different software that depends a lot
on the performance of the underlying disk devices. Such systems could benefit from earlier
detection of possible problems that reduces the impact of the upcoming failures. The cost of
performing the marauder checking in normal conditions seems low enough compared to the
benefits granted.

Tests performed so far prove that the marauder detection component performs its opera-
tion correctly. Therefore, this component will become a part of the future HYDRAstor system
release, and ultimately will be available to the system administrators. Hopefully, marauder
detection will further increase the reliability of the system, and it will simplify diagnosing
problems connected with malfunctioning hard disks drives.

9.1. Future work

During the design and the implementation phase there were many ideas about how to possibly
extend the marauder detection component. Because of the time constraints, and the need to
keep the the task focused on the main issue, they were not realized so far.

We can name here a few ideas:

• Focusing off-line test on the worst performing sections of disk – currently not imple-
mented due to the time requirements set.

• Invoking automatic actions after detecting a marauder disk – they could include stop-
ping the use of the hard drive for storing new data and retrieving any required infor-
mation from it, before a fatal failure happens.

• Self-tuning of the on-line monitoring – after suggesting an off-line test that detects
no errors, the on-line monitoring should be less eager to advise an off-line test again,
especially when the same error condition is met.

63

Although important benefits will already be provided for the HYDRAstor system, the
ideas mentioned allow to consider the marauder disks detection to be a base step towards
further improvements.

64

Bibliography

[Bonnie++] Home page of the Bonnie++ disk benchmark,
http://www.coker.com.au/bonnie++/

[Boost] The Boost library home page, http://www.boost.org/

[Boost.Spirit] The Boost Spirit library home page, http://boost-spirit.com/home/

[Doctest] Documentation page of the doctest Python module,
http://docs.python.org/library/doctest.html

[Ele09] Jon Elerath, Hard-Disk Drives: The Good, the Bad and the Ugly, Communications of
the ACM, June 2009, 38-45

[FailureTrends] Eduardo Pinheiro, Wolf-Dietrich Weber, and Luiz André Barroso, Failure
Trends in a Large Disk Drive Population, 5th USENIX Conference on File and Storage
Technologies, 2007

[Googlemock] Home page of the Google C++ Mocking Framework,
http://code.google.com/p/googlemock/

[HDPerf] Home page of the hdperf disk benchmark, http://hdperf.sourceforge.net/

[HYDRA09] Cezary Dubnicki, Leszek Gryz, Lukasz Heldt, Michal Kaczmarczyk, Wojciech
Kilian, Przemyslaw Strzelczak, Jerzy Szczepkowski, Cristian Ungureanu, and Michal
Welnicki, HYDRAstor: a Scalable Secondary Storage, Proccedings of the 7th USENIX
Conference on File and Storage Technologies, 2009, 197-210

[IntraDisk] Ilias Iliadis, Robert Haas, Xiao–Yu Hu, and Evangelos Eleftheriou, Disk Scrubbing
Versus Intra-Disk Redundancy for High-Reliability RAID Storage Systems, Proceedings
of the 2008 ACM SIGMETRICS international conference on Measurement and modeling
of computer systems, 2008, 241-252

[IOstats] Linux kernel documentation, included with the distribution,
http://www.kernel.org/, file Documentation/iostats.txt

[LatentErrors] Phillipa Gill, Sotirios Damouras, Bianca Schroeder, Understanding latent sec-
tor errors and how to protect against them, 8th USENIX Conference on File and Storage
Technologies

[ORION] James F. Koopmann, Measuring Disk I/O – Oracle’s ORION Tool,
http://www.jameskoopmann.com/docs/MeasuringDiskIOOraclesORIONTool.htm

[Python] Home page of the Python distribution, http://www.python.org/

65

[RAIDmonitor] Patent Method for detecting problematic disk drives and disk
channels in a raid memory system based on command processing latency
http://www.freshpatents.com/-dt20090423ptan20090106602.php

[StaggeredScrubbing] Alina Oprea, Ari Juels, A Clean-Slate Look at Disk Scrubbing,
http://www.rsa.com/rsalabs/staff/bios/aoprea/publications/scrubbing.pdf

[Thinkcpp] Bruce Eckel, Thinking in C++,
http://www.mindview.net/Books/TICPP/ThinkingInCPP2e.html

[udevinfo] Manual of the udevinfo utility, http://linuxmanpages.com/man8/udevinfo.8.php

66

