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Abstract

Distributed Flow Control aims at ensuring optimal usage of resources in a P2P system. This
is crucial in high-performance applications, where users expect responsiveness and efficiency
of the system. Currently available systems use simple forms of control flow, usually based
on static user-supplied limits. This paper presents a version of a distributed flow control
which uses only locally available performance information, based on the assumption that the
number of requests destined for each host is approximately equal. It doesn’t require any data
exchange with other peers in the network, and therefore doesn’t add to the load which it is
trying to control.
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Chapter 1

Introduction

Peer-to-peer systems are currently on the rise, mostly due to low cost of upkeep, high re-
silience, and easy expansion. While P2P systems gained a somewhat notorious reputation in
recent years due to illegal file sharing, they are now being introduced in many other, legal
domains. These include (but are not limited to): high-performance computing, mass data
storage and internet telephony. Each of these applications requires some sort of control over
the amount of time each request is processed by a system node.

Every time-constrained peer-to-peer system design must deal with the problem of resource
exhaustion. When a peer receives requests faster than it can handle them, the entire system
can be affected. The mechanism which comes to mind when thinking about this issue is
Distributed Flow Control. It provides a P2P system the means to determine if a specified
request should be accepted or rejected. In order to work properly, distributed flow control
should take into account performance of the individual node, as well as that of the entire
system. If the flow control mechanism is to work without impending too much performance
slowdown, or introducing the assumption that some nodes are error-free, the system must
not use the centralized resource-manager approach.

By their very nature, nodes in a P2P system are error-prone, and can disappear randomly.
This also has to be considered when designing such a system. It practically eliminates the
possibility of using a token-based solution, for fear of a failing node never returning a token,
unless some mechanism of token recovery is introduced.

This paper presents a distributed flow control library which uses only locally available
information. Unlike other solutions, it doesn’t require data exchange with other peers in the
network. This has many advantages: firstly, it avoids introducing a single point-of-failure,
and secondly it doesn’t add to the load which it is trying to control. Of course any distributed
flow control mechanism can only provide a best-effort approach, since at any time any number
of nodes can fail, thus timeouting requests. The solution presented here aims at reducing the
number of timeouted requests without impending too much slowdown on the system itself.

Key issues each P2P control flow system design addresses are: scalability, extensibility,
overhead, portability and flexibility. It is important for the system to detect both local and
remote slowdowns (for example caused by other processes starting on the server, or a remote
server crash). We will present our solution in all these aspects, and compare it with other
algorithms.

This work focuses on providing programmers with a well-tested, useful library they can
incorporate into their P2P solutions. As each of them is usage-specific, it may have different
characteristics when it comes to dealing with load. Therefore, the library is created with
configurability in mind.
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This paper is divided into several parts as follows:

1. Description of several P2P systems and their flow control mechanisms are presented for
reference and comparison purposes in chapter 2.

2. The basics of our solution, definitions used throughout the rest of the document, as-
sumptions made are given in chapter 3.

3. System design is described in chapter 4.

4. Implementation is briefly described in chapter 5.

5. Description of a framework we used to test our solution, and test results are given in
chapter 6.

6. Conclusions and ideas for future work are outlined in chapter 7.
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Chapter 2

Related work

The issue of control flow is quite commonly raised in communication. Specifically, whenever
we have two communicating systems, we need to make sure that neither of them will overflow
the other with requests. There are several communication protocols which utilize control flow
and are, therefore, interesting from our point of view.

For this paper, we decided to describe the following protocols:

• TCP — due to its widespread usage, and quite simple, yet effective, control flow mech-
anism,

• eDonkey protocol — it is one of the most widespread P2P systems used for sharing
huge amounts of data,

• BitTorrent — due to its widespread use in the P2P community, and focus on efficiently
spreading data instead of high download speeds.

There are many other solutions to ditributed flow control. The Tor project ([Din04]), for
example, uses data throttling. There were also attempts to predict web flash crowds using
statistical information ([Bar05]). We will not focus on these results, however, since they are
not generic enough to implement as an all-purpose library.

2.1. TCP window mechanism

The TCP protocol has been designed over 20 years ago, and since then, had been a subject
of study for many scientists. It has been described in [Koz05].

TCP is a stream-oriented protocol, and sends data in segments. Data is split into them,
and a complicated confirmation mechanism, which is beyond the scope of this paper, is used
to make sure every byte has been delivered. Suffice to say, data is retransmitted, if it hasn’t
been acknowledged within a certain time.

Data in the stream is split into 4 categories (as shown in figure 2.1):

• category 1: sent, acknowledged,

• category 2: sent, not acknowledged,

• category 3: bytes to send, for which the recipient is ready,

• category 4: bytes to send, for which the recipient is not ready.
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Figure 2.1: Here we see the data stream split into several categories

TCP incorporates a simple flow control mechanism, which could be viewed as an alter-
native to our solution. This mechanism is called ”the sliding window”, because it is based
on the concept that neither the sender, nor the receiver can send data from outside a given
range.

This mechanism not only limits data flow rate, but also ensures that lost packets are
retransmitted.

2.1.1. The problem

The main problem all ”send-and-forget” transmission protocols face, is the fact that data
can be lost (as shown on diagram 2.2). While in some applications (streaming media, audio,
internet telephony) this might not have a huge impact on the overall quality of the service,
in general we would like to have a protocol which is reliable, and doesn’t loose data.

Figure 2.2: In this example we see the problem of losing data when confirmations are not
required (source: [Koz05])

The second issue is that the sender does not know (and, theoreticaly, it is impossible
for him to know exactly) how fast the receiver can parse incoming data. This is caused by
communication latency, and the only way to solve this problem is some sort of a binding
’contract’ between two sides of communication.

2.1.2. The sliding window mechanism

The sliding window is the solution to both of these problems. It acts as a buffer between a
sender and a receiver. The receiver notifies the sender of its ”send window size” (which is
simply a number of octets) via special window announcements. The sender then knows it is
allowed to send no more than a given amount of octets before getting confirmation. This is
depicted in figure 2.3.
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Figure 2.3: An illustration of the sliding window concept

A sender always can send data from its usable window. When the usable window is
zero-sized, the sender must wait for confirmation of previously sent data. This confirmation
moves the left side of the window, making the usable window grow. Figure 2.4 shows window
movement.

Figure 2.4: Movement of the sliding window during data transfer

2.1.3. Sliding window and flow control

The sliding window mechanism can be used for flow control. Window size changes can be sent
along with confirmations to speed up or slow down transmission, as shown on the diagram
2.5.

Assume that we have a sender, receiver pair. The receiver is currently heavily loaded.
Here’s the typical sender choking scenario:

1. The sender sends the first 140 bytes to the receiver.

2. The sender moves the left edge of the usable window 140 bytes to the right.

3. The receiver accepts data, and stores it in its incoming buffer. The left edge of the
buffer’s receive window moves 140 bytes to the right. The right edge moves 40 bytes to
the right (meaning 40 bytes are passed to the application layer).

4. The receiver sends an acknowledgement message to the sender, and propagates the new
size of the window – 260 bytes.

5. The sender receives acknowledgement, and sets the window size accordingly (moving
left edge by 140 bytes, and the right by only 40 bytes).

11



Figure 2.5: Resizing the TCP window during overloading (source: [Koz05])
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6. With the new reduced window, the sender sends 180 bytes.

7. The sender moves the left edge of the usable window.

8. The receiver accepts 180 bytes, stores it, and resizes the receive window again, this time
moving the left edge by 180 bytes.

9. The receiver sends an acknowledgement with the new window size (80 bytes).

10. The sender receives acknowledgement, and resizes his window, moving the left edge 180
bytes forward.

11. The sender sends last 80 bytes.

12. The sender moves the usable window 80 bytes to the right, leaving the window zero-
sized.

13. The receiver accepts 80 bytes, stores them, resizes the window, moving the left edge 80
bytes to the right. The buffer is now full.

14. The receiver sends an acknowledgement with the window size 0. This tells the sender
to pause.

At this point, the sender must wait for a new window size to be sent. Once this happens,
the right edge of the window will move forward, and transmission can continue.

2.1.4. Problems

While the idea behing sliding windows may be simple, implementing flow control can be
very tricky. One of the issues to consider is shrinking vs. reducing the window in case of
overloading.

Let’s assume that the server is very overloaded, and is trying to cut down the speed at
which it is receiving data as much as possible. All it can do is to leave the right edge of the
window where it was whenever data comes in. Moving it to the left could be problematic,
because that might lead to a situation where the client has already sent some data, and
suddenly that portion of data falls out of the usable window. This operation (moving the
right edge of the window to the left) is called shrinking the window. Resizing the window
when the right edge doesn’t move or moves forward is called reducing.

TCP explicitly disallows window shrinking, only reducing is allowed.
So what can a server do to prevent window shrinking? It has to be very careful about

assigning window sizes, since it can be seen as a binding contract. When overloading does
happen, it has to be patient and reduce the window as data comes in.

2.2. eDonkey network

The eDonkey network ([Kul05], [Eng05], [Wik06]) is a popular platform for peer-to-peer file
sharing. Its widespread use and the huge amount of traffic it generates (current research
[Cac05] shows that BitTorrent and eDonkey are the two leading peer-to-peer networks with
regard to data volume) makes is a very interesting protocol from our perspective.

There are many programs which implement the eDonkey protocol (originally developed
by the MetaMachine company). One of the most popular is eMule, which I have chosen to
describe as an example of eDonkey flow control. eMule builds upon the original eDonkey
protocol, adding several new features.
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2.2.1. Overview

The eMule network is populated with several hundred eMule servers, and millions of eMule
clients. Each client connects to a server in order to perform searches, and this connection is
open as long as the client is in the system. It is also used by the client to report the resources
(files) it wishes to share with other clients. Each server keeps a registry of files from all of its
connected clients. Servers do not communicate with other servers.

Every client receives from its server a list of other clients who have the files it is searching
for. Each of these clients can now be contacted for different parts of the file.

2.2.2. Data interchange

Every client maintains its own upload queue for each file it shares. Downloading clients
register in the queue, joining it from the bottom and gradually moving upwards, until they
reach the top of the queue and start downloading. A client can register to several queues,
asking for different parts of the same file. A client can upload parts of a file, even if it doesn’t
have the complete file yet.

The place in the waiting queue is determined by a factor called ranking. Downloading
clients can be preempted by a waiting client with higher ranking. During the first 15 minuts
of downloading, the downloading client’s ranking is raised to prevent thrashing.

The download is initiated by the uploading client, which opens a connection to the down-
loader and uses a push mechanism to send him his requested file parts.

A credit system is used to encourage uploads and reciprocation. The more files client A
uploads to client B, the more credits it will have on client B, and will move to the top of B’s
upload queue faster. eMule uses 16-byte user IDs to identify users between sessions, so even
if a connection to B is broken, the next time client A connects to B it will use the credits
available previously. RSA public/private key pairs are used to avoid impersonation.

The credit system

When client A uploads data to client B, the downloading client updates the credit related to
the uploader according to the amount of data received. This means that the credit system is
not global, it will be taken into account only when downloading specifically from client B.

Credit is calculated as a minimum of:

• uploaded total∗2/downloaded total, with a maximum value of 10. If downloaded total
is zero, this expression evaluates to 10.

•
√

uploaded total + 2), when uploaded total is less than 1 MB, this expression evaluates
to 1.

Both upload and download amounts are calculated in megabyte units. Credit is always
in the [1, 10] range.

Upload queue management

Each client registered in an upload queue is assigned a priority, based on its rating and the
time spent in the queue. The queue is sorted by score, which is calculated using the following
formula:

score := (rating ∗ seconds in the queue)/100 or ∞ for clients defined as friends.

14



The rating’s initial value of 100 can be modified by the client’s credits (from 1 to 10),
and by the uploaded file priority (0.2 – 1.8) which is set by the uploading client. A client
which has just started downloading has a boosted rating of 200 for the first 15 minutes of
downloading.

The download will stop if:

• the uploading client was terminated,

• the downloading client got all the parts of the file,

• the downloading client was preempted by another downloading client with a higher
score.

An uploading client will serve several (typically 4) downloading clients with currently
highest score.

File parts

Each file is divided into 9.28 megabyte parts and each part is further divided to 180 KB
blocks. The downloading client decides in what order the file parts will be downloaded, by
sending requests for different blocks. A client can download one part from each source at a
time, and all blocks that are requested from the same source reside in the same part. The
following rules are used when choosing parts (in this order):

1. frequency of the parts — rare parts are downloaded first to create new sources,

2. parts used for preview — first and last part,

3. request state — ask all sources for blocks from different parts, spread the requests
between sources,

4. completion — parts for which some blocks have already been received should be com-
pleted before beginning another part.

2.3. BitTorrent

BitTorrent (referred to as ’BT’ later in this document) is a P2P system which is focused on
efficient distribution of large contents. The specification can be found in [Bit06] and [Eng05],
while [Iza04], [Leg05A], [Leg05B], [Qiu04] and [She04] provide some insight into theoretical
performance of this protocol. It is based on the idea of a ’horde’ or ’swarm’. A .torrent file
contains the address of a tracker, a server which counts the number of downloads and uploads,
and can be queried for information when searching for new peers to share data with. The
idea is for the tracker to host meta-information about the download, and for the downloaders
to share pieces of the file between themselves. This of course assumes there initially exists
at least one seeder, a peer which shares the entire file. The connection process is shown on
diagram 2.6

15



Figure 2.6: Connecting a new client to the network
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2.3.1. The problem

One of the main problems P2P systems face is ’free-riding’ [Kri04], which means downloading
data without providing any youself. Some networks limit the amount of resources available
to a client ([Tsu03A] and [Tsu03B]), while others discourage this kind of behaviour by using
algorithms which reward uploaders ([Bur03]). BitTorrent uses a ’tit-for-tat’ flow control
mechanism ([Coh03], [Tam03], [Tho05]), which is used on top of the TCP flow control to
regulate traffic on multiple TCP connections.

When limited to one connection only, the TCP control flow performs quite well. Un-
fortunately most P2P applications use multiple connections, sometimes even opening many
connections to one remote client. This is when TCP flow control starts to fail, because it treats
all these connections separately. This opens up a potential for abuse, since a ’free-loader’
could open multiple connections for different parts of the same file (most P2P applications
allow this), and each of them would get the same share of the server’s bandwidth. The
outcome is that the free-loader gets more bandwidth than other, ’honest’ clients.

2.3.2. Solution

A simple solution is to somehow slow down clients which do not upload any data. This
slowdown must be significant enough so that it’s not worth opening new connections.

A good algorithm should:

• limit the number of simultaneous connections for good TCP performance,

• avoid slowing down and speeding up clients quickly (also known as ’fibrillation’),

• reciprocate to peers who let it download,

• try out unused connections to see if they could be better than currently used ones.

BitTorrent uses a ’choking’ mechanism to slow down leechers. All connections in BT are
two-way (meaning each client is also a server). Every connection has a set of flags associated
with each endpoint. An example state with regard to these flags is shown on diagram 2.7.

• choked — Set by the sender, describes a peer to whom the server refuses to send pieces.
This can happen in 2 situations:

– the receiver is a seed (meaning it already has the complete file),

– the sender reached its maximum upload capacity (bandwidth or a number of open
upload connections).

• interested — describes the downloader, who would like to obtain a piece of the file the
client has.

The protocol ensures that in order to achieve good download speed, one must also upload
at a considerable rate. This is caused by using the choked flag to mark all but the ”best” 4
uploaders. This way, fast uploaders are rewarded with high download speeds. This rating is
refreshed every round (which usually lasts 10 seconds). Every 3 rounds, the client will perform
an ”optimistic unchoke”, choking the worst of the currenly ”best” clients, and unchoking
one other. This might help find better partners, since the unchoked peer might offer good
download speeds now that it is receiving data from us. Seeders implement the same strategy,
but based on download, not upload speeds.
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Figure 2.7: Flags used in the BitTorrent network
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Another important aspect is the file chunks we ask for. Peers essentially try to maximize
the entropy of each chunk, picking the one which is least available in their view of the network.
This makes sure that all chunks should be equally available in the torrent (at least locally).
There exists an exception to this rule, however. New clients do not have any data, so the only
way for them to get any is through optimistic unchoke. It follows that new clients should
not pick rare chunks, since they are available on few peers, and waiting for them to unchoke
us might take too long. Instead, fresh clients use a ’random first’ policy, and after receiving
some data, switch to ’rarest first’ policy.

Experiments [Iza04] shown that BitTorrent clients are ’altruistic’, meaning they actively
send data to other nodes, both as leechers and seeds. Free-riders will be served with very
low-priority (through optimistic unchoke only). Additionally, BitTorrent deals well with the
problem of ’flash-mobs’, by quickly creating a large number of seeds.

While it has been shown ([Hal05], [Qiu04], [Tho05]) that the BitTorrent tit-for-tat imple-
mentation is optimal only if one assumes certain parameters, which are unlikely to be found
in the real world (for example equal maximum upload speed for all nodes), it can be seen as
a step in the right direction with regard to flow control.

2.4. Summary of other solutions

The three solutions presented in this chapter were the models I studied when preparing
my own control flow implementation. As will be evident in next chapters, all algorithms
mentioned above had a great impact on my design.
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Chapter 3

Flow control library - requirements

The control flow library which I am about to introduce is a generic solution which can easily
be added to any peer-to-peer system to control resource usage.

Before continuing, let’s take a look on the vocabulary we are going to use. This section
may prove very useful later on.

3.1. Definitions

I have added the definitions list here, and not at the beginning of the documents, because
documents regarding previously mentioned solutions use these definitions in slightly different
context. In order to avoid confusion, let’s assume the following definitions will be used in the
next chapters:

Definition 3.1.1. A peer-to-peer network is a communications environment that allows all
computers in the network to share their resources.

Definition 3.1.2. A single computer participating in a peer-to-peer network is called a node.

Definition 3.1.3. A request is an atomic unit of work to be performed by a peer-to-peer
network. Depending on the desired function of the system, it can contain a description of
some calculations to be performed, a request to read/write some amount of data, or perform
any other function.

Definition 3.1.4. Request confirmation is done when the request in question has been pro-
cessed (either successfully or unsuccessfully).

Definition 3.1.5. A request which has been started, but hasn’t yet finished is called an
outstanding request.

Definition 3.1.6. Request latency is the amount of time required to complete processing of
a particular request, meaning the amount of real-time between the moment the request was
accepted by one of the nodes, and its completion.

Definition 3.1.7. A computer or program that can submit requests to the network is called
a client. It can, but doesn’t have to be, one of the nodes in the network.

Definition 3.1.8. A slot is a hipothetical unit of resources, the posession of which allows a
client to submit a request.
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Definition 3.1.9. The amount of slots available on a particular node is called a total slot
pool.

Definition 3.1.10. A slot share is a floating-point value between 0 and 1 assigned to each
client, corresponding to the fraction of slots this client has been assigned from the total slot
pool.

Definition 3.1.11. Time on each node is divided into units called rounds.

3.2. Requirements and assumptions

Every project should start by collecting requirements. After doing a bit of research on the
subject, I found that a common view on distributed flow control is hard to establish. I
have, however, managed to extract several basic ideas which seem to outline the concept, and
present them here. I also have to point out the assumptions, both implicit and explicit, of
our design.

3.2.1. Requirements

The basic requirements for a distributed flow control library are as follows:

Performance control

Probably the most important aspect of flow control is measurement and control of current
(and maximum) system performance. This information allows us to determine if more load
can be allowed, or if requests should be denied. Possible properties that we might wish
to measure are: latency of requests (responsiveness), overall throughput (speed), resource
consumption (memory, for example). Of course, it is important to balance these properties.

The purpose of this library is to make the average latency of the entire system to be
approximately equal to a user-specified value.

Low overhead

The mechanism must not consume too many resources. While some applications may allow
the introduction of a centralized flow control server, it might not be a good idea to use this
approach blindly. A centralized server would, of course, be able to select an optimal strategy,
thanks to its complete knowledge about the system, but it would also be a single point-
of-failure, endangering the stability of the system. The central server could also become a
bottleneck as the network grows.

Fairness

This is an obvious concept. When many clients use a server concurrently, the flow control
mechanism must assure that client starvation cannot occur. The important concept here is
the type of ”fairness” we are trying to achieve. There are many possibilities:

• Let’s assume we have many clients connected to the server, and K slots in the total
slot pool. Client i is capable of submitting si requests per second. Then, for client i
the amount of requests it is allowed to submit should be approximately siPn

j=1 sj
∗K

• Every client gets the same amount of slots regardless of their usage.
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Portability

Our solution will be used in many different applications and in various computing environ-
ments. Therefore the library must be flexible enough to allow the user to include estimations
(for example different types of slot reduction functions, averaging functions, etc.) that would
be applicable to the problem at hand.

Stability

A failure of one of the P2P nodes should not stop or crash the system.

3.2.2. Assumptions

Relationship between number of started requests and latency

Our model assumes that there is a relationship between the number of requests which are
started on each node, and the latency of their execution. This relationship has to be known
to the library’s user.

Measurable latency

Our solution requires request latencies to be measured in order to recalculate the size of the
total slot pool.

Time quantization

Time is quantized into rounds. At the beginning of each round, we will calculate the size of
the total slot pool, and assign slots to all current clients. During the round, clients will be
able to use the assigned slots to submit requests.

Slot reservation

The server has a specified number of slots to use. This number corresponds to its performance,
and will be automatically adjusted by the library. Slots will be distributed between multiple
clients.

Before a request is accepted, a slot must be reserved for it. Slots are used to control the
number of outstanding requests.

Nodes can fail

Nodes in the system can fail without warning.

Requests are either replied to, or timeouted

When a request finishes, the slot used by it is returned to the server. The same happens
when a request times out.
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Chapter 4

Flow control library - design

Our design is strongly influenced by the TCP window sliding mechanism. Many ideas were
taken and adapted from the TCP design notes.

4.1. General overview

Our design is based on the idea that each request should reserve a slot in the control flow
reservation mechanism. Each server will have its own reservation mechanism, and the total
number of slots will be recalculated at the beginning of each round based on the number
and the latency in the previous round. This total slot pool will then be distributed between
clients according to their needs.

4.1.1. Environment

The control flow mechanism is to be incorporated in two critical sections of a peer-to-peer
network:

• within the entry point to the network itself (on a node participating in the network,
called a backend node),

• on a proxy node, whose functionality is to multiplex requests to many backend nodes.

This is illustrated on diagram 4.1.

4.2. Definitions

Definition 4.2.1. A request which is pending for more than a configurable amount of time
is called a high latency request.

Definition 4.2.2. An active client is a client which has used at least a certain configurable
percentage of its slots.

4.3. Slot management

As mentioned previously, slots are distibuted amongst clients. Some slots may be left unas-
signed, and used for new clients. The details of the algorithm are described in subsection
4.3.1.
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Figure 4.1: Control flow environment

4.3.1. Total slot pool size change

The mechanism assumes that several data sources may exist.
Four implementations were provided:

• Constant strategy was implemented at the beginning for testing purposes,

• Timeout-based strategy was implemented as a first step towards load balancing,

• Reported-pool strategy was implemented for use on proxy,

• Latency-based strategy was implemented as a refinement of the timeout-based strategy.

Each environmental context uses a different strategy:

• On backend, we use a timeout-based strategy,

• On proxy, we use a reported-pool strategy.

At the beginning of each round, the object is requested for an estimation of the current
total slot count.

Constant strategy

This strategy always returns a constant, predefined amount of slots.
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Timeout-based strategy

This strategy uses pending requests to assess node performance. It is used on backend nodes.
Check if there was a high latency request in the previous round:

• Yes: decrease the total number of slots by a configurable percentage.

• No:

– If there was an active client in the previous round, increase the total number of
slots by a configurable percentage.

– If no active client exists, the total slot count re4mains constant.

The goal of this strategy was to keep request latencies at a specified level. The timeout
at which a pending request is considered a high latency request defines the desired latency of
the system. On the other hand, slots should only be created when they are needed, because
we don’t want to over-estimate our resources. This explains the reasoning behind the ’active
client’ check when adding new slots.

This strategy has the following characteristics:

• for an overloaded system — decreases the total slot count to a level at which latency is
close to expected,

• for an underloaded system — increases the total slot count to a level at which latency
is shorter than expected. The definition of an ’active client’ influences the amount of
extra unused slots this strategy will create. These empty slots could act as a buffer
when one of our clients suddently starts sending more requests, or a new client joins
the system.

Reported-pool strategy

This strategy is used by proxy, and communicates with an external object to obtain infor-
mation about the number of slots in the system. This external object collects information
about slot count from all backend slots proxy is connected to, and runs algorithms to estimate
performance of the entire network. This is an example of an external data source.

The following algorithm was used for performance estimation of the entire network:

• assume Pi is the number of slots on node i,

• assume Ri ∈ [0, 1] defines the fraction of total load that node i receives,

• assume k is the index of a node which has the smallest amount of slots available
(∀i∈{1,2,...,n}Pi≤Pk).

The total slot count estimation for the entire system is equal to Pk
Rk

.

Latency-based strategy

This is a generalization of the timeout-based strategy. It uses a user-defined ”slot reduction
function” to calculate the factor by which the size of the total slot pool must be multiplied.
A slot reduction function takes a single latency value as a parameter, and returns a floating-
point value. Such functions should decrease the number of slots when latency is too large,
and increase it when it’s too small.

Several functions were implemented and tested:
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• LinearSlotReductionFunction — This slot reduction function is parametrized by 4
points – low, desired, high and critical latency. Assume A = 1

desired−critical and
B = critical

critical−desired . This function has the following value:

1. ∀x<lowf(x) = A ∗ x + B,

2. ∀low≤x<highf(x) = 1,

3. ∀high≤x<criticalf(x) = A ∗ x + B,

4. ∀critical≤xf(x) = 0.

This function was the first one to be tested, because I suspected that the relationship
between latency and the number of requests will be linear (meaning that doubling the
slot count will increase the latency by a factor of 2). The low and high latency values
were added later as a refinement in order to avoid constant changing of the slot count.

The problem with this function is that such changes are still possible. A value slightly
less than low latency may increase the number of slot so much that latency will raise
above high latency. The next function doesn’t have this problem.

• QuadraticSplineSlotReductionFunction — The quadratic spline function consists of two
quadratic (f(x) = A ∗ x2 + B ∗ x + C) functions. This strategy is parametrized by the
following values:

– desired latency,

– critical latency.

This function has the following properties:

1. f(desired) = 1,

2. f(critical) = 0,

3. ∂f
∂x (desired) = 0,

4. ∀y 6=desired
∂f
∂x (y) < 0,

5. ∀x<desiredf(x) > 1,

6. ∀x>desiredf(x) < 1.

Research is currently performed to find better slot reduction functions, and their optimal
parameters.

4.4. Assigning slots to clients

This mechanism is the same on both backend and proxy. We calculate a vector of slot shares
< F1, F2, ..., Fn >, where:

1. ∀i∈{1,2,...,n}Fi ∈ [0, 1],

2.
∑n

i=1 Fi≤1.

Currently, only one implementation is available (see 4.4.1), investigating different splitting
strategies is in the scope of further research.
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4.4.1. History-based splitting strategy

This strategy tries to predict client needs by observing the amount of submit attempts in the
previous round.

It uses 4 configurable values:

1. penalty-trigger level DecCut ∈ [0, 1] — the level of slot usage which, if not met, causes
a penalty to be inflicted for the duration of the next round,

2. bonus-trigger level IncCut ∈ [0, 1] — the level of slot usage which, if exceeded, causes
some bonus slots to be assigned if available.

3. penalty buffer value buffer ∈ [0, 1] — added to penalized clients in order to leave them
some room for improving their speed,

4. maximum bonus value max bonus ∈ [0, 1] — a limit on the bonus factor fast clients
can receive.

This strategy works in several phases:

1. Start with equal share for all clients.

2. Remove slots from clients which used less than DecCut fraction of their assigned slots.

• Assume that client C used Uold fraction of it’s assigned slots in the previous round.
We need to calculate the fraction Anew of all slots it can be assigned now. There
are N clients.

• Uold < DecCut.

• Anew := min(Uold+buffer
N , 1

N ).

3. Add slots to clients which used at least IncCut fraction of their slots. Sequentially:

• Assume that at this moment K fraction of the total slot pool is unassigned and
that client C used Uold fraction of it’s assigned slots in the previous round. We
need to calculate the fraction Anew of all slots it can be assigned now. There are
N clients.

• Uold ≥ IncCut

• Anew := 1
N + min(K,max bonus)

N

• K := K − min(K,max bonus)
N

Assumptions defined in 4.4 are fulfilled:

• assume there are N clients in total.

• assume P of them were penalized, freeing up F fraction of slots (F ∈ [0, 1]).

• assume B of them were given bonus slots.

The algorithm assures that:

• each penalized client can have at most a 1
N fraction of all slots assigned,
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• each client with a bonus can have no more than a 1+min(F,max bonus)
N fraction of all slots

assigned (F < 1, N = 1 ⇒ F = 0),

• all other clients have 1
N of all slots assigned,

• the total bonus assigned to all clients is not greater than F (because when adding a
bonus to a client, all previously assigned bonuses have already decreased the available
unassigned fraction K).

4.5. New clients

When a new client connects, its slot share will be calculated automatically based on the
currently unused part of the total slot pool (with a maximum initial fraction configurable
during initialization). The assigned amount will then be modified in next rounds, so its initial
value shouldn’t have too much influence on the system as a whole.

4.6. Client operation

The design is based on the assumption that the client will resubmit a request if it is rejected
by the flow control mechanism. This resubmitted request can be directed to a different node
(a client may be connected to many servers at once, and try to find the first one which accepts
a request), or on the node where it was rejected previously (due to some requests finishing,
or new slots being created). This is illustrated on diagram 4.2.

4.7. Request lifecycle

Diagram 4.3 shows the request lifecycle as it travels through the external system, reaches the
control flow library, and continues its way through the system.

1. client tries to obtain a slot from the pool,

2. pool returns TRUE if request can be accepted, FALSE otherwise,

3. if pool returned TRUE, then:

(a) client starts the request when it is actually passed for processing,

(b) when reply is returned, finish is called,

4. if pool returned FALSE, then client is responsible for the request.

30



Figure 4.2: Control flow resubmission
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Figure 4.3: Operation sequence
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Chapter 5

Flow control library -
implementation

5.1. Overview

The entire library consists of several classes implemented in C++. These classes provide core
functionality, and interfaces required for tuning the library to specific needs.

5.2. Class hierarchy

Diagram 5.1 illustrates the class hierarchy.

5.3. Class responsibilities

5.3.1. OutstandingPool

This is the main class in the library. It keeps track of slot usage per client and is responsible
for dividing the total slot pool amongst clients. New client must register prior to using other
methods of this class. It is thread-safe, all public methods are protected by a mutex.

5.3.2. LatencyTable

This is the generic interface for a placeholder for request start timestamps and durations. It
keeps start time and request id pairs for pending requests, and start times and durations for
requests which have already finished. It is used by OutstandingPool, which can insert and
remove requests on demand. It doesn’t need to be thread-safe, as synchronization is already
done by OutstandingPool.

There are currently two implementations of this class.

LatencyTableTimed

Removes finished requests which are older than the specified amount of time.

LatencyTableLimitedLength

Keeps at most a specified number of finished requests in memory.
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Figure 5.1: Class hierarchy
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5.3.3. RoundUpdateThread

This class is responsible for periodic calls to OutstandingPool::newRound() method. Calling
this method signals a start of a new round, and causes slot assignment recalculations.

This class is defined as a friend class in OutstandingPool, therefore it can call the
newRound() method.

5.3.4. TotalSlotCountStrategy

This is an interface for a function used to recalculate the size of the total slot pool at the
beginning of each round.

Four implementations have been provided.

• ConstantTotalSlotCountStrategy — obvious,

• DestinationCacheTotalSlotCountStrategy — is the equivalent of the reported-pool strat-
egy mentioned in section 4.3.1,

• TimeoutBasedTotalSlotCountStrategy — is the equivalent of the timeout-based strat-
egy mentioned in section 4.3.1,

• LatencyBasedTotalSlotCount — is the equivalent of the latency-based strategy men-
tioned in section 4.3.1.

5.4. Summary

The biggest problem I have encountered was designing slot latency functions. There are
endless possibilities and picking the best solution may be complicated. A good mathematical
model must be created and analyzed during further research in this field.
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Chapter 6

Performance tests

6.1. Definitions used in tests

The following additional definitions are necessary in order to explain the testing environment:

Definition 6.1.1. Pipeline length means the maximum amount of requests which were pro-
cessed in parallel at any time. When referring to ’100 requests in pipeline’ I mean 100 requsts
were submitted for parallel processing. Submission doesn’t necessarily mean a request has
been accepted, it’s possible it is waiting for a free slot.

Definition 6.1.2. Test attribute — the measure of performance reported by the test. For
example: bandwidth, latency (maximum, minimum and average), etc.

6.2. Test setup

This library has been incorporated in a peer-to-peer software designed as a distibuted data
storage network. The network allows parallel processing of many requests at once. The STAF
framework [Sta06] was used to implement testing scripts. This framework allows parallel
execution of tasks on multiple machines, and uses an engine called STAX to run XML-based
testing scripts. It was used to test various software pieces, including the Linux kernel.

6.2.1. Hardware

Backend nodes and proxy are identical machines, each consisting of:

• processors: two Dual Core AMD Opteron 265 processors running at 1.8GHz,

• motherboard: TYAN High-End Dual AMD Opteron, S2882,

• hard drives: six WD Caviar drives – SATA, 250GB, 7200rpm, 16MB buffer,

• memory: 4GB physical, 3GB swap,

• network: two Broadcom Corporation NetXtreme BCM5704 Gigabit Ethernet cards
working in trunking mode.

There are 4 backend machines and 1 proxy machine.

37



6.2.2. Software

Two versions of the same software were compiled, one with and one without control flow.
Software was compiled with all debugging statements in order to get full information

about latencies, speed and request results in the log. This, unfortunately, greatly decreased
performance (by a factor of 10). The change, however, equally impacts both versions, so test
results remain valid.

The following settings were used during tests:

• The timeout value above which a request is considered a high latency request, used by
the timeout-based total slot count strategy, was set to 15 seconds.

• Round length was set to 1 second.

• Penalty level for slow clients (DecCut) was set to 0.8.

• Bonus-trigger level for fast clients (IncCut) was set to 0.95.

• Maximum bonus for active clients was set to 0.1.

• Penalty buffer value was set to 0.05.

• Initial assumed total slot count was 250.

6.2.3. Test scenarios

The following tests were implemented and executed:

• Comparative data load tests:

– With a client trying to submit 10000 requests for parallel processing,

– With a client trying to submit 5000 requests for parallel processing,

– With a client trying to submit 2000 requests for parallel processing,

– With a client trying to submit 1000 requests for parallel processing.

• Slot reduction tests:

– With a client trying to submit 2000 requests for parallel processing,

– With a client trying to submit 1000 requests for parallel processing,

– With a client trying to submit 500 requests for parallel processing.

Comparative data test

Comparative data test compares bandwidth and latency with and without the control flow
mechanism.

The client driver in this scenario is loaded on a proxy machine connected to 4 backend
nodes. It is trying to write two gigabytes of data, in 64 KB blocks.

The client is very simple, it is trying to submit as many requests to proxy as it can.
When submission return value contains information from the proxy not to submit more data,
it waits for a wake-up callback call. This is illustrated on diagram 6.1.

If the client doesn’t receive a reply within 90 seconds, it resubmits a request to the network
(not necessarily to the same node).
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Figure 6.1: Pump driver operation sequence
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Timeouts are reported by backend nodes when a request takes more than 30 seconds to
complete. In such case, backend will send a reply to proxy with a failure status. Proxy will
resubmit timeouted requests, perhaps to another node.

After writing data, the client tries to read it.

Slot reduction test

In this scenario the client driver is also loaded on a proxy connected to 4 backend nodes, but
during writing one of the nodes fails. This is simulated by manually killing the peer-to-peer
server process. This test only writes data.

6.3. Results

Each test scenario was executed 7 times, the highest and lowest value of each test attribute
was discarded and an average value was calculated from the remaining 5.

It is important to note that the latencies reported here are measured by proxy. They
contain network transmission latency, as well as latency on backend.

6.3.1. Comparative data test

Write latencies

All latencies and standard deviation described here were measured in seconds. In all tables
CF means ’with control flow’ and no CF ’without control flow’.

Requests in pipeline Version Latency Standard deviation
Maximum Minimum Average

10000 CF 21.82 6.89 16.82 1.04
No CF 138.59 15.64 40.28 2.67

5000 CF 22.86 9.84 15.48 0.61
No CF 23.39 8.02 17.88 1.45

2000 CF 10.67 2.7 7.2 0.37
No CF 9.74 3.95 7.2 0.87

1000 CF 4.93 2.13 3.71 0.23
No CF 4.48 1.85 3.67 0.57

It is obvious that the control flow mechanism is very good at controlling latency. The test
scenario with 10000 requests in pipeline shows 2.39 times better average latency with control
flow enabled. The test scenario with a pipeline length of 5000 requests also shows that this
mechanism is good at reducing latency. The control flow overhead starts to show with 1000
requests in pipeline, adding an average 40 milliseconds to each request.

Write bandwidth and number of timeouts

Bandwidth is reported in MB/sec.
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Requests in pipeline Version Bandwidth No. timeouts
10000 CF 15.1 0

No CF 15.2 1481
5000 CF 15.5 0

No CF 17.1 0
2000 CF 16.2 0

No CF 16.2 0
1000 CF 15.8 0

No CF 15.9 0

This result shows the overhead of the control flow mechanism. As can be seen from these
results, the overhead is acceptable (maximum observed difference is 9%). It is worth not-
ing that only one scenario shows such a difference, all other scenarios show either minimal
differences, or even improvements in speed, probably caused by better latency and lack of
retransmissions.

The difference in the scenarios with a request pipeline length set to 5000, upon closer
examination of the logs, turned out to be easy to explain. The value at which a request
is considered a ’high latency’ request was set to 15 seconds on backend. This latency was
observed on backend with approximately a thousand requests pending, so with 4 backends
to use, the proxy was accepting 4000 requests from the pipeline. The version without control
flow was pushing requests out faster, because it was keeping 5000 requests pending at a time.

This can be seen as a problem with configuration. The 15 second value seems quite low,
perhaps setting it to a higher, more optimal value, would further decrease the difference
between both versions. Such tests will be conducted in the future.

Read latencies

Requests in pipeline Version Latency Standard deviation
Maximum Minimum Average

10000 CF 42.78 18.33 23.96 1.57
No CF 56.47 14.04 30.24 2.86

5000 CF 21.46 2.67 11.07 0.98
No CF 21.99 1.76 11.79 1.4

2000 CF 9.21 0.41 4.82 0.55
No CF 8.88 0.35 4.9 0.76

1000 CF 5.33 0.4 2.47 0.29
No CF 5.35 0.4 2.45 0.31

Again, we see the latency with control flow enabled is much better than without it.

Read bandwidth and number of timeouts

Requests in pipeline Version Bandwidth No. timeouts
10000 CF 20.1 0

No CF 15.2 521
5000 CF 20 0

No CF 22.4 0
2000 CF 22.3 0

No CF 22.3 0
1000 CF 22.5 0

No CF 22.6 0
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As could be expected, the bandwidth loss caused by control flow is minimal. At 10000
requests in pipeline, we see that the bandwidth differences are the largest, but this seems
offset by the huge loss in bandwidth when control flow is enabled in the ”5000 requests in
pipeline” test. This unexpected drop is still undergoing investigation.

6.3.2. Slot reduction test

Write latencies

Requests in pipeline Version Latency Standard deviation
Maximum Minimum Average

2000 CF 73,45 9.89 13.82 1.45
No CF 183.59 35.64 68.28 4.58

1000 CF 68.86 7.84 9.48 1.13
No CF 78.39 6.02 10.88 2.78

500 CF 63.67 2.7 8.2 0.97
No CF 22.74 0.95 7.8 1.34

Again, we can observe that for fast clients the control flow enabled version performs
much better, latency-wise, than the version without it. The large maximum latency value
with 2000 outstanding requests is caused by a large number of retransmissions a request
had to go through to be stored. The test scenario with 500 outstanding requests shows an
opposite trend, with the flow control version of our software performing worse than the one
without. Upon closer examination of the logs, I found that this latency was caused by a single
request not being sent due to lack of slots assigned on backend. Future work will concentrate
on improving the configuration settings to handle such scenarios better.

Write bandwidth and number of timeouts

Requests in pipeline Version Bandwidth No. timeouts
2000 CF 6.5 500

No CF 4.8 3956
1000 CF 6 250

No CF 6.4 1658
500 CF 6 125

No CF 7.2 876

A similar connection between outstanding requests and speed can be noticed in this ta-
ble. This suggests that there is a certain limit of resubmissions which seems to be acceptable
and actually improves performance. Future work will focus on finding this limit and setting
configuration values to take advantage of it.

6.3.3. Test summary

The tests clearly show that my control flow library is very good at controlling latency. Unfor-
tunately the relation between latency and bandwidth was not as straightforward as I initially
suspected. In several tests the version without control flow performed better, bandwidth-
wise, than the version with control flow enabled. These few scenarios will have to undergo
further study in order to improve performance.
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Chapter 7

Summary

After careful study of some of the most widely used control flow implementations, I believe
I have managed to create a viable framework which can be used in many P2P applications.
During my research I managed to identify and solve several problems regarding fair resource
sharing. I have also shown that global knowledge isn’t necessary in order to provide a near-
optimal solution to distributed flow control.

I have separated the problem into several independent fields of research, such as: calcula-
tion of the total slot pool, fair sharing of the slot pool between clients and storing historical
data. I believe this step will encourage other researchers to search for even better algorithms
to solve these problems.

I have chosen latency as the main characteristic of a P2P network which this library was
to improve. While bandwidth and latency weren’t as strongly coupled as I initially suspected,
there was enough correlation between these two parameters to show significant improvement
in both of these areas.

Tests show that this algoritm is efficient with regard to controlling latency, while having
minimal bandwidth overhead. It copes very well with heavy loads, and allows creating a
system which is self-adapting to network traffic and local resource usage. No network com-
munication is used, making it easy to avoid problems with failing nodes. This seems to be a
good solution to be implemented on peer-to-peer network entry points.

The purpose of my master thesis was the design and implementation of a distributed
control library, and initial testing. This has been done, and these initial results are presented
here. However, this library is a part of a bigger commercial project, and therefore will have
to undergo additional improvements and performance tuning. This is, however, beyond the
scope of this master thesis.

7.1. Future work

I hope this work will be an impulse to test new control flow methodologies based on input
throttling, as this seems a very powerful approach. Future work which still needs to be done
includes adding new data sources to the library and improving the total slot pool splitting
algorithm. The eMule upload queue sharing algorithm could be adopted in order to share
the total slot queue, with ”best” clients chosen at the beginning of each round.

While the timeout-based total slot size strategy was very simple to implement, it is in
my opinion the main source of problems. I believe careful study will have to be performed
in order to create a viable alternative to that strategy, based on request timeouts and user-
defined slot reduction functions. The framework for research has already been implemented,
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which opens up a whole new area of research.
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Appendix A

CD contents

The CD attached contains:

• mslizak.pdf – This document in PDF format,

• mslizak.tex – Source for this document,

• pracamgr.cls – The class for this document,

• diagrams – Figures used in this document (and sources),

• sources – Other documents (related work).
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