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Streszczenie

Gossip-based protocols provide scalable, reliable and robust way of spreading information
in large and widely distributed networks. The Author has build a flexible, efficient and
configurable simulator to explore properties of this class of protocols. Using the simulator we
demonstrate big potential of gossip-based protocols, also in scenarios where the set of network
members is very dynamic because of node failures. We analyze these protocols’ capabilities
to compute aggregative functions of distributed values.
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Chapter 1

Introduction

1.1. Background

Because of the rapid growth of the Internet, peer-to-peer systems have become more and more
common. A characteristic feature of such systems is that they maintain a highly dynamic
network based on the logical relationships between peers. That network is often called an
overlay network, as it is built on top of the connections which make up the Internet.

A proper overlay network management is a quite big challenge. Lately it have become popular
to solve this problem by usage of the class of protocols called epidemic (or gossip-based).
Epidemic protocols provide scalable, reliable and robust way of spreading information in
large and widely distributed networks. What makes them interesting is that their guarantee
of the effectiveness comes from probabilistic calculations.

Recently, interesting research in the domain of gossip-based peer-to-peer systems has been
done. Simple and efficient algorithms for information dissemination in large overlay networks
have been introduced ([3, 7, 2|).

Overlay networks can be viewed in an abstract sense as constituting a distributed computing
engine — peers cooperate exchanging data to compute a result which is a function of their
collective knowledge. So far it has been shown that this computing engine is capable of per-
forming simple yet interesting tasks such as aggregation of distributed values, load balancing,
broadcasting, etc.

The underlying assumption has always been that failing nodes leave the network forever. That
is, failures have been treated as voluntary departures from the network.

1.2. Problem statement

In this thesis we would like to examine the behavior of a class of gossip-based protocols
— Newscast, Shuffling and Cyclon. We will focus on scenarios in which failing nodes may
recover and rejoin the network, as well as the computation that they were previously engaged
in. However, to gain insight into system behavior and provide a good comparison, stable
networks were considered as well.

Issues that we examine include basic network properties, such as average path length, clus-
tering and connectivity. In addition, we wish to examine the effect on the convergence speed



of an aggregation algorithm computing the average. In this way, we check the behavior of our
protocols when used in an application area.

To carry out experiments the need for a flexible, efficient and configurable simulator emerged.
Since we expect enhancements of protocols managing the overlay network, as well as the
emergence of new applications running on them, it is clear that the source code of such a
simulator must be extendable and also easy to maintain. We believe that the simulator,
built by the author of this thesis, fulfills all these requirements. The simulator’s general
design issues and abilities are discussed here. The well-documented simulator’s source code
for Linux, Solaris and Windows, together with the user manual and configuration examples,
are publicly available!.

1.3. Related work

1.3.1. Epidemic protocols

The inspiration for epidemic protocols, also called gossip-based protocols, came from observa-
tions of the way in which infectious diseases spread among population. The theory [12] shows
that even if at the beginning only one side is infected, the whole population will be eventually
infected by an epidemic in expected time proportional to the logarithm of the population
size. The goal is to build systems disseminating information as fast as an epidemic spreads.
A good introduction to this field can be found in [9].

Epidemic algorithms do not give us reliability guarantees which are so strong as those offered
by costly deterministic algorithms. Instead of that they allow to create highly scalable solu-
tions. Epidemic protocols became more popular since the publication of [1], where they were
used to maintain consistency of distributed database replicas. Since that time they have been
successfully applied in various new areas, including failure detection [13], resource monitoring
[10], aggregation [3, 6, 14] and broadcasting [11, 15].

1.3.2. Membership management

The basic idea of epidemic-style protocols is that every node repeatedly contacts a peer which
is randomly selected among all nodes in the network and exchanges information with it.
Such an approach [15, 14, 16] requires every node to know all other nodes in the system.
In a distributed system, where the network tends to be very dynamic (nodes join and leave
frequently), maintaining such a list of nodes causes scalability problems. For this reason,
solutions in which every node has only a partial view of the network have been proposed
[11, 3]. In these cases every node knows only a continuously changing sample of all nodes in
the system. Gossip-based protocols are used to update partial views, providing a membership
management mechanism which copes very well with dynamic environments.

The paper [17] presents a generic framework of the peer sampling service, which maintains
partial views of nodes, to provide each node with a peer when a node asks about it. A
general gossip-based protocol scheme which can be used by the framework is described there.
There is also an experimental evaluation of different protocols. It turns out that an overlay
network topology maintained by considered protocols does not resemble traditional random
graphs, which was often a basic assumption of gossip-based protocols analysis. Instead, an

!see http://www.cs.vu.nl/globesoul /sim.tgz



overlay network has common features with so called ‘small-world’ graphs, characterized by
small diameter and large clustering.

1.3.3. Distributed aggregation

The topic of computing aggregates like extreme values, mean or variance in large distributed
systems is quite new, though very useful and interesting [18]. As was shown in [3], aggregation
can be used for monitoring network size, distributing alarm signals or measuring the total
amount of resources.

The problem can be solved using a hierarchical architecture like Astrolabe [10]. Astrolabe
sees the system as a hierarchy of zones, which comprises smaller non-overlapping zones or
a host. The structure of Astrolabe’s zones can be viewed as a tree, the leaves of this tree
represent the hosts. A user can initiate an aggregate query concerning hosts in the chosen
part of the system and results of such a query will mimic the state of a group of hosts.
Although this approach reduces the cost of computing aggregates, it has one main drawback
— it requires a non-negligible overhead to maintain the hierarchical topology in a dynamic
distributed system. In contrast, approaches to find aggregates discussed in this thesis are
much more simple and lightweight. Moreover, the result is known to all nodes without extra
efforts, which is a desired feature when aggregation is used to build self-organizing systems
that are able to monitor their state in a decentralized way.

Theoretical analysis of the convergence speed of various aggregation algorithms working on
an unstructured overlay network and using gossip-based protocols can be found in [14, 5, 6].
The latter two papers validate the scalability of discussed solutions through simulations, also.
The presented algorithms proved to be efficient and very robust.

The behavior of the averaging algorithm when the Newscast protocol is used is examined in a
variety of scenarios in [4]. The paper presents theoretical and empirical evidence showing the
robustness of the averaging algorithm under scenarios when node and communication failures
occur. However, in contrast to this paper, it was not considered that a node can recover and
resume its work.

1.3.4. GlobeSoul project

This thesis is a part of the GlobeSoul project. The goal of GlobeSoul is to explore the
P2P technology and find out how can it help in building large-scale distributed systems.
The current research activities focus on scalable epidemic protocols, superpeers and decen-
tralized clustering. The important part of GlobeSoul is Globule — an open-source Apache
Web server module which provides functionality of a user-centric content delivery network.
The home page of GlobeSoul with more detail description of that project can be found at
www.cs.vu.nl/globesoul.

1.4. Overview

This paper is organized as follows. First, in Chapter 2 we briefly explain the model of the
gossip-based computing engine which will be used. In Chapter 3 protocols maintaining an
overlay network which were tested in this thesis are described. Chapter 4 presents the way
in which general properties of the network depend on the protocol which is used. Among



other things the effects of the network size, cache size and failures scenarios are examined.
In Chapter 5 we test the performance of some applications computing aggregate functions.
The relationship between application performance and the network properties examined in
the previous chapter is discussed. Finally, in Chapter 6 we describe the simulator built by
us and used in all reported experiments. Its design, functionality and usefulness in further
research are presented. We conclude in Chapter 7, showing possible directions of future work.
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Chapter 2

System model

First, we briefly describe the model of our gossip-based computing engine. The engine works
in agent-based, large-scale distributed systems. It uses an uncomplicated, peer-to-peer data
exchange protocol to maintain an overlay network and to keep it connected. The protocol
is based on an epidemic algorithm. The overlay network consists of nodes; each node has a
small amount of memory to store information about addresses of other nodes. This set of
addresses is continuously changing.

Our gossip-based computing engine, presented in Figure 2.1, consists of two layers. The
first one can be thought of as a news agency. A news agency is responsible for membership
management — it takes care of joining and leaving nodes. It also determines the way in which
information is disseminated in the network.

The second part of the computing engine is an application layer which comprises autonomous
agents running specific computations.

Application layer

I
I
| Agent Agent I
— L S I S

getNews updateNews getNews updateNews

I A R 2N R
I |
I |
I |
I |
| [correspondent correspondent I
| cache exchange I

News agency

Figure 2.1: The conceptual organization of a computing engine. Arrows describe data flow.
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2.1. News agency

The news agency cooperates with agents by collecting their news and passing it on to other
agents. This task is performed via an agent’s callback functions: getNews() and updateNews (news),
which will be described later.

The news agency is implemented by a set of correspondents. Each correspondent is associated
with an agent running on the same machine. A correspondent is equipped with a small
amount of memory, which is used as a cache. If a correspondent knows the address of the
other correspondent, it can establish a connection and initiate a cache exchange. The method
of choosing a correspondent to contact and the way in which cache entries are then exchanged
and used are determined by a news agency protocol. In this paper, properties of the Newscast
and the related Shuffling and Cyclon protocols will be examined in detail.

As we can see in Figure 2.2, a cache entry consists of 3 fields. The first one is mandatory and
stores the address of a correspondent who created that entry. The two others are optional:
one for protocol-specific data and one for some application-specific data concerning the corre-
spondent’s agent. The number of entries in the cache is limited by a global parameter ¢ > 0.
Usually c is between 20 and 50.

Address Protocol-specific data Application-_specific data
optional optional

Figure 2.2: The structure of the cache entry.

2.2. Application layer

The correspondent acquires news from its agent by calling the getNews () function. News can
be anything, e.g., the measurement done by the agent’s sensors or a result of a computation
in which the agent takes part. Note that the news may have changed since the last invocation
of getNews() — it can, for example, be affected by the current time or by new information
the agent has acquired.

The exact task of the agents does not concern the computing engine. From our point of view
the most important thing about the application layer is its integration with the news agency.
This can be done in two ways.

The first one, depicted in Figure 2.3(a), can be characterized as a strong integration —
cache entries carry agent news as application-specific data. The correspondent informs its
agent about data collected by the peer from other agents by means of the updateNews (news)
function. This function is called by the correspondent who has initialized a cache exchange,
as well as by the correspondent who has been contacted. Although this kind of integration
can be useful (see [6]), we will not consider it.

Figure 2.3(b) presents a scenario in which the integration between the application layer and
the news agency is weaker than in the previous case. It uses the updateNews (peerAgentNews)
function, instead of the updateNews(news) function. The difference is that the correspon-
dent’s agent updates its news only on the basis of its peer agent’s news. The required data from
the peer agent must be, for example, piggybacked with the caches when they are exchanged.
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Since no application-specific data is stored in the cache, the information dissemination ser-
vice of the protocol is not used directly. Nevertheless, the protocol’s influence on the way in
which information spreads is noticeable — the protocol determines which agents will exchange
news. As in the previous case both the initiator of a cache exchange and the receiver of the
request call the function updating news. In this paper we will focus only on the weak model
of integration.

Note that in the models of integration described above, application data has no influence on
the way in which the news agency protocol works. However, sometimes such models could
also be useful.
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Agent

A

updateNews(,)
cache
correspondent 1 correspondent
send the cache
(a) strong integration
Agent Agent
A
updateNews(y) getNews
agent's news

correspondent correspondent

i
piggybacked agent data

send the cache

(b) weak integration

Figure 2.3: Two kinds of integration between the application layer and the news agency.
Grey fields represent application-specific data created by agents. Note that the data flow is
symmetrical for both agents, although the flow in only one direction is depicted.
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Chapter 3

Protocols

The basic idea of epidemic-style protocols is that every node repeatedly contacts a peer which
is randomly selected among all nodes in the network and exchanges information with it. But
this approach is not scalable when the number of nodes becomes large and the network is
dynamic — it is no longer possible that every node keeps track of all others available in the
network.

Protocols like Cyclon, Shuffling or Newscast tackle this problem by providing each node with
a small, continuously changing random sample of nodes from the whole network. The size of
this sample, ¢, is a global parameter of the protocol. As we will show later, this approach
successfully solves scalability problems giving us a robust membership management tool. At
the same time information can be efficiently disseminated.

In the following sections the Newscast, Shuffling and Cyclon protocols are described in detail.

3.1. Newscast

The basic idea of the Newscast protocol is that each correspondent periodically chooses one
entry from its cache and contacts the correspondent referred to in that entry. Correspondents
then send their cache content to each other and construct new caches from the exchanged
entries.

The Newscast protocol uses the protocol-specific part of cache entries for storing the time
when the entry was created.

More formally, each correspondent performs the following steps every AT time units:
1. randomly select a cache entry to find the address of a peer correspondent,

2. send the cache content to that peer, along with an additional entry filled with your own
address and timestamped with the local current time,

3. receive the peer’s cache,

4. merge the received cache with your own cache, discarding the oldest entries, until there
are at most ¢ entries left. Also, no two entries may refer to the same correspondent.
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The selected correspondent performs the same steps, except the first one.

Note that it is not required that the clocks of the correspondents are synchronized. It is
sufficient that the timestamps of entries in each particular cache are consistent. To assure
this, when correspondent A receives the cache from B, it can normalize the timestamp of each
received entry by adding to it the difference between the local time of A and B. The local
time of B can be sent to A together with its cache.

3.2. Shuflling

The Shuffling protocol was introduced in [7] (below we describe a slightly modified version
of it). In contrast to Newscast no protocol-specific data is stored in a cache entry, so each
entry is equivalent to a reference to an agent. The main issue is that each correspondent
periodically selects a subset of cache entries and exchanges them with a peer whose address
was randomly selected among the cache entries.

More formally, the following steps, called a shuffle operation, are performed by each corre-
spondent every AT time units:

1. randomly select a cache entry to find the address of a peer correspondent,

2. randomly select [ —1 cache entries (different than the one selected in the previous step),
where [ is a global parameter of the protocol and is called the shuffle length, 1 <1 < c,

3. send these entries to the peer together with an additional one with a reference to the
local agent,

4. receive [ entries from the peer,
5. update the cache with the received entries, according to the following rules:
e discard a new entry referring to an agent if a reference to this agent already exists
in the cache,

e if there are empty slots in the cache, fill them first, otherwise:

e replace the entry referring to the peer and the entries sent to him.

The peer correspondent sends to the initiator [ randomly selected entries and performs steps
4 and 5. If one correspondent has less than [ entries in its cache, then the number of sent or
received entries can be smaller.

As it was shown in [2], an overlay network’s properties are insensitive to the shuffle length 1.
In all our experiments [ was equal to 5.

The important property of the shuffling operation is that it cannot divide the overlay network
into unconnected parts if it constituted one connected part before. A formal proof of this
quite intuitive fact can be found in [2].
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3.3. Cyclon

The Cyclon protocol is an extension of Shuffling introduced in [2]. Thanks to a small, yet
smart, enhancement it improves the process of information dissemination, increases overlay
network connectivity and balances load on nodes.

Cyclon uses the protocol-specific part of a cache entry to store its age counting from the
moment when it was created. The main, and almost the only, difference with Shuffling is
the first step of the shuffling operation — the selection of a peer. To select a peer, Cyclon
does not use a randomly selected cache entry. Instead, the entry which has appeared in the
network the longest time ago is used.

When a new entry is created, it gets the age 0. Before the shuffle operation, the initiator
increases the age of every cache entry by 1.

3.4. Common properties

The nodes that constitute the network must have access to local clocks. These clocks do not
have to be synchronized, but should be able to measure time with reasonable accuracy — in
a short period a clock’s drift cannot be too big.

Although the whole system is not synchronized, we find it convenient to describe a protocol
execution in terms of consecutive wall clock time intervals of length AT. These intervals will
be called cycles of the protocol and will be counted from some convenient starting point.

For every protocol, we assume that the communication between 2 correspondents takes less
than AT time units. AT should be big enough to fulfill this assumption, otherwise the
protocols will not be able to work correctly — note that, according to each of them, every
correspondent has to complete at least one data exchange during that time.

3.5. Membership management

Each protocol described above solves the problem of joining and leaving nodes in a similar,
simple way. Cache entries store correspondents’ addresses and these addresses are dissem-
inated during the cache exchange — as we will show in a moment, the whole membership
management functionality is based on it.

When a correspondent wants to subscribe to a network, all it must do is to initialize its cache
with at least one entry for another correspondent and start executing the protocol. In [2, 3, 7]
it was shown how the cache can be initialized keeping good overlay network properties.

If a correspondent wants to unsubscribe, it simply stops communicating — voluntary depar-
tures from the network are treated in the same way as failures. When another correspondent
chooses a cache entry to find a peer, it can happen that the address stored in that entry is a
dead pointer — it is not valid any more because the peer has left the network!. Every dead
pointer is removed from the cache as soon as it is encountered. In this way the system forgets
about the nodes which have left.

When a peer selected by the correspondent turns out to be unavailable, the correspondent waits until the
next cycle to try again.

17



If the system is capable of repairing an overlay after a serious disaster in a few cycles, we can
say it can heal itself. As was shown in [4] and [2], even if a big fraction of nodes suddenly
crash, the overlay network stays connected and nodes which survived quickly replace dead
pointers with links to valid nodes.

The Newscast protocol has an additional weapon against dead pointers — it favors the freshest
entries, so if a correspondent stops injecting its own entries, all the references to it will be
quickly removed from the system to the newer entries’ advantage.

The Cyclon protocol also fights against system contamination by dead pointers. The peer
selection procedure bounds the time an entry can stay in the system unreferenced, assuring
that entries with links to unavailable nodes will not stay in the system too long.

Note that sometimes forgetting too fast about nodes which have left the system can have
undesirable consequences. Just imagine that because of some errors the network becomes
temporarily partitioned into two parts. All pointers in the overlay network from one part to
the other become dead pointers. If all these pointers are removed before connections between
two parts of the network can be restored, it will cause the permanent partition of the overlay
network.

18



Chapter 4

Overlay properties

Before examining specific applications which need the distributed overlay network to run, we
want to gain a good insight into the general properties of that network. It will allow us to
understand better the overlay network’s capability of spreading information. At the beginning
we will introduce some basic notions which allow us to characterize a given overlay network.
Then we will compare properties of overlay networks managed by the Newscast, Shuffling and
Cyclon protocol.

To examine behavior of the gossip-based protocols in very large networks, we build an efficient
simulator which allows us to control the state of the overlay network and the application
layer. The simulator is described in detail in Chapter 6. In this chapter we present results of
simulations for different protocol’s configurations and for different network sizes. Two kinds
of scenarios are considered — the one in which the set of nodes taking part in the simulation
is fixed and the one in which that set changes dynamically due to the fact that nodes join
and leave the network.

4.1. Basic characteristics

In the systems which we consider, every machine stores (in a cache) a few addresses of other
machines. Such a network can be perceived as a graph in which every machine constitutes
a node. If a machine A keeps the address of another machine B, then there is an edge A —
B in the graph. When we forget about edge directions, we get an undirected graph which
reflects the ability of the nodes to communicate with one another. This graph is continually
changing in time, but its statistical properties have a tendency to stabilize. Analysis of such a
communication graph can give us some interesting insights into the capabilities of our system.
We will take a look at several graph properties.

e Let V4 be a set of neighbors of a node A (nodes connected with A by one edge). Let
E 4 be the set of edges in the graph induced by V4. Now for a given node A we can
define its clustering coefficient as:

\EA|/<";A')

In other words the clustering coefficient of a node A is the proportion of the number
of edges in the graph induced by V4 to the number of edges in a full graph with |Vy4|
vertices.
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The clustering coefficient of a graph is the average of the clustering coefficients of all
its nodes. For example, in a full graph the clustering coefficient is equal to 1. In a
random graph with n nodes where each node has ¢ neighbors, the clustering coefficient
is approximately equal to ¢/n. A cluster can be perceived here as a group of nodes
which are densely connected among themselves but have weaker connections with other
nodes. Thus if the clustering coefficient is high, it is more probable that some clusters
will get disconnected from the rest of the network.

The bigger the partition of the nodes into clusters, the worse the ability of quick infor-
mation dissemination throughout the whole graph — a lot of redundant messages will
be delivered to the cluster.

The length of the shortest path between two arbitrary nodes gives us some information
about the speed with which these nodes can exchange a message. To characterize this
property for the whole graph, we can measure the length of the shortest path for all
pairs of nodes and look at the average length of these paths — the average shortest
path length.

When some nodes leave the network, a situation of dead pointers leading to unreach-
able nodes can arise. The average percentage of addresses in the cache referring to live
nodes (i.e. those that are still part of the network) gives us some idea of the network’s
ability of effective membership management. The number of addresses in a node’s cache
leading to live nodes is called the effective cache size — in this chapter we will look
at the average effective cache size of all nodes.

The node’s degree in an undirected graph is defined as the number of its neighbors. In
a directed graph we can distinguish between the number of nodes known by a given
node — its out-degree, and the number of nodes which know about a given node — its
in-degree. In our case the out-degree of every node is bounded by the cache size. The
protocols which we consider very eagerly fill free cache slots during the cache exchange
operation, so if we take into account also dead pointers, the out-degree of an arbitrary
node will be in general close to the cache size.

That’s why we focus on the in-degree and examine the in-degree distribution. It
is from our point of view a very important feature of a graph. It determines how the
load will be balanced among nodes — the nodes with higher in-degree will be contacted
more often. The in-degree distribution influences also the way in which information is
disseminated among the nodes. So the more evenly the nodes’ in-degree is distributed,
the better the properties of our overlay network.

As we explained in Chapter 3, protocols examined by us do not provide each node with
a complete list of the other members of the network, but only with a random sample
of them. But how can we check that this sample is uniformly random? One way is to
compare properties of our communication graph to the properties of a random graph,
where the out-degree of every node is equal to the cache size and neighbors of every
node have been picked randomly among all the nodes. From now on, if we talk about
random graphs, we mean graphs constructed in this way.
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4.2. Stable network

First we present the results of simulations conducted on a stable network, where the set of
participating nodes is fixed (nodes neither fail nor join or leave the network). Although the
most interesting case for us is the one in which the network is dynamic, first we have to
analyze the simpler scenario in which the network is stable to apprehend the properties of the
whole system and to have a good frame of reference.

We examine the following important properties of the communication graph: the distribution
of nodes in-degree, the average shortest path length and the clustering coefficient.

4.2.1. In-degree distribution

Figure 4.1 presents the in-degree distribution of nodes. Measurements were done in a stable,
converged network of 10000 nodes, the cache size was 20.

In case of the Cyclon and Shuffling protocols, like in a random graph, the majority of nodes
have in-degree equal to the cache size and the in-degree distribution is symmetrical around
the cache size. However the variance of in-degree is not the same in these three cases. Cyclon
exhibits an in-degree that is evenly distributed among all nodes, so the number of nodes with
different in-degree drops quickly. A node’s in-degree does not differ from the cache size by
more than 20%. The Shuffling protocol is not so good in spreading the in-degree evenly,
although the distribution has better properties when compared to a random graph.

In this light, the in-degree distribution when the Newscast protocol is used does not look
too impressive. About 40% of all nodes have an in-degree that differs from the cache size by
at least 50%. We can also see that there is a relatively large number of nodes with a high
in-degree.
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Figure 4.1: The in-degree distribution when different protocols are used in a stable network
of 10000 nodes. The cache size was 20. Results are averaged over 20 runs, the standard
deviation was in all cases smaller than 0.5% of the network size.
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Figure 4.2: The clustering coefficient as a function of the network size when different protocols
are used in a stable network. The cache size was 20. Results are averaged over 20 runs, the
standard deviation was negligible. Note that the scale is different on (a) and (b).

4.2.2. Clustering coefficient

Figures 4.2 and 4.3 present measurements of the clustering coefficient in the simulations we
conducted. Networks with different number of nodes (from 10000 to 80000) and configurations
with different cache size (from 10 to 80) are considered.

One general observation which can be made is that the Shuffling and Cyclon protocols main-
tain a communication graph with a low clustering coefficient, that is comparable and even
slightly lower than in random graphs. The similarity is visible both in networks of different
sizes (Figure 4.2(b)) and in networks where a different cache size is used (Figure 4.3(b)).

We can also notice the large, two orders of magnitude difference between Newscast and other
protocols. It shows that an overlay network maintained by the Newscast protocol is not a ran-
dom graph — the cache-exchange operation causes the nodes to prefer to group into clusters.
It can adversely affect the information dissemination abilities of the Newscast protocol.

Going into details we see in Figure 4.2(a) that the clustering coefficient in an overlay network
maintained by Newscast weakly depends on the network size — it stays on a similar level
when the number of nodes is between 10 thousand and 80 thousand. Sensitivity to the cache
size is much higher — as the cache size grows, the clustering coefficient is decreasing quickly
as a power function, with exponent o < 1. However the clustering stays much bigger than in
a random graph even if the cache is large.

4.2.3. The shortest path length

Let’s have a look at Figure 4.4, where the average shortest path length is plotted. As we can
see in Figure 4.4(a), whichever of the three protocols we use, the average shortest path length
is small and it grows very slowly with the number of nodes in the network. Although the
difference between the Newscast and other protocols is noticeable, it does not exceed 1 edge.
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Figure 4.3: The clustering coefficient as a function of the cache size when different protocols
are used in a stable network. The network consisted of 30000 nodes. Results are averaged
over 20 runs, the standard deviation was negligible. Note that the scale is different for (a)
and (b).

There is almost no difference in the length of the average shortest path when we compare
communication graph maintained by Cyclon or Shuffling with the random one.

Figure 4.4(b) presents how the average shortest path length depends on the cache size. The
Newscast protocol turns out to be sensitive to this parameter, especially if the cache size
is smaller than 20. However when the cache size was bigger than 40, the difference almost
completely disappeared.

In general we can conclude that both Shuffling, Cyclon and Newscast maintain a commu-
nication graph with the low average shortest path length, similar to the one in a random
graph. However in the case of the Newscast protocol it is crucial to configure the cache size
appropriately.

4.3. Dynamic network

4.3.1. Failures model

We want to examine the behavior of an overlay network’s properties in the presence of nodes
failures. We assumed the following scenario: each node is working for a number of cycles,
then failure occurs and a node is idle during a period called the recovery time. After recovery
the node tries to return to the network with the cache content it had before the crash (it
requires saving the cache content to a log in persistent memory). In our model both faultless
work time, also called time between failures, and recovery time of a random node were defined
by a random variable with exponential distribution. Note that in such a network the fraction
of nodes which are working will converge to:

MTBF/(MTBF + meanRecoveryTime)
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Figure 4.4: The average shortest path length as a function of the number of nodes (left) and
cache size (right), when different protocols are used in a stable network. The shortest path
length was measured from a random sample of 5 nodes to all others and then the average was
taken. Results are averaged over 20 runs, the standard deviation was negligible. On (a) the
cache size was set to 20. On (b) the network consisted of 30000 nodes.

where MTBF stands for mean time between failures.

The mean time between failures was set to 20 cycles. We conducted several experiments
changing the ratio of mean recovery time to MTBF'. Figures 4.5, 4.6 and 4.7 show the results,
which are averaged over 20 runs. If the standard deviation is not shown it means that it was
several orders of magnitude lower than the average. All experiments were conducted on the
network of 50000 nodes, the cache size was in all cases set to 20.

To provide comparison, experiments with the same parameters but on a stable network were
also done — the ratio of mean recovery time to MTBF was in this case equal to 0, because
the MTBF was then infinite.

4.3.2. Effective cache size

In Figure 4.5 we can see how fast information about dead nodes is removed from the system
in the presence of continuous node failures.

At first glance, we can see that the Newscast protocol quickly forgets about non-available
nodes. Even if every node recovers from crashes two times longer than it is present in the
system, the cache is contaminated on average by only 2 addresses of dead nodes. This is caused
by the fact that Newscast keeps only the freshest addresses in the cache — information about
nodes which were up and running recently is stored. The probability that such nodes are still
working after a few cycles is much higher compared to the case of a random node.

The Shuffling and Cyclon protocols do not have this property. They try (with some success)
to keep the cache content very close to a random sample of all nodes in the network. It
implies that if on average X% of all nodes is not available (because of recovering), then X%
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Figure 4.5: A comparison of the effective cache size when different protocols are used in a
dynamic network. The network size was 50000, the cache size was 20. Results are averaged
over 20 runs, the standard deviation was negligible.

of addresses in the cache will lead to unavailable nodes — and this is exactly what we see
in Figure 4.5. The Cyclon protocol tries to contact peers with the oldest timestamp in the
cache. This fact is manifested by slightly faster removal of dead pointers comparing to the
Shuffling protocol. Thus the effective cache size is also a little bit bigger.

4.3.3. Clustering coefficient

Figure 4.6 demonstrates sensitivity of the clustering coefficient to the recovery speed. We can
observe that the clustering coefficient of a communication graph when the Newscast protocol
is used stays at a high level and is relatively stable. To understand the latter phenomenon
we have to realize that when Newscast is used:

e the effective cache size is not very sensitive to the recovery time — dead links are thrown
away very quickly (see Figure 4.5).

e the clustering coefficient is not very sensitive to the number of nodes in a network (see
Figure 4.2(a))

So, as the effective cache size is stable the clustering coefficient is also stable, even if the
number of nodes decreases.

The most interesting thing is that the clustering coefficient of a communication graph managed
by the Cyclon protocol stays on the same low level even if the mean recovery time is bigger
than MTBF. It implies that a graph induced by active nodes still possesses properties of a
random graph — addresses of live nodes in a cache are a uniform random sample of all live
nodes. This is not the case when Shuffling is used. The clustering coefficient increases by
about one order of magnitude when the mean recovery time grows. This fact implies that
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Figure 4.6: A comparison of the clustering coefficient when different protocols are used in a
dynamic network. The network size was 50000, the cache size was 20. Note that the scale
is different on (a) and (b). Results are averaged over 20 runs, the standard deviation was
negligible.

a network has stopped to appear as a random graph and live nodes have started to group
in clusters. But still the clustering is one order of magnitude smaller than in the case of
Newscast.

4.3.4. The shortest path length

Figure 4.7 shows us how the average shortest path length changes when the recovery time
increases. We can see that the length is low even if nodes recover very slowly.

When the mean recovery time increases, the path length decreases in the case of Newscast
and increases in other cases. To understand why is it so, we have to look again at Figures
4.4 and 4.5. Looking at Figure 4.4 we could conclude that the average shortest path length
is more sensitive to the cache size than to the number of nodes in the network. From Figure
4.5 we know that the long recovery time causes only a small decrease of the effective cache
size when Newscast is used, and a quite serious decrease in other cases. So when the recovery
time is long, in the case of Newscast, the network will be smaller and the effective cache size
will not change too much, so the average shortest path length will be smaller. In the case of
Cyclon and Shuffling both the network size and the effective cache size will be smaller, but
because the cache size plays a more important role here, the average shortest path length will
increase.
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Chapter 5

System applications

We are already equipped with knowledge about the properties of the overlay network managed
by various protocols, so it is time to see, how this system can be used and how efficient it can
be in practice. Among a broad range of our system’s applications we will focus on aggregation
algorithms.

Let’s consider a system with N agents, where agent A; stores one number a;. The goal is
to program these agents in such a way that in a small number of protocol cycles the system
would be able to compute some aggregate function of a;...ay, such as maximum, average or
variance. We are also interested in the behavior of the algorithm in a network where nodes
could crash and after some time recover joining the computation again.

In the following sections we describe a particular aggregation algorithm, which computes
average of distributed values. Such an algorithm can be used e.g. to monitor the average load
of machines in the network or the average amount of their free memory. As was shown in
[6], the averaging algorithm can be also used directly to compute a sum of distributed values.
The ability of computing the average of some attributes in a distributed environment gives
us a powerful tool to monitor such an environment.

The aggregation algorithm discussed here provides the result of a computation to all nodes.
It is also not difficult to make this algorithm adaptive [4]. Adaptivity means that if a network
is dynamic or values which are aggregated can change, the output of the aggregation protocol
should follow these changes quickly. These important properties can be used e.g. by protocols
responsible for self-organization in large-scale systems.

As we have mentioned earlier, protocols examined by us do not provide each node with a
complete list of the other members of the network, but only with a random sample of them.
However it is much easier to analyze the behavior of some applications considering the ‘ideal
case’, where a correspondent can select its peer among all nodes in the network. To validate
theoretical analysis of aggregation algorithms presented in [5], we performed tests using the
Random-peer protocol which simulates the ‘ideal case’. This simple protocol does not use
caches of correspondents. When a correspondent wants to find a peer, the peer is randomly
selected from the set of all nodes in a network.

5.1. Averaging algorithm

The averaging algorithm, presented in [5], allows every agent to get to know the average of
all agents’ values in a small number of protocol cycles with very good precision. The agent
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A; stores a current estimation of the average in a variable x;. The algorithm requires that
all agents start executing it synchronously, but later no synchronization is necessary. At the
beginning every agent initializes x; to a;. The getNews() function simply returns z;. The
implementation of the updateNews (peerAgentValue) function updates the current z; value
with the average of x; and the peer’s agent value:

z; == (x; + peer AgentValue) /2

When the correspondent’s agent and the peer’s agent update their estimates, we say that an
averaging step has been completed. As was shown in [5], the approximation of the average
known by each agent converges to the true value exponentially fast when this algorithm is
used.

In our simulations the value stored at the beginning by the agent A; was set to i. We looked at
the number of protocol cycles needed until all nodes know the average with certain precision.
In the figures presented in the following sections precision X means that all available nodes
knew the average with an error less than X * 100%.

5.2. Stable network

Figure 5.1 shows us how the performance of the algorithm depends on the protocol which is
used. The measurements have been taken in a stable network.
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Figure 5.1: Comparison of the convergence speed of the averaging algorithm, when different
protocols are used in a stable network. The network consisted of 50.000 nodes, the cache size
was 20. Results are averages of 20 runs, the standard deviation of all samples was always
smaller than 1.

For every protocol it takes a similar number of cycles to reach a small precision between 1%
and 10%. But differences grow if we want to reach better accuracy. As we can see, if the
Shuffling or Cyclon protocol is used, it takes from 30 to 40 cycles until all nodes know the
average with very good precision. If the Newscast protocol is used, we need 70% more time
to reach that point.
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Note that the performance of Shuffling and Cyclon is almost identical to the ‘ideal case’, when
peers are randomly picked from all nodes in the network. It proves that the small set of peers
known to each node constitute a truly random view of the whole network.

Another interesting observation which can be made is the fact that the performance of Cyclon
is a few cycles better than performance of the ‘ideal case’. How can it be possible? The reason
is that Cyclon spreads the number of pointers to an arbitrary node (its in-degree) very evenly
among all nodes. If all nodes have similar in-degree, then they perform a similar number of
averaging steps. In contrast, when a peer is randomly selected among all nodes, then some
peers are selected more often than others, because the distribution of the number of times
when an arbitrary peer is selected is similar to the in-degree distribution of a random graph
shown in Figure 4.1. Thus the number of averaging steps is not evenly distributed among
nodes, what makes the convergence to the true average slower.

5.3. Dynamic network

We have tested three scenarios using the failures model described in Section 4.3.1. Figure
5.2 shows the results when the mean recovery time is 10%, 20% and 40% of the mean time
between failures.

In the first case in Figure 5.2(a), we can see that although the time needed to reach a certain
accuracy increased about 2.5 times, relations between the protocols stayed similar to the case
when the network was stable. When Newscast is used, convergence takes noticeably more
time, albeit that the difference slightly diminishes. The fastest convergence is still observed
when the Cyclon protocol is used.

As we can see in Figure 5.2(b) and 5.2(c), the situation changes when extreme scenarios with
relatively long recovery time are considered. The fact that Newscast maintains an overlay
network with a high clustering is compensated by the low cache contamination with dead
pointers (as we saw in Figure 4.5). That’s why the convergence speed of the averaging
algorithm when the Newscast protocol is used is comparable to an ‘ideal case’, when a peer
can be randomly selected among all nodes.

In all scenarios the convergence speed when the Shuffling protocol is used is similar to the
‘ideal case’. The low effective cache size is compensated by the clustering coefficient much
lower than in the case of Newscast.

At the same time Cyclon performance decreases. As we remember from Section 3.3, the
Cyclon protocol is the only one that tries to contact peers with the oldest timestamp in the
cache, instead of choosing them randomly. When the cache contamination is high, the oldest
chosen cache entry often contains a reference to an unavailable peer. In this way the number
of averaging steps is lower and this is the reason of the slower convergence. However, we
have to keep in mind that the examined scenarios were rather extreme and the performance
degradation was not so drastic.
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Figure 5.2: A comparison of the convergence speed of the averaging algorithm for different
protocols in a dynamic network. The network consisted of 50000 nodes, the cache size was
20. The mean time between failures was 20 cycles. Results are averaged over 20 runs, the
standard deviation was always smaller than 1.
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Chapter 6

Simulation engine

To carry out the experiments described in this thesis the need for a flexible, efficient and
configurable simulator emerged. Since we expect enhancements of protocols managing an
overlay network, as well as the emergence of new applications running on it, it is clear that
the source code of such a simulator must be extendable and also easy to maintain. We
believe that the simulator built by the author of this thesis fulfills all these requirements.
The simulator was written in C++ and was carefully optimized, which makes it fast. We
took advantage of the object-oriented approach, taking care of the clarity and flexibility of
the design. The well-documented simulator’s source code for Linux, Solaris and Windows,
together with the user manual and configuration examples are publicly available!.

The simulator lets us test both new protocols managing the network overlay and applications
working on top of them. All aspects can be tested in a stable network as well as in the
presence of crashes and recoveries of nodes.

We have to be aware that every simulator models reality introducing some simplifications. In
our simulator the whole distributed network is simulated on one machine. During one cycle
a node can serve all data exchange requests which come from other nodes during that cycle.
In practice we can imagine that the number of requests is too big to fulfill this requirement.
Fortunately errors caused by this simplification are small. The in-degree of a node bounds
the number of requests which can be sent to that node. And as we saw in Figure 4.1, the
majority of nodes has the low in-degree. Moreover the probability that there are ‘hubs’ with
huge in-degree in the system is really small.

We verified correctness of our simulator by comparing part of our results obtained for the
Newscast protocol with simulations results described in [3] and [6]. Our results were also
coherent with results obtained in [8], where the Newscast protocol was emulated on a real
network of agents distributed across a 320-node wide-area cluster of workstations.

The simulator consists of 3 types of modules:

e a protocol independent framework which allows us to specify the agents we want to use
and aspects which we want to observe and measure in the simulation,

e modules that contain implementations of specific protocols, agents and simulations,

e facilities that help in preparing statistics, histograms, etc.

In the following sections each module is described.

!see http://www.cs.vu.nl/globesoul /sim.tgz
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6.1. Framework

6.1.1. Design

Our simulator perceives a network as the set of nodes. Each node has the following properties:

e its own unique address,
e 3 correspondent with some cache,

e an agent connected to a correspondent.

During every protocol cycle every correspondent initiates exactly one connection with a peer
and proceeds according to the rules given by the protocol:

e the initiator and its peer update their caches on the basis of the other correspondent’s
cache contents,

e the initiator’s agent and the peer’s agent update their state on the basis of the other
agent’s state.

The user can specify what type of agents should be used, choosing in this way the application
which will run on an overlay network. The framework specifies an interface, which every
agent must implement. Thus it is easy to create new types of agents — there is a small set
of methods with a precisely defined semantic which have to be implemented.

Moreover, a protocol, which should be used by all correspondents during a simulation, can be
specified as well. Again, the simulator’s framework is based on the generic interface defining
the protocol’s responsibilities and no specific assumptions about a protocol are made.

The progress of the simulation can be observed by a simulation monitor. Such a monitor
is informed about the beginning and the end of every cycle of the protocol. When a monitor
receives a signal about such an event, it can perform some analysis of the agents’ state or check
properties of a communication graph. In this way we can explore the dynamics of particular
parts of the system, gaining more insight into it.

The fact that the main components of the simulator: a protocol, an agent and a simulation
monitor, are generic makes the simulator very flexible. Testing new kinds of agents, introduc-
ing improved protocols or monitoring either the network or the application layer can be done
by adding simple and well-defined pieces of code.

34



6.1.2. Simulation properties

We can configure the simulator program to use a specific protocol and agents in a simulation.
The simulation monitor can be specified as well. Such a construction lets us conduct different
simulations and compare their results without the need for burdensome code recompilation.

Parameters such as the cache size or the number of protocol cycles after which a simulation
should end can be chosen by the experimenter. Sometimes we would like to conduct several
experiments for some range of parameters. The simulator allows to specify the range of cache
sizes and the range of node numbers for which simulations should be performed. There is
also a possibility of performing simulations with certain parameters a given number of times,
which allows the simulation monitor to compute averaged results.

Sometimes, as in the case of a communication graph analysis, the simulator monitor has a lot
of work to do. For this reason we can specify the protocol cycle in which monitoring should
start. We can also perform measurements once for several cycles.

If for some reason we need to make the simulator more configurable, we can always do it by
implementing our own component as a subclass of one of the framework’s classes.

6.1.3. Management of nodes presence

During a simulation some nodes can suddenly crash and lose contact with the rest of the
network for some time. At a certain moment, a node can recover and continue its work. The
special component called presence manager is responsible for deciding if a node should
crash and how long the recovery process should take.

The framework provides a general interface of a presence manager, which can be implemented
to fulfill specific experimentation needs.

Starting a simulation without any nodes and waiting while they are joining one by one, until
the network will be large enough, would last quite long. The simulator gives us an alternative
— we can specify the number of nodes which take part in a simulation from the start.

It is not obvious how to initialize caches of such nodes. However for the protocols we have
considered, we’'ve found that we can take a group of nodes working from the beginning and
initialize each node’s cache with the addresses of nodes randomly selected from this group. It
turns out, that after a few cycles (20-30) the caches’ properties are the same as in a converged
network. In a particular simulation, we can choose the number of protocol cycles needed for
full convergence of the network. The application layer starts working after that time, which
makes the simulation’s results reliable.

6.2. Specific functionality

To conduct experiments needed for this thesis several interfaces provided by the Framework
have been implemented.

Specific protocols, described in Chapter 3 and 5, which realize the Protocol interface contract
were created: Newscast, Shuffling, Cyclon, Random-Peer. We have made efforts to make
important protocols’ features configurable. For instance, it is possible to specify in the config-
uration file how many cache items should be exchanged when the Shuffling or Cyclon protocol
is used. We can also decide what to do if a peer randomly selected by a node does not respond
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— the node can wait in such a case until the next cycle or repeat selection a given number of
times.

We also created specific types of agents which compute aggregative functions of values stored
by all agents, like the average, the sum or the maximum.

Different types of monitors were created. With their help we can measure:
e the communication graph properties,

e the number of cycles needed to calculate average or sum by all agents with certain
accuracy,

e the number of nodes (in each cycle) which know the average or sum with certain accu-
racy,

e the convergence speed of the algorithm computing maximum.

All the details of using specific components can be found in the user manual.

6.3. Facilities

The main goal of all simulations is to gain an insight into system’s characteristics. The
Facilities module provides several utilities which can support the simulation monitor in e.g.
collecting statistics or analyzing network properties.

6.3.1. Collecting statistics

The Histogram Creator is a utility which allows us to create histograms in a simple way. It
can help if we want to see what’s the distribution of a sequence of values in a given range. We
can specify the number of 'buckets’ in this range and the histogram will count the number of
values in each bucket. We can also get to know how many values lay outside the range.

Usually we want to conduct one simulation several times to produce averaged results. The
Statistics utility can help us in this situation. It makes it really simple if we want to compute
an average and the standard deviation of one or many sequences of values. There is also a
possibility of saving the results to the chosen file.

6.3.2. Network analysis

As we wrote in Section 4.1, a network of nodes can be perceived as a communication graph.
To analyze important properties of this graph a special component was created. Using it we
can analyze, for example:

e the clustering coefficient of a graph,
e the average shortest path length in a graph,
e graph connectivity — we can quickly find an answer to questions like:

— is the graph connected?
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— how many connected components are in the graph?

— how many randomly selected nodes should be removed to partition the graph? (in
average)

— what’s the number of nodes which have no neighbors?

e the average effective in-degree of nodes (cache contamination).

6.3.3. Random numbers

During simulations we often need a random number generator. To model some phenomena like
the mean time between failures it is useful to have random numbers which have exponential or
Poisson distribution. A special component of the Facilities module lets us generate random
numbers with a given range and with a chosen distribution — uniform (real numbers and
integers), exponential or Poisson.
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Chapter 7

Conclusions

In this thesis we examined the properties of the distributed computing engine, as well as a
class of gossip-based protocols used by it — Newscast, Shuffling and Cyclon. We explored
scenarios in networks where the set of participating nodes was stable and scenarios where this
set was very dynamic because of node failures and recoveries. We considered situations where
nodes after recovery from a failure could rejoin the network and resume the computation that
they were previously engaged in.

We provided a detailed analysis of the considered protocols, examining the overlay network
which they maintain and the behavior of applications running on this network. We presented
their strong and weak points.

We demonstrated via simulations that both in stable and dynamic networks the recently
introduced Cyclon protocol can maintain an overlay network with properties similar and even
better than a random graph has — short paths between nodes, a low clustering coefficient
and a good in-degree distribution.

We examined the effect of failing nodes on the convergence of the aggregation algorithm
computing the average. For the first time we showed that we can obtain a really good
convergence speed of this algorithm when the Cyclon protocol is used.

To obtain all the results we developed the flexible, efficient, configurable and multiplatform
simulator of the gossip-based computing engine. Thanks to this fact new aspects of the
system can be examined during future research. Using the simulator it is extremely easy to
test enhancements of protocols managing an overlay network or new applications running on
it.

We think that future work should be focused on extending Cyclon with features which will
allow the construction of an overlay network more aware of the connections bandwidth and
computational power of nodes. Then it would be possible, for example, to avoid network
bottlenecks. Additionally taking proximity of nodes into account would help to decrease
traffic in a network.
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Appendix A

Example simulator configuration

All we need to configure the simulation is a text file which has a simple format of name-
value pairs collection. Below we present examples of the configuration files used by the
simulator. The simulator program will conduct a simulation for every configuration file given
as a parameter. Details of the configuration are described in the simulator’s user manual.

A.1. Stable network

Below we present an example configuration file for several simulations with different network
sizes: 100000, 300000 and 500000 nodes. In each simulation the convergence speed of the
averaging algorithm is measured. Agents start working after 30 cycles, when the network is
converged. After 100 cycles the simulation stops. The network during the whole simulation
is stable.

# Kind of observer, which will monitor the state of

# the simulation and measure something

# (here: convergence speed of the averaging algorithm)
monitor = cyclesForAcc

# Class of agents used in the simulation. Here: agents computing the average
agent = AgentAvg

# Protocol which will be used: Cyclon
protocol = cyclon

# the number of nodes which take part in a simulation from the start.
initNumNodes = 100000

when one simulation ends, the initNumNodes parameter is updated:
initNumNodes = mulNumNodes * initNumNodes + incNumNodes
If initNumNodes does not exceed the limit set by the maxNumNodes parameter,

the next simulation with different network size is performed.

maxNumNodes = 500000
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incNumNodes = 200000
mulNumNodes 1

# the cache size of each node
cacheSize = 20

# after 100 protocol cycles the simulation will stop
cyclesInSimulation=100

# After 30 cycles agents start working.

# Aim of this parameter is to allow agents to start their computation
# on the converged network.

agentMeetingsStart=30

A.2. Dynamic network

This is an example configuration file for the simulation in which communication graph proper-
ties are analyzed every 20th cycle, starting from the cycle 40. After 100 cycles the simulation
stops. This time the network is dynamic. Every node works on average 20 cycles, then crashes
and recovers on average during 2 cycles. Both the time between failures and the recovery time
of a random node are defined by a random variable with exponential distribution.

# every node has the same crash/recovery time distribution
presenceManager = uniform
# the mean time between failures (20 cycles)
meanFaultlessWorkTime = 20
# ... and its distribution (exponential)
distrFaultlessWorkTime = exp
# the mean recovery time (2 cycles)
meanRecoveryTime =2
# ... and its distribution (exponential)
distrRecoveryTime = exp

# no joining or leaving nodes.

distrLifeTime = const
meanlLifeTime = -1
distrJoiningRate = const
meanJoiningRate = -1

# Network analysis will start after 40 cycles
measurementStart = 40

# the measurement will be performed every 20th cycle.
measureCycle = 20

# Kind of observer, which will monitor the state of
# the simulation and analyze the communication graph.

monitor = graphAnalysis
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# We do not need agents during network analysis
agent = None

# Protocol which will be used: Newscast
protocol = newscast

# the number of nodes which take part in the simulation from the start.
initNumNodes = 10000

# the cache size of each node
cacheSize = 20

# after 100 protocol cycles the simulation will stop
cyclesInSimulation=100
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