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Streszczenie

Praca poświęcona jest tzw. ekwiwariantnemu wymiarowi asymptotycznemu („wide equiv-
ariant covers” z [3, 4]) wprowadzonemu w [3] w ramach dowodu hipotezy Farrella–Jonesa.
Zestawiamy to nowe pojęcie z klasycznym wymiarem asymptotycznym Gromova oraz włas-
nością „transfer reducibility” ([1]) i badamy jego własności. Wykazujemy w szczególności, że
dla oszacowania ekwiwariantnego wymiaru asymptotycznego nie trzeba rozważać uzwarcenia
przestrzeni, na której badana grupa działa geometrycznie, lecz wystarczy ograniczyć się do
brzegu tego uzwarcenia. Dowodzimy także, że grupy wirtualnie cykliczne to dokładnie te
grupy, dla których omawiany wymiar zeruje się. Formułujemy warunki równoważne wobec
definicji, m.in. charakteryzację w terminach własności A Yu oraz ε-odwzorowań w kompleks
symplicjalny. Wzmacniamy również wynik [10], konstruując „ekwiwariantne rozdrobnienia”
dla nieskończonych grup.
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Introduction

Definition of equivariant asymptotic dimension occurs implicitly in Theorem 1.1, [3] and
Assumption 1.4, [4]. The first of this articles proves finiteness of equivariant asymptotic
dimension for hyperbolic groups in order for the other to derive the Farrell–Jones conjecture.

A similar, yet weaker property, “transfer reducibility” was justified for other classes of
groups in subsequent works (including [1, 5]), as it is also sufficient for proving the Farrell–
Jones conjecture. Moreover, it was used in [2] to show the Borel conjecture for hyperbolic
and CAT(0) groups.

In this thesis, while remembering about motivation coming from applications in great
conjectures of algebraic topology, we focus on geometric aspects of equivariant asymptotic
dimension.

Chapters 1-3 are intended as a smooth introduction into the topic – we identify impor-
tant elements of the notion, consider examples and compare equivariant asymptotic dimension
with asymptotic dimension. Chapters 4-5 prove new results about equivariant asymptotic
dimension and alternative characterisations. Chapter 6 is devoted to explaining definition of
transfer reducibility and its relation with equivariant asymptotic dimension. Finally, Chap-
ter 7 contains a result on “equivariant topological dimension”.

More specifically, in Chapter 1 necessary conventions and notation are introduced and
basic definitions provided. A brief comparison of the equivariant asymptotic dimension with
the asymptotic dimension and transfer reducibility is done.

Roughly speaking, finiteness of equivariant asymptotic dimension of a group G is existence
of arbitrarily big coverings behaving well with respect to the group action and with uniformly
bounded dimension1 (multiplicity). The G-space, which is covered, is Cartesian product of
the group with a suitable compactification X of a space X admitting a geometric G-action.

In the next two chapters 2, 3, properties of coverings and compactifications are discussed.
We prove that a covering a non-compactified space2 X exists under very mild assumptions,
which concern space X rather than group G. This result is used in subsequent considerations
about geometry of the coverings.

In Chapter 3, we elaborate on – previously introduced – notion of asymptotic compacti-
fication in order to observe, why abelianity may be an obstacle for finiteness of equivariant
asymptotic dimension. We provide simple examples of asymptotic and only partially asymp-
totic compactifications – some of them come from [1] and [3].

Chapter 4 contains two results about equivariant asymptotic dimension. Using mentioned
above observations of Chapter 2, we prove that in order to construct a covering of G×X it is
enough to cover G× ∂X. In case of the free group it means interchanging a compactification
of a 4-regular tree with the Cantor set for the Cantor set itself.

The second result is a theorem saying that virtually cyclic groups are exactly the groups

1The minimal bound is called the equivariant asymptotic dimension of the group.
2Strictly speaking: covering of G×X.
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with equivariant asymptotic dimension equal to zero. Furthermore, the theorem remains true
if we consider coverings of G× ∂X.

Chapter 5 provides alternative characterisations of equivariant asymptotic dimension.
Analogs of classic characterisations of asymptotic dimension are given. However, one natural
analog seems stronger then the definition – we leave its hypothetical equivalence as an open
problem. Moreover, an interesting description – previously known to the experts – of equiv-
ariant asymptotic dimension in terms of property A is formulated and its equivalence with
the definition is shown.

In Chapter 6, we introduce the notion of transfer reducibility, provide some intuitions
and prove (after [2]) that finiteness of equivariant asymptotic dimension implies transfer
reducibility.

The last chapter strengthens the result of [10], which is an improvement necessary for the
application of techniques of [3, 5] in the case of the proof of the Farrell–Jones conjecture for
different linear groups in [16]. It shows – under appropriate assumptions – finiteness of the
“equivariant topological dimension”, given finiteness of topological dimension.

All ideas and results – unless explicitly stated otherwise – come from the author inspired
by the supervisor, Dr Piotr Nowak, to whom the author is heartfully grateful.
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Chapter 1

The basics

1.1. Conventions

Notation 1.1.1. xr will denote an open ball with centre x and radius r supposing the metric
is obvious from the context. The metric neighbourhood Ar =

⋃
x∈A x

r is defined accordingly.
The group action will be denoted by the dot, e.g. “g.x” or without any extra signs: “gx”.
When a group G acts on a topological space X (on a set Y ), we will shortly say that X

(Y ) is a G-space (a G-set).
G\X will denote a quotient of the set (the topological space) X under the left action of

G. A similar notation “X \ Y ” will be used to denote the set-theoretical difference X minus
Y , but the meaning should be clear from the context.

Sometimes we will write “for all α < ∞...” to denote “for all α ∈ (0,∞)...” in order to
clarify that the following condition is trivial for “small” α and needs justification for “big”
ones (contrary to the situation in analysis or topology, where one often writes “for all ε > 0”).

Definition 1.1.2. We say that a group action of G on a topological space X is proper if for
every x ∈ X there is its neighbourhood U such that the set {g | g.U ∩ U 6= ∅} is finite.

The group action is cocompact if the quotient space G\X is compact.

Convention 1.1.3. Throughout this thesis (unless explicitly stated otherwise) we will as-
sume that G is a finitely generated group with a fixed word-length metric dG. The group G
acts properly and cocompactly by isometries on a metric space (X, dX). By (X, dX) we will
denote a metrisable compactification of X admitting a continuous (not necessarily isometric)
G-action compatible with the action on X. We will write ∂X to denote X \X.

1.2. Equivariant asymptotic dimension

Let us start with a few introductory definitions coming from [2] and [3].

Definition 1.2.1. A group H is virtually cyclic if it contains a cyclic subgroup of finite
index.

In particular any finite group is virtually cyclic. We have the following elementary obser-
vations.

Proposition 1.2.2. Virtually cyclic subgroups are finitely generated.
The class of virtually cyclic subgroups is closed under taking subgroups and homomorphic

images.
Infinite subgroups of virtually cyclic subgroups are of finite index.
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Proof. Let G be virtually cyclic and Z = 〈a〉 be its cyclic subgroup of finite index.
Pick one element ai from each coset of Z. Then the set {ai}i ∪ {a} generates G.
Let H be any subgroup of G. Assume that H ∩ Z 6= {1} – it is a cyclic subgroup of

finite index in Z. So H ∩ Z is of finite index in G and thus in H. On the other hand, if
H ∩Z = {1}, then H must intersect each coset of Z at most once, so it is finite. That shows
that subgroups of virtually cyclic groups are virtually cyclic.

From the above we can also conclude that infinite subgroups of G are always of finite
index.

Let φ : G → I be a homomorphism. Note that G =
⋃n
i=1 aiZ, where ai are as before.

Since homomorphic images of cyclic groups are cyclic, we can present I as a finite sum of
cosets of a cyclic subgroup as follows:

⋃n
i=1 φ(ai)φ(Z).

In particular, we know that the set of virtually cyclic subgroups of a fixed group H satisfies
the following definition. We will denote it as VCyc.

Definition 1.2.3. A family F of subgroups of the group H is a set of subgroups of H closed
under conjugation and taking subgroups.

Now we can define open F-covers, crucial for the definition of equivariant asymptotic
dimension.

Definition 1.2.4. Let Y be an H-space and F be a family of subgroups of H. A subset
U ⊆ Y is called an F-subset if:

a) elements hU of the orbit of U are either equal or disjoint,

b) the stabiliser of U , thus the subgroup HU = {h ∈ H | hU = U} is a member of F .

An open F-cover of Y is a collection U of open F-subsets of Y such that:

1) U covers Y :
⋃
U = Y ;

2) U is an H-set: HU = U .

The name “equivariant asymptotic dimension” comes from the fact that the coverings
in its definition are F-covers, thus by condition 2) above invariant (equivariant) under the
group action.

Definition 1.2.5. For a family of subsets U of the set Y , by dimU (dimension1 of U) we will
denote the number supx∈X #{U ∈ U | x ∈ U} − 1 (or infinity), where #A is the cardinality
of A.

The following is a reformulation of definition appearing implicitly in theorem 1.1 from [3]
and assumption 1.4 from [4].

Definition 1.2.6. Equivariant asymptotic dimension of a group G, denoted by eq-asdimG,
is the smallest integer n such that there is a space X and its compactification X such that
for every α < ∞ there exists an open VCyc-cover U of G ×X (with the diagonal G action)
satisfying:

1. dim(U) ≤ n,

2. for each g ∈ G and c ∈ X there exists U ∈ U such that gα × {c} ⊆ U ,

1The definition and notation is motivated by relation between this number for suitable families Uα and
different notions of dimension (topological, asymptotic, equivariant asymptotic). This motivation also explains
appearance of the term “−1” in the formula.
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3. G\U is finite.

We will call the coverings U = U(α) from the above definition eq-asdim-coverings and
α-eq-asdim-coverings, if the constant α is important.

Definition 1.2.7. If a VCyc-cover satisfies condition 2. from the above definition for a
particular α > 0, we will call α a G-Lebesgue number of this covering.

In fact, the third condition in the definition of eq-asdim is redundant.

Proposition 1.2.8. Given an open VCyc-cover V of G×X satisfying conditions 1. and 2.
(for a fixed α) from the definition of the equivariant asymptotic dimension, there exists a
VCyc-subcovering U ⊆ V such that the third condition #(G\U) <∞ is satisfied.

Proof. For a fixed V ∈ V let Vg denote the vertical section Vg = {x ∈ X | (g, x) ∈ V }.
Let U(V ) =

⋂
h∈1α Vh – this is an open set, as the intersection is finite and sections Vh are

open. Moreover, the second condition implies that the family {U(V ) | V ∈ V} covers X. By
compactness, we can find a finite V0 ⊆ V such that {U(V0) | V0 ∈ V0} is a finite subcover of
X. Thus for each x ∈ X there exists V0 ∈ V0 containing2 1α × {x}. Clearly 1α × {x} ⊆ V0
if and only if hα × {hx} ⊆ hV0, so the family U = GV0 satisfies the second condition. By
construction G\U is finite and all the other conditions are satisfied, because U is a subset of
V.

1.3. Relations to different notions

1.3.1. Relation of eq-asdim and asdim

The natural question which comes to mind is how the equivariant asymptotic dimension is
related to the asymptotic dimension. Recall the definition.

Definition 1.3.1. Asymptotic dimension of a metric space G is the smallest integer such
that for all α <∞ there is an open3 covering U of G such that:

1. dim(U) ≤ n,

2. for each g ∈ G there exists U ∈ U such that gα ⊆ U ,

3. supU∈U diam(U) <∞ (uniform boundedness)4.

Coverings U = U(α) from the above definition will be called asdim-coverings.
We can see that the first two points in the definition of asdim are very similar to the first

two points in the definition of eq-asdim.
However, it seems that eq-asdim is a more subtle notion – to the best of our knowledge,

the only class of groups which are known to be of finite equivariant asymptotic dimension,
is the family of hyperbolic groups (see [3]) and the fact that they also have finite asymptotic
dimension is classic and can be proven in a two-page article ([14]). The difficulty with
eq-asdim arise (see section 3.1) already in the case of the simplest non-hyperbolic group –
Z2, which can be immediately proven to be of asymptotic dimension 2. Moreover, in 2.2 and
2.3, we will discuss that the two notions are not very close to each other and it is not clear
how to derive finiteness of asdim from the finiteness of eq-asdim.
2Actually it contains the product of a ball 1α and an open neighbourhood of x, namely U(V0).
3Openness is optional in the definition.
4By diamU we denote the diameter of the set U .
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To the extent of author’s knowledge, finding a group of infinite equivariant asymptotic
dimension is an open problem. Such a group could shed some light on the relation. It may
be valuable to check if the equivariant asymptotic dimension of infinite-dimensional (in the
asymptotic sense) groups must me infinite.

1.3.2. Relation of eq-asdim and transfer reducibility

It is worth pointing out that there is a number of papers proving the Farrell–Jones conjecture
for particular classes of groups that use properties similar or related to finiteness of eq-asdim,
yet not proving finiteness of eq-asdim itself for these classes.

For example in [1] the authors prove that so called CAT(0)-groups5 are transfer reducible
over a family of virtually cyclic subgroups. We will recall that definition in Section 6 and
explain after [2, Proposition 2.1.] that essentially the notion of transfer reducibility over
VCyc is weaker than the finiteness of eq-asdim. The fact that the authors of [1, 5] show
only transfer reducibility for CAT(0) and linear groups – while proving finiteness of eq-asdim
for hyperbolic groups in [3] – may suggest that the notion is quite strong. The difficulty
with equivariant dimension for CAT(0)-groups is in a way suggested in the introduction to
[1, Chapter 3.]:

It [group G] will act on a large ball in X. (The action of G on the bordification
X is not suitable, because it has too large isotropy groups.)

– we make this suggestion more precise in Section 3.1. The quotation also explains the main
difference between the finiteness of equivariant dimension and transfer reducibility – while
the first requires one space X to be suitable for all α, the second allows us to pick different
spaces for different parameters (and eases the requirement on the action of G to be only a
homotopy action), see Definition 6.0.14 and Remark 6.0.15.

5CAT(0)-groups are defined as groups admitting a proper and cocompact isometric action on a CAT(0)-
space.
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Chapter 2

Geometry of coverings

2.1. Importance of compactness of X

It turns out that the compactness of ∂X is crucial to the notion of eq-asdim.

Proposition 2.1.1. If we replace the compactification X in the Definition 1.2.6 of eq-asdim
by the space X itself (in other words: if we require coverings of G × X instead of G × X),
then the obtained notion of dimension is trivial; i.e., always equal to zero.

Proof. Let X = G with the natural left action by multiplication. A good eq-asdim-covering
for G × X is U = {G × {x} | x ∈ X}, which is of dimension 0, has infinite G-Lebesgue
numbers and finite quotient G\U (a singleton). Of course U is an open covering, as G×X is
a discrete space. It is a VCyc-cover, because:

- it is invariant under the action of G;
- g.(G× {x}) ∩G× {x} = G× {gx} ∩G× {x} = ∅, assuming that g 6= 1;

- the isotropy groups of each U ∈ U are trivial (essentially for the same reason as above).

The above proof (even though for a slightly modified definition) is an example to the
remark stated in [3] about equivariant asymptotic dimension saying that the members of
an eq-asdim-covering have to be large only in G-coordinate and in X-coordinate they may
be really small. Making them X-small enabled us to assure that elements of the cover
are indeed VCyc-subsets (their translations are either equal or disjoint and the stabiliser is
virtually cyclic).

The following proposition generalises the above one. Note that the class of spaces in
point a) of the proposition covers the generality of definition of eq-asdim in the original
formulation1 in [3] and points b) and b′) cover the case of a Rips complex, which is actually
considered therein.

Proposition 2.1.2. Assume that a finitely generated group G acts on a topological space
X cocompactly (we do not require convention 1.1.3). There is an eq-asdim-covering (with
α =∞) of the space G×X under any of the following conditions:

a) X is a simplicial complex, the action of G is simplicial and the simplex stabilisers are
virtually cyclic2,

1There, the space X is a simplicial complex with an isometric, simplicial, proper, cocompact G-action.
2This point can be generalised to G-CW-complexes, so CW-complexes admitting a G-action inherited from

a G-action on the disjoint sum of cells inducing the CW-structure. A proof is the same.
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b) X is metrisable and the G-action is proper;
b’) X is locally compact and the G-action is proper.

Proof. Ad a). Since the action is cocompact, the complex is finite dimensional and there is
a finite number of orbits of simplices. Let {∆i}i∈I be representatives of the orbits, and let
I(d) denote the indices of d-dimensional simplices ∆i. For each relatively open d-dimensional
simplex ∆o

i one can choose3 an open neighbourhoodN(∆o
i ) such that all these neighbourhoods

and their translations will be disjoint VCyc-subsets (with stabiliser of N(∆o
i ) equal to the

stabiliser of ∆o
i ).

The set {G ×N(∆o
i )}i∈I generates (under the action of G) an open equivariant cover U

of G×X. We claim that it is an eq-asdim-covering. Clearly G\U is finite and U has infinite
Lebesgue number in the G-coordinate. Because each N(∆o

i ) is a VCyc-set, then so are the
sets in the covering. The dimension of the covering is equal to the dimension of X.

Ad b), b′). For each x ∈ X we will construct its neighbourhood Ux being a VCyc-
subset. By properness of the action4 we can find a neighbourhood U0

x disjoint with completion
Cx = Gx \ {x} of x in its orbit Gx and such that the set RSx = {g | gU0

x ∩U0
x 6= ∅} is finite.

Then, using either metrisability or local compactness of X, we choose a smaller neigh-
bourhood U1

x , such that its closure U1
x is contained in U0

x – in particular it is disjoint with
Cx. But we have the equivalence

∀g:gx6=xgx 6∈ U1
x ⇐⇒ ∀g:gx6=xx 6∈ gU1

x ,

so the set U2
x = U1

x \
⋃
g:gx6=x gU

1
x contains x. It is open, as the sum can be taken over a finite

set RSx without affecting the difference. What we achieved is emptiness of the intersection
U2
x ∩ gU2

x ⊆
(
U1
x \ gU1

x

)
∩ gU1

x = ∅ for gx 6= x.
To handle the case gx = x, we set Ux =

⋂
g:gx=x U

2
x . The intersection is finite (as the

stabiliser of x is a subset of RSx), so we just obtained a neighbourhood of x, which is a
VCyc-subset (with the stabiliser equal to the stabiliser of x).

Now recall that the quotient map X
q→ G\X is open and the quotient is compact. So

{q(Ux)}x∈X is an open covering of a compact set and there is a finite family x1, . . . , xn such
that {q(Uxi)}1≤i≤n covers G\X and thus U0 = {gUxi | g ∈ G, 1 ≤ i ≤ n} covers X. Clearly,
the dimension of U0 is at most n and the family U = {G × U0 | U0 ∈ U0} is an eq-asdim-
covering of G×X for any α ≤ ∞.

Note that in the last propositions we did not assume that G has finite asymptotic dimen-
sion. Our coverings consisted of sets of the form G × U for some U ⊆ X, so actually we
produced G-invariant coverings of X. The properties we used were rather small-scale ones
(like dimension of a simplicial complex).

2.2. How do asdim-coverings and eq-asdim-coverings differ?

Comparing Definition 1.2.6 of eq-asdim and 1.3.1 of asdim, we can see that there is no
exact equivalent of uniform boundedness in the list of requirements for eq-asdim. Additional
elements are: finiteness5 of G\U and the fact that U is a VCyc-cover. Can we directly obtain
an asdim-covering, which has to be uniformly bounded, from an eq-asdim-covering? Is it
true, that asdimG ≤ eq-asdimG?

The answer is in general negative.
3We omit the details. A reader unfamiliar with such arguments is referred for example to [10, Lemma 3.4].
4And T1-property, which is always assumed.
5Which is actually trivial, as we noticed in 1.2.8.
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Example 2.2.1. Note that for X = R and G = Z acting on X by translations and any X,
for example X = [−∞,+∞], the one-element covering {G ×X} is an eq-asdim-covering for
any α. Consequently

1 = asdimZ � eq-asdimZ = 0.

Thus we can see, that a method of obtaining an asdim-covering would have to deal with
(refining) unbounded members of an eq-asdim-covering whose isotropy groups are infinite
virtually-cyclic, and may have to increase the dimension of the covering.

We will continue this analysis in the next section.

2.3. Geometry of eq-asdim-coverings.

In this section, we will examine geometry of eq-asdim-coverings by looking at different em-
beddings of G into G×X and pulling back this coverings to G. We will check if the pushed
out covering resembles asdim-coverings.

We are going to consider6:

• g 7→ (g0, gx0) 7→ gx0, which is a coarse equivalence if X is proper (see Lemma 2.3.1),
and even a quasi-isometry if X is additionally quasigeodesic.

• g 7→ (g, gx0), which is a coarse embedding7, because metrics on both sides are proper
and left-invariant,

• g 7→ (g, x0) (trivial embedding),

Embedding of G into X: g 7→ gx0

Lemma 2.3.1. The function g 7→gx0 is a coarse equivalence for a proper X.

Proof. We should check that the pseudometric induced on G from the metric on the right
hand side is proper; i.e, any ball is finite. Properness of action implies8,9 that #{g | g.K∩K 6=
∅} <∞ for any compact K. Take a closed ball B(hx0, r) centred a point of the orbit; indeed,
the set

{g | ghx0 ∈ B(hx0, r)} = h{g | gx0 ∈ B(x0, r)}h−1 ⊆ h{g | g.B(x0, r) ∩B(x0, r) 6= ∅}h−1

is finite by the above observation.
Now, the ball 1r is finite, thus supg∈1r dG(x0, gx0) <∞, so by left-invariance of the metric

dG and the induced pseudometric we can write

dX(gx0, g
′x0) ≤ F (dG(g, g′))

6We take x0 ∈ X in the last two cases, x0 ∈ X in the first one.
7 Actually, it is a quasi-isometric embedding, because

dG(g, g
′) ≤ dG×X

(
(g, gx0), (g

′, g′x0)
)
≤ (1 +M) · dG(g, g′),

where M = maxs∈S dX(x0, sx0) if S is a finite set of generators of G inducing the metric dG.
8Consider a finite covering of K by balls xrx such that x2rx intersects finitely many of its translations.

If K intersects infinitely many of its translations, then one of the balls xrx must intersect infinitely many
translations of another ball yry . Without loss of generality rx ≤ ry. But then y2ry would intersect its
translations infinitely many times, a contradiction.
9Is is even equivalent as X is locally compact.
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for some F . On the other hand, because {g | gx0 ∈ xr} is finite as we showed in the previous
paragraph, we can write:

f(dG(g, g′)) ≤ dX(gx0, g
′x0)

for some f increasing to infinity.
So far we didn’t use the fact that the action is cocompact and we obtained a coarse

embedding. By cocompactness of the action (and local compactness of X) there is a compact
set K 3 x0 such that G.K = X and thus Gx0 is coarsely dense in X, so our coarse embedding
is in fact a coarse equivalence.

Corollary 2.3.2 (Milnor-Švarc lemma). The function g 7→gx0 is a coarse equivalence for a
proper and quasi-geodesic X.

Proof. By the previous Lemma 2.3.1 it is enough to recall that groups with word-length metric
are quasi-geodesic and any coarse equivalence of quasi-geodesic spaces is a quasi-isometry.

The embedding g 7→ gx0 gives little hope of constructing an asdim-covering from an
eq-asdim-covering, as we noticed in Section 2.1 that an eq-asdim-covering may be small in
the X-coordinate. However, looking at it closer is very enlightening with respect to the
geometry of eq-asdim-coverings.

Definition 2.3.3. A compactification X of a metric space X is asymptotic, if for each x ∈ ∂X
and its neighbourhood U and each R < ∞, there is a smaller neighbourhood V such that
for all y ∈ V ∩X the ball yR is contained in U . We define asymptotic points x ∈ ∂X of the
compactification accordingly.

A lot of natural compactifications are asymptotic, we give some examples in 3.2 and 3.3.
The condition should be quite intuitive as it guarantees for example that for a sequence
xn ∈ X convergent to some point in ∂X and yn asymptotic10 to xn, yn converges to the same
point.

Example 2.3.4. Assume that X is proper and consider an eq-asdim-covering, a vertical slice
Xg0 = {g0} ×X and pull this covering back by the coarse embedding G→ Xg0 given by the
formula g 7→ (g0, gx0) to obtain the covering U . The covering U is not uniformly bounded if
the compactification is asymptotic.

Indeed, denote by U the restriction to X ' Xg0 of the eq-asdim-covering of G ×X and
by UX the restriction of U to X ⊆ X ' Xg0 . Any UX ∈ UX which comes from some U ∈ U
intersecting ∂X, by the definition of an asymptotic compactification contains arbitrarily big
balls, so its diameter is infinite. In particular, UX is not uniformly bounded and the covering
pulled back via the coarse equivalence is not uniformly bounded either.

Thus, an eq-asdim-covering restricted to a vertical slice has to contain elements with
infinite diameter “near the boundary” (for an asymptotic compactification) and may be
small “away from the boundary” – which proved useful in the proof of 2.1.1 and 2.1.2. The
first of this features contradicts uniform boundedness of an asdim-covering and the second
the property of having big Lebesgue number.

In the next section we will formalise the concepts of “near” and “away” from the boundary,
divide the covering into the corresponding parts and notice that they are – up to a point –
independent.

10Sequences xn, yn are asymptotic if supn dX(xn, yn) <∞.
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“Diagonal” embedding: g 7→ (g, gx0), x0 ∈ X

Let us divide any eq-asdim-covering U of G×X into two parts:

Uo = {U ∈ U | U ∩G× ∂X = ∅},

U∂ = {U ∈ U | U ∩G× ∂X 6= ∅}.

Proposition 2.3.5. Assume that X satisfies any of the assumptions of 2.1.211. Then for
any α-eq-asdim covering U of G × X the covering Ut ∪ U∂ is also an α-eq-asdim-covering,
where Ut is the covering from 2.1.2.

Proof. As U∂ covers G× ∂X and is an VCyc-cover with G-Lebesgue number α and Ut covers
G × X as a VCyc-cover with infinite G-Lebesgue number, their union is a VCyc-cover of
G ×X with G-Lebesgue number α. The quotient G\Ut is finite and so is G\U∂ (because it
is a subset of G\U), so G\(Ut ∪ U∂) is also finite. In the same way (but independently of α)
we can bound dim(Ut ∪ U∂) by dimUt + dimU + 1.

This shows that Uo can always (under some mild assumptions) be assumed to be Ut.
Consequently, if g 7→ gx0 is a coarse equivalence (e.g. if X is proper) then – from the fact
that the X-Lebesgue number of Ut can be assumed to be bounded – it follows that the
Lebesgue number of the covering of G pulled back via the diagonal embedding will always be
smaller then some constant. So Uo can not be directly used to derive asdim-coverings for G.

Note also, that if we do not impose any conditions on X then it can be equal to the group
G itself and be covered trivially as in Proposition 2.1.1 – such a covering induces a covering
by singletons on the diagonal.

Perhaps U∂ will prove more useful? If x0 ∈ X is fixed, then the answer is negative. We
can replace all the U ∈ U∂ by sets of the form U \G.({1} × {x0}). That way U∂ is disjoint
with “the diagonal”, so useless for pulling back the covering. The change does not spoil any
of the important properties of U : invariance properties are preserved, U∂ still covers G× ∂X
and Uo (we assume Uo = Ut) covers G ×X. Uo assures big G-Lebesgue numbers on X and
the change do not affect G-Lebesgue numbers for ∂X. Dimension of the covering may even
be smaller after the change.

Trivial embedding: g 7→ (g, x0)

As in the previous section we can change Uo such that its elements are of the form G × U ,
thus inducing a one-element covering on embedded G.

On one hand, this embedding seems the most appropriate for trials of obtaining an asdim-
covering, since for the pull back of the covering the first two requirements for an asdim-
covering (dimension and Lebesgue number) follow directly from the corresponding conditions
for an eq-asdim-covering. However we would have to somehow bound the diameter of its
elements (perhaps after dealing with infinite elements of the covering related to virtually
cyclic subgroups, compare 2.2.1).

On the other hand, we will see in Section 4.1 that the problem of eq-asdim-coverings of
G×X can be reduced to the problem of coverings of G× ∂X, so – provided that obtaining
asdim-coverings from eq-asdim-coverings is possible – focusing on the space X itself may not
be the most straightforward approach.

11This weakens our general assumptions from convention 1.1.3. Assumptions of the proposition cover the
generality of [3].
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Summary

In 2.3.5 we noticed that covering of G ×X can be assumed to be quite trivial (and useless
for obtaining asdim-coverings). The actual difficulty and interesting geometry of the notion
of equivariant asymptotic dimension lies in the covering of the boundary G × ∂X (open in
the whole G×X), denoted above as U∂ .

Propositions 2.1.2 and 2.3.5 will be important ingredients of Theorem 4.1.4 (main result
of the mentioned above Section 4.1) saying that the whole geometry is hidden in covering of
the boundary G× ∂X (open in G× ∂X, not in G×X).
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Chapter 3

Geometry of compactifications X

3.1. The case of G = Zn

Lemma 3.1.1. If there are eq-asdim-coverings of G ×X (for all α < ∞), then in X there
are no points whose stabiliser has a finitely generated not virtually cyclic subgroup1.

Proof. Assume there is x ∈ X whose stabiliser contains a finitely generated H = 〈S〉 which
is not virtually cyclic. For sufficiently big α the ball 1α contains S, and the associated to α
cover U contains a set U such that 1α × {x} ⊆ U .

We note that for s ∈ S: s.(1α×{x}) = sα×{x} intersects nontrivially with 1α×{x} and
thus s.U ∩ U 6= ∅, so s must stabilise U and thus the stabiliser of U contains H = 〈S〉, so is
not virtually cyclic.

Corollary 3.1.2. If there are eq-asdim-coverings for Zn×X, n ≥ 2, then the compactification
X can not be asymptotic at any point.

Proof. Assume the converse that there is an asymptotic point x ∈ ∂X and xn ∈ X convergent
to x. Then for any g ∈ Zn the sequence gxn is asymptotic to xn and thus converges to x.
Consequently Zn stabilises x, contradicting Lemma 3.1.1.

Example 3.1.3. Let G = Z2 and X = R2 with the natural Z2 action.
Suppose there is a vertical line L such that its closure in X is countable (and thus by

[9] is a closed interval or a circle) and that for a boundary point l ∈ L \ L there is a limit
limn→∞(n, 0).l or limn→∞(−n, 0).l. Then there is no eq-asdim-covering for Z2 × X and
α > 1.

Proof. We want to find a point x ∈ X whose stabiliser is the whole Z2 and obtain a con-
tradiction by Corollary 3.1.2. Without loss of generality we will assume that there exists a
limit l′ = limn→∞(n, 0).l. Note that {0} ×Z stabilises l and thus its images under (n, 0) and
finally l′ as their limit. Obviously l′ is also stabilised by (1, 0) as:

(1, 0).l′ = (1, 0). lim(n, 0).l = lim(n+ 1, 0).l = l′,

which ends the proof.

Remark 3.1.4. The above example can be naturally generalised to the case where G = Zn
and X = Rn for n ≥ 2.
1A slightly confusing formulation comes from the fact that there exist not virtually cyclic groups such that

all their finitely generated subgroups are virtually cyclic. Such an example is (Q,+).
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Surprisingly, it turns out that it is difficult to control the equivariant asymptotic dimension
of groups Zn, because they are... abelian. On one hand, as we noticed in 3.1.1, stabilisers
of points should be small. On the other, asymptotic compactifications are very intuitive.
For abelian groups2 these two conditions are mutually exclusive, because the left action
coincides with the right action, which always produces asymptotic sequences converging –
for asymptotic compactifications – to the same boundary point as the initial one. (We write
about action on the group itself, but the group embeds equivariantly into X and it is a
Lipschitz embedding [often (see 2.3.2) a quasi-isometry]).

3.2. Compactifications of X = Rn for G = Zn

Rn is a natural space equipped with a proper and cocompact isometric action of Zn. Let us
look at some examples.

Example 3.2.1. The simplest compactification is the one-point compactification, but the
point at infinity is stabilised by the whole group, so by 3.1.1 this compactification can not be
used to show finiteness of eq-asdimZn. It is an asymptotic compactification.

In [1] a compactification called “bordification” is analysed for CAT(0) spaces. We will
not check the details (available in [7]) of construction but will recall the definition and look
at some examples.

Definition 3.2.2. We assume that X is CAT(0). A geodesic ray in X is an isometric
embedding c : [0,∞) → X, a generalised geodesic ray c : [0,∞) → X might be an isometric
embedding on some interval [0, a] and constant on [a,∞). Fix x0 ∈ X. The bordification X
of X is a set of all generalised geodesic rays starting at x0 (however it can be proved, that in
fact X does not depend on the choice of x0).

Let ρr(c) = c(r) be a projection X → B(x0, r) ⊆ X. We define the topology (called
the cone topology) on X by the basis consisting of sets of the form ρ−1r (V ) for all r and V
being an open subset of B(x0, r). Equivalently we can say that the topology is defined as
the topology of the inverse limit of the inverse system consisting of the balls B(x0, r) and
projections similar to the above (for any x ∈ X there is a unique generalised geodesic ray
joining x0 and x, so we can define the projection of x as the projection of this ray).

The boundary ∂X is called the visual boundary and may also be defined as the set of
equivalence classes of asymptotic3 geodesic rays (not necessarily starting at x0).

Example 3.2.3. Bordification of Rn is homeomorphic with the closed ball 0π/2, where the
homeomorphism restricted to Rn is given by (r, φ) 7→ (arctg(r), φ) in the polar coordinates.
We can see that this compactification is asymptotic at every point and the boundary points
are stabilised by the whole group Zn. This exemplifies the phenomenon mentioned in the
quotation from [1] cited in 1.3.2 saying that boundary points of the bordification have too
big stabilisers.

Example 3.2.4. Another possible compactification of Rn is the cube being closure of the
image of the homeomorphism c : Rn → (−π/2, π/2)n defined by the formula f(x1, . . . , xn) =
(arctg(x1), . . . , arctg(xn)). It is asymptotic only at the vertices. Let J = [−π/2, π/2]. For a
point in the interior of the face Jk×{±π/2}×. . .×{±π/2} its stabiliser is {0}⊕. . .⊕{0}⊕Zn−k.
2Not virtually cyclic.
3Two geodesic rays c, c′ are asymptotic if supt∈R+

dX(c(t), c′(t)) <∞. It is an equivalence relation.
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Comment 3.2.5. Note the difference between the last example 3.2.4 and the penultimate
example 3.2.3 – even if the final compactifications may seem similar at the first sight, they are
deeply different. In the penultimate example the homeomorphism was “radial”, which leaded
to the boundary with the trivial group action. We could use a „radial” homeomorphism onto
the cube with the same effect. In the last example the homeomorphism is not “radial” and
we can see that the stabilisers are much smaller.

The difference might not be obvious at first, because the homeomorphism in 3.2.4 is
radial for specific lines – it preserves the coordinate axis and “diagonals” (lines of the form
{(r, r, 0, 0, r, 0, . . .) | r ∈ R}). However – for example for n = 2 – any geodesic ray with image
of the form {(r, ar) | r ∈ R+} for 0 < a < 1 converges to the vertex (π/2, π/2), whereas for
the radial situation it would converge to (π/2, a · π/2) on the right side of the square. On
the other hand, elements of the family {(r, k) | r ∈ R+}k∈R converge to the respective points
(π/2, arctg(k))k∈R in 3.2.4, while they would have a common limit (π/2, 0) in the radial case.

3.3. Compactifications of the Cayley graph of F2
In [7, Proposition 3.7] it is proven that the bordification (used in [1] for CAT(0) spaces)
and compactification by attaching the Gromov boundary (used in [3] for Gromov hyperbolic
spaces) are the same if we assume that the space in question is proper, geodesic, hyperbolic
and CAT(0).

The Cayley graph of F2 satisfies all these conditions. We will describe its compactification
following the Definition 3.2.2 of bordification.

Example 3.3.1. Elements of the boundary ∂X of X = Cay(F2) are just geodesic rays
in Cay(F2) starting at 1. They can be identified with infinite words over the alphabet
{a, a−1, b, b−1} in the same way as elements of F2 have canonical representation as finite
words. Interior points of edges can be denoted similarly using formal fractional exponents at
the last position; e.g. aba−1bba−1/2.

So we can define Cw to be the set of all x ∈ X, which have w ∈ F2 as a proper prefix.
We can easily see that a basis of the topology on X is formed by open sets in Cay(F2) and
cones Cw. By form of the basis we can easily see that this compactification is asymptotic.

Note that we can divide ∂X into 4 parts: infinite words starting with a, b, a−1, b−1 respec-
tively – each of this parts is a “quaternary Cantor set” (3N) and thus the whole boundary is
homeomorphic to the Cantor set.

Let us find the metric on X generating the cone topology. We can introduce a partial
order on X coming from the linear orders on images of geodesic rays starting at 1 induced
from [0,∞)4. For x, y ∈ X there exists their greatest common ancestor A(x, y) – the biggest
(with respect to the partial order) element being smaller or equal than x and y. Let d0
be any finite metric on [0,∞] compatible with the topology – it induces a metric (denoted
also by d0 for simplicity) on images of geodesic rays starting at 1. We define the distance
d(x, y) = d0(x,A(x, y)) + d0(A(x, y), y) for incomparable x, y and d(x, y) = d0(x, y), when
x, y are comparable. It can be easily checked that this function indeed is a metric.

It is straightforward to prove that the identity function between X with the cone topology
(generated by the basis as above) and the metric topology induced by d is a homeomorphism.

4When restricted to F2 ∪ ∂X this partial order is a tree of height ω + 1 in the sense of set theory.
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Chapter 4

Coverings of the boundary and
zero-dimensional coverings

4.1. It is enough to cover G× ∂X

4.1.1. Topological approach

Recall the (simplified) definition of bordification from [7].

Definition 4.1.1. Let Y be a geodesic complete CAT(0) space and y0 ∈ Y be a fixed
basepoint. Recall that a geodesic ray in Y is an isometric injection c : [0,∞) → Y . The set
∂Y called the visual boundary is the set of geodesic rays starting at y0. The union Y ∪ ∂Y is
denoted by Ŷ and called the bordification of Y .

Note that we can identify y ∈ Y with a (unique) geodesic segment [0, d(y, y0)]
sy→ Y joining

y0 and y and further with a generalised geodesic ray cy(r) = sy
(

min(r, d(y, y0))
)
. We have

the projections p∞r : Ŷ → S(r) given by p∞r (c) = c(r) and similarly pRr : S(R) → S(r) given
by pRr (y) = cy(r), where S(r) is an r-sphere about y0. Clearly psr ◦ pRs = pRr . We will omit
the upper index and write pr.

Definition 4.1.2. The cone topology on Ŷ is the topology with the basis consisting of some
basis of the topology of Y and the family of “cones”:

Uy0(c, r, ε) = {y ∈ Ŷ | d(y, y0) > r, d(pr(y), c(r)) < ε},

where c ∈ ∂Y , r <∞ and ε > 0 and if y ∈ ∂Y then we put d(y, y0) =∞.

The above construction relies on the basepoint y0, but it is shown in [7], that the result
is independent of it. Moreover, if Y is hyperbolic, proper and geodesic, then the compactifi-
cation by the Gromov boundary and by the visual boundary agree ([7, Proposition 3.7]). In
particular, this holds for Cay(F2).

Theorem 4.1.3. Suppose that one of the assumptions of 2.1.2 hold, any geodesic segment in
X can be extended to a geodesic ray and X = X̂ is a bordification of X. Then existence of an
α-eq-asdim covering U of G × ∂X implies existence of an α-eq-asdim-covering V of G ×X
with dimV ≤ dimU + n+ 1, where n is the dimension of the covering from 2.1.2.

Proof. It is enough to extend the covering U to a VCyc covering W of a neighbourhood of
∂X without increasing its dimension and sum it (like in 2.3.5) with an α-eq-asdim-covering
from Proposition 2.1.2.
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Fix x0 ∈ X. Take any U ∈ U and its section Ug = U ∩
(
{g} ×X

)
⊆ X. The basis of

the topology on ∂X consists of traces of elements of the basis for the cone topology. Let
Vg(U) =

⋃
c,r,ε Ugx0(c, r, ε), where the sum is taken over such (c, r, ε) that Ugx0(c, r, ε)∩∂X ⊆

Ug. Note that Ug = Vg(U) ∩ ∂X (we formed an open set as a sum of basis sets). Let
V (U) =

⋃
g{g} × Vg(U).

Put W = {V (U) | U ∈ U}. Indeed, the family W extends U , namely U ⊆ V (U), so
– if we restrict ourselves to G × ∂X – α is a G-Lebesgue number for W. By construction,
V (gU) = gV (U), so it is G-equivariant and stabiliser of V (U) contains the stabiliser of U . If
we show that U ∩ U ′ = ∅ =⇒ V (U) ∩ V (U ′) = ∅ (the converse implication is also trivially
true), then we will know that dimW = dimU and (with a little abuse of logic notation):

gV (U) ∩ V (U) 6= ∅ =⇒ gU ∩ U 6= ∅ =⇒ gU = U =⇒ V (gU) = V (U),

meaning that each V (U) is a VCyc-set, so W is a VCyc-cover.
So let us take U,U ′ ∈ U with empty intersection and assume that V (U), V (U ′) intersect

nontrivially at (g, x). It means that Vg(U), Vg(U ′) intersect at x and finally, they contain
W = Ugx0(r, c, ε), W ′ = Ugx0(r′, c′, ε′) (respectively) intersecting at x (with rx = d(x0, x) >
max(r, r′)). Thus we have d(cx(r), c(r)) < ε and d(cx(r′), c(r′)) < ε′.

Note that for any set Ugx0(R,C, ε) its intersection with the boundary ∂X can be described
as the inverse image of a ball (p∞R )−1(C(R)ε). We obtain:

(p∞rx)−1(x) ⊆ (p∞rx)−1
(

(prxr )−1
(
prxr (x)

))
= (p∞r )−1(cx(r)) ⊆ (p∞r )−1(c(r)ε)

and similarly for (r′, c′, ε′) meaning that

(p∞rx)−1(x) ⊆W ∩W ′ ⊆ Ug ∩ U ′g = ∅,

a contradiction1.

4.1.2. Metric approach

It turns out that the above ideas can be generalised, if we assume that X is metrisable.
It is not a big cost as compactifications in [3] are metrisable and metrisability is anyway
assumed in applications to the Farrell–Jones conjecture, compare [4, Theorem 1.1]. We do
not need to assume anything more like CAT(0), completeness, existence of extensions of
geodesic segments to geodesic rays, etc.

Theorem 4.1.4. If any of the assumptions of 2.1.2 hold and X is metrisable, then existence
of an α-eq-asdim covering U of G × ∂X implies existence of an α-eq-asdim-covering V of
G×X with dimV ≤ dimU + n+ 1, where n is the dimension of the covering from 2.1.2.

Proof. Fix a metric d inducing the topology of X. For any U ∈ U we will define Vg(U) for
all g ∈ G similarly as in the previous proof and the family W consisting of sets V (U) =⋃
g{g} × Vg(U) will be an eq-asdim covering of a neighbourhood of ∂X. Together with a

covering of G×X from 2.1.2 it makes an α-eq-asdim-covering of G×X.
Fix U ∈ U and denote by Ug the section {x ∈ ∂X | (g, x) ∈ U} and by Ũg its translation

Ũg = g−1Ug = (g−1U)1. We need a somewhat awkward construction because we do not
assume that d is G-invariant. For an open subset O of ∂X and x ∈ O, let rx(O) > 0 be the

1We need the technical assumption that geodesic segments can be extended to geodesic rays to conclude
that (p∞rx)

−1(x) is not empty.
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distance from x to the complement of O, namely ∂X \O. For any g ∈ G we define Ṽg(U) ⊆ X
by the following formula and Vg = gṼg:

Ṽg(U) =
⋃{

xr/2
∣∣∣ x ∈ Ũg, r = rx(Ũg)

}
.

By construction, the covering W = {V (U) | U ∈ U} is a G-equivariant open covering of
some neighbourhood of G × ∂X with gV (U) = V (gU). Again V (U) ∩ (G× ∂X) = U (in
particular U ⊆ V (U)), so the G-Lebesgue number at the boundary is preserved.

Like in the previous proof, it is enough to prove that U ∩U ′ = ∅ =⇒ V (U)∩V (U ′) = ∅,
which, in turn, reduces to justifying that Vg(U) ∩ Vg(U ′) = ∅ for all g. Assume the contrary
– then there exists y ∈ Vg(U) ∩ Vg(U ′), in particular there are x ∈ Ũg, z ∈ Ũ ′g such that

g−1y ∈ xrx/2 ∩ zrz/2, where rx = rx(Ũg) and rz = rz(Ũ
′
g). Without loss of generality rz ≤ rx

and by the triangle inequality we have d(x, z) < rx/2 + rz/2 ≤ rx, but then z would be in
Ũg, a contradiction.

4.2. Zero-dimensional is the same as virtually cyclic

Theorem 4.2.1. Equivariant asymptotic dimension eq-asdimG = 0 if and only if the group
G is virtually cyclic.

Proof. If an infinite group is virtually cyclic, then it is quasi-isometric to Z, thus a virtually
cyclic group is hyperbolic and there exists (by [3]) X and X as in the definition of eq-asdim.
It is enough to consider a one-element covering of G×X, like in example 2.2.1.

For the converse, assume that there is a VCyc-cover U of G × X of dimension 0; i.e.,
disjoint and G-Lebesgue number λ > 1. Take U ∈ U and (g, x) ∈ U . Then there exists
U ′ ∈ U such that gλ × {x} ⊆ U ′ – but then U ∩ U ′ 6= ∅, so U = U ′. Thus we showed that
(g, x) ∈ U implies gλ × {x} ⊆ U , so G× {x} ⊆ U and we conclude that U = G× UX for the
open set UX ⊆ X, UX = πX(U).

Consider now the orbit G.UX , its sum W =
⋃
G.UX (it is an open subset of X) and its

closure W . We claim that W = W . Indeed, if y ∈ W \W , then there is U ′ = G × U ′
X
∈ U

such that y ∈ U ′
X

, but then U ′
X

intersects W , which means that U ′ intersects some gU ,
contradicting dimU = 0.

So W is a compact subset of X covered by the disjoint family G.UX , meaning that the
family must be finite. Thus, the orbit of UX has k elements or – equivalently – the orbit of
G.U has k elements. Summing up, the stabiliser of U is a virtually cyclic group which is of
index k in G, meaning that also G is virtually cyclic.

Remark 4.2.2. The above theorem2 is also true when zero-dimensional coverings of G×∂X
are considered instead of zero-dimensional coverings of G×X.

The remark explains why in the proof of 4.2.1 we did not rely on a (realistic) assumption
that X is connected, which would make the proof easier. ∂X does not have to be connected
as in the case of G = F2 (recall: 3.3.1), where ∂X is even zero-dimensional as a topological
space.

2Including the proof.
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Chapter 5

Different characterisations of
equivariant asymptotic dimension

Asymptotic dimension has many equivalent characterisations. The following theorem ([6,15])
enumerates some of them.

Theorem 5.0.3. Let X be a metric space. The following conditions are equivalent.

1) asdimX ≤ n;

2) for every d <∞ there exists a uniformly bounded cover V of X with d-multiplicity1 at
most n+ 1;

3) for every ε > 0 there is a uniformly cobounded2, ε-Lipschitz map ϕ : X → K to a
simplicial complex of dimension n.

4) for every r <∞ there exist uniformly bounded, r-disjoint3 families U0, . . . ,Un of subsets
of X such that

⋃
i U i is a cover of X;

We immediately observed (1.3.1) the similarity between the definitions of equivariant
asymptotic dimension and asymptotic dimension (vide point 1) of the above theorem). Ad-
ditionally, in 2.2 and 2.3 this correspondence was closer examined.

There exists an equivariant version of point 2) and equivalence of the definition of asdim
and point 2) remains true in the equivariant case, as we will show in the next section.

Condition from point 3) corresponds closely to yet another characterisation of asdim in
terms of property A. We will elaborate on that and provide an equivariant analogue in 5.2.

Although in Section 5.3 we will find a condition similar to point 3), the analogue of map
ϕ will be ε-Lipschitz with respect to the G-coordinate, but not continuous with respect to the
X-coordinate. An available weak notion of continuity will be sufficient to prove equivalence
with eq-asdimG ≤ n, but not enough to derive an analogue of point 4) in the same way as it
is done for asdim. This leads to Question 5.3.6 asking if an analogue of point 4) is equivalent
to the other conditions.

Comment 5.0.4. In all results of this chapter the compactification X can be replaced by
its boundary ∂X. The proofs remain the same.

1See 5.1.1.
2There is a uniform bound on diameter of an inverse image of a simplex.
3r-disjointness of a family Ui means that distinct U,U ′ ∈ Ui are at least r-distant from each other.
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5.1. d-multiplicity

Definition 5.1.1. For a given family U of subsets of a given metric space Y its d-multiplicity
is the maximal number of the subsets intersecting a d-ball:

max
y∈Y

#{U ∈ U | yd ∩ U 6= ∅}.

Similarly, for a family V of subsets of Y × Z – where Z is any set – its Y -d-multiplicity is

max
(y,z)∈Y×Z

#{V ∈ V | yd × {z} ∩ V 6= ∅}.

Definition 5.1.2. A d-VCyc-cover V is a VCyc-cover such that anyG-d-ball gd×{x} intersects
at most one element V ∈ V from each orbit of the G-action on V.

Proposition 5.1.3. For a pair G,X (similarly for G, ∂X), n ∈ N and α <∞ the following
conditions are equivalent:

1) there exists an α-eq-asdim-covering of dimension at most n,

2) there exists an open α-VCyc-cover of G-α-multiplicity at most n+ 1.

Proof. 1) =⇒ 2). Consider covering U , which is a α-eq-asdim-covering for G × X of
dimension at most n. For U ∈ U set4 V (U) = {(g, x) ∈ U | gα×{x} ⊆ U}. By the definition
of α-eq-asdim-covering V = {V (U) | U ∈ U} is a covering of G×X. It is open: (g, x) ∈ V (U)
implies gα × {x} ⊆ U , but U is open and gα is finite, so it follows that gα ×W ⊆ U – where
W is a neighbourhood of x – and finally {g}×W ⊆ V (U). Covering V is clearly G-invariant.

We need to prove that V is a VCyc-cover, so it is still to be checked, if V consists of
VCyc-subsets. Note that V (U) ⊆ U , so gU 6= U equivalent to gU ∩ U = ∅ implies that
gV (U)∩V (U) = ∅. On the other hand, gU = U implies that gV (U) = V (gU) = V (U). Thus
V (U) is a VCyc-subset with the same stabiliser as U .

Now consider any G-α-ball: gα×{x}. If it intersects V (U) at (h, x), then clearly hα×{x}
contains (g, x). But hα×{x} ⊆ U from the definition of V (U), meaning that also U contains
(g, x). Thus: firstly, the number of sets V (U) intersecting gα×{x} does not exceed the number
of sets U containing (g, x), which is bounded by n+ 1. Secondly, if gα×{x} intersects V (U)
and gV (U), then U and gU intersects at (g, x), thus U = gU and V (U) = gV (U), so V is
indeed a α-VCyc-cover.

2) =⇒ 1). Fix α < ∞ and let V be an open α-VCyc-cover of G-α-multiplicity at most
n + 1. Given V ∈ V, we define U(V ) = V α. The set U of such U(V ) is clearly G-invariant,
open and have G-Lebesgue number equal to α.

The stabiliser of V stabilises U(V ). Consider h that does not stabilise V . Then we know
that there is no G-ball gα × {x} intersecting V and hV , which is equivalent to disjointness
V α and hV α. Summarising, U(V ) is a VCyc-subset with stabiliser equal to the stabiliser of
V and U is a VCyc-cover.

Similarly, U(V ) contains (g, x) if and only if gα × {x} intersects V . Thus multiplicity of
U is bounded by G-α-multiplicity of V, so we obtained dimU ≤ n.

4V (U) is a kind of interior, but we do not select points with some neighbourhood in U , but with a “G-α-ball”
in U .
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5.2. Property A and equivariant asymptotic dimension

Let us recall the definition of property A of Guoliang Yu [11] reworded in language of `1-
norms.

Definition 5.2.1. A discrete metric space (X, d) has property A if for all ε > 0, R < ∞,
there is a family {Ax}x∈X of functions Ax : X → N such that 0 < ‖Ax‖`1 <∞ for all x ∈ X
and:

• for all x, y ∈ X such that d(x, y) ≤ R we have ‖Ax−Ay‖
‖min(Ax,Ay)‖ < ε

• there exists S <∞ such that suppAx ⊆ xS for all x ∈ X.

In [8] Cencelj-Dydak-Vavpetič describe asymptotic dimension in terms similar to property
A – they additionally require # suppAx ≤ n+ 1, where n is the asymptotic dimension of X.
In particular, it shows that spaces of finite asymptotic dimension have property A.

A similar characterisation of equivariant asymptotic dimension was known to the experts
– the supervisor of this thesis, Piotr Nowak was told about existence of such a characterisation
by Arthur Bartels, who knew about it from Guoliang Yu and Rufus Willett. We will give a
precise formulation in this section.

Before the proof, we need an additional lemma – it is trivial if we assume that Y is
contractible, but since we allow (see 5.0.4) not only Y = X5 but also Y = ∂X, we give a
proof in the general case.

Lemma 5.2.2. Let α, n ∈ N, Y be a G-space and α,#G ≥ n+1. Let U0 be an n-dimensional
α-eq-asdim-covering of G × Y . Then there exists an α-VCyc-subcovering U ⊆ U0 together
with a system of distinct representatives; i.e., an injective function c : U → G× Y such that
c(U) ∈ U for all U ∈ U .

Proof. Let U be the set of these U ∈ U0 that contain at least one set of the form gα×{x}. It
is a covering of G× Y , because G-Lebesgue number of U0 is α and it is a VCyc-cover, since
U0 is such and our selection is G-invariant.

By induction over k (assuming that #G ≥ k) one can easily see that the open ball gk has
at least k elements and thus gα has at least n+ 1 elements. Consequently, with every U ∈ U
we can associate its subset FU with n+ 1 elements. Thus, a sum of m of the sets FU has at
least m elements – each FU has n + 1 elements, there are m of the sets FU and each point
is in at most n+ 1 of the sets FU as they are subsets of U ∈ U . The infinite Hall’s theorem
assures existence of a system of distinct representatives for the family (FU | U ∈ U), which
induces a system of distinct representatives for U .

Definition 5.2.3. A family {Ag,x}(g,x)∈G×X of functions Ag,x : G×X → N is an F-A-family

if for every (g0, x0) ∈ G×X the set

Sg0,x0 = {(g, x) | Ag,x(g0, x0) > 0}

is open and the family S(A) = {Sg0,x0 | (g0, x0) ∈ G×X, Sg0,x0 6= ∅} is an F-cover.

Definition 5.2.4. A family {Ag,x} as above is semicontinuous if it is continuous as a function
A : G×X → NG×X , where N is equipped with the topology τ+ = {[n,∞)∩N | n ∈ N∪{∞}}
and NG×X is considered with the product topology.

5In applications ([4]), X is required to be contractible.
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The above definition is motivated by the fact that it is equivalent to the property that
A : (G ×X) × (G ×X) → N is lower semicontinuous6 with the second argument fixed; i.e.,
when (g, x) 7→ Ag,x(g0, x0) is lower semicontinuous.

Comment 5.2.5. In practise we will assume that the support of Ag,x is finite, and then we
can view the family {Ag,x} as a function A : G×X → `1(G×X).

Theorem 5.2.6. The following conditions are equivalent:

1. eq-asdimG ≤ n (the compact set from the definition of eq-asdim is X);

2. for every ε > 0, R <∞ there is a semicontinuous VCyc-A-family {Ag,x}(g,x)∈G×X such
that: #(G\S(A)) <∞, suppAg,x ≤ n+ 1 and for d(g, h) ≤ R we have:

‖Ag,x −Ah,x‖`1
‖min(Ag,x, Ah,x)‖`1

≤ ε;

3. for every R <∞ there is a VCyc-A-family {Ag,x}(g,x)∈G×X such that: suppAg,x ≤ n+1

and for d(g, h) ≤ R we have:

‖Ag,x −Ah,x‖`1
‖min(Ag,x, Ah,x)‖`1

≤ 1

n+ 1
.

Proof. 1 =⇒ 2. Let us fix ε > 0, R < ∞. Choose an eq-asdim-covering U for α =
2R+ (2n+2)R

ε of dimension at most n. For every U ∈ U pick a distinct element (gU , xU ) ∈ U
(without loss of generality #G =∞, α ≥ n+2

2 and we can use Lemma 5.2.2). Let:

lU (g, x) =

⌊
min

(
α, sup{r ∈ [0,∞) | {g}r × {x} ⊆ U}

)
R

⌋

measure the “G-distance” from (g, x) to the exterior of U . We set:

Ag,x =
∑

U3(g,x)

lU (g, x) · 1(gU ,xU ),

where 1(gU ,xU ) denotes the characteristic function of the point (gU , xU ). Note that for
d(g, h) ≤ R we have |lU (g, x) − lU (h, x)| ≤ 1 and because the dimension of U is at most
n, there are at most 2(n + 1) sets U ∈ U such that lU > 0 for (g, x) or (h, x). Conse-
quently, ‖Ag,x−Ah,x‖ ≤ 2n+ 2 and since the G-Lebesgue number of U is at least α, we have

‖min(Ag,x, Ah,x)‖ ≥ α−R
R − 1. Finally: ‖Ag,x−Ah,x‖

‖min(Ag,x,Ah,x)‖ ≤
2n+2
α−2R
R

= (2n+2)R
(2n+2)R

ε

= ε.

Clearly suppAg,x ≤ n + 1 as there are at most n + 1 elements in the sum defining Ag,x.
Let us notice7 that SgU ,xU ⊆ U – more precisely it consists of such points (g, x) that gR×{x}
is contained in U . So, if hU ∩ U = ∅, then also hSgU ,xU ∩ SgU ,xU = ∅. On the other hand if
hU = U , we have:

(g, x) ∈ SgU ,xU ⇐⇒ gR × {x} ⊆ U ⇐⇒ h−1gR × {h−1x} ⊆ U ⇐⇒
(h−1g, h−1x) ∈ SgU ,xU ⇐⇒ (g, x) ∈ hSgU ,xU ,

6Lower semicontinuity of a real function means that inverse images of open halflines (a,∞) are open. If
the domain X is a metric space, it is equivalent to the fact that lim infx→x0 f(x) ≥ f(x0) for all x0 ∈ X.
7Here we use the fact that U is uniquely determined by (gU , xU ).
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thanks to the left-invariance of the group metric. Thus we conclude that SgU ,xU 6= ∅ has
precisely the same stabiliser as U and thus it is a VCyc-subset. More generally we can notice
the equality hSgU ,xU = SghU ,xhU , which implies that #G\S(A) <∞ (by finiteness of G\U).

The last thing to show is the semicontinuity of A, because the openness of S(A) follows
from semicontinuity. We will test continuity of A : G×X → NG×X on the following subbasis
of NG×X :

{f ∈ NG×X | f(g0, x0) ≥ n}n∈N+, (g0,x0)∈G×X .

Note that we can restrict ourselves to (g0, x0) of the form (gU , xU ) and n > 0.
Let us fix a set of the above form for n > 0 and some (gU , xU ) and denote its inverse

image by SngU ,xU . Fix any (g, x) ∈ SngU ,xU . We have: gnR × {x} ⊆ U . Equivalently, x ∈⋂
h∈gnR Uh, where for U ∈ U the set Uh is defined as the vertical slice {x ∈ X | (h, x) ∈ U}.

The product of this intersection and {g}, namely {g} ×
⋂
h∈gnR Uh, is contained in SngU ,xU

and is a neighbourhood of (g, x) as a product of an open set and a finite intersection of
neighbourhoods.

2 =⇒ 3. Condition 3 is a special case of condition 2.
3 =⇒ 1. For α <∞ let {Ax} be the functions with at most n+1 elements in the support

satisfying ‖Ag,x−Ah,x‖
‖min(Ag,x,Ah,x)‖ ≤

1
n+1 for d(g, h) ≤ α. We define U = S(A). Clearly the dimension

of U is at most n and by assumption it is an open VCyc-cover. Let us check that it has
G-Lebesgue number α. For (g, x) ∈ G ×X let (g0, x0) maximise the function Ag,x. Clearly
(g, x) ∈ Sg0,x0 and we have Ag,x(g0, x0) ≥ ‖Ag,x‖

n+1 . If (h, x) 6∈ Sg0,x0 , then Ah,x(g0, x0) = 0,

so ‖Ag,x − Ah,x‖ ≥ Ag,x(g0, x0) ≥ ‖Ag,x‖n+1 , in particular ‖Ag,x−Ah,x‖
‖min(Ag,x,Ah,x)‖ >

1
n+1 , which implies

d(h, g) > α. Thus gα × {x} ⊆ Sg0,x0 . Finally, by the Proposition 1.2.8, we can choose a
subcover U ′ such that G\U ′ is finite.

An significant drawback of the above characterisation is that the definition of a VCyc-A-
family is formulated in terms of the family S(A) and in the proof of implication 3 =⇒ 1 the
eq-asdim-covering U is defined as S(A) – the characterisation does not differ very much from
the original. This seems inevitable as we can not require the family Ag,x to be G-equivariant
(by equivariance we mean that Ahg,hx(g0, x0) = (hAg,x)(g0, x0) ..= Ag,x(h−1g0, h

−1x0)). That
is because we allow the set U ∈ U to have the stabiliser in F – in particular with more than
n + 1 elements – and the point (gU , xU ) (see the proof of implication 1 =⇒ 2) is moved
by every h ∈ G. Then (a multiple of) the characteristic function 1(gU ,xU ) is a summand in
Ahg,hx for all h stabilising U , and – by equivariance – the functions 1(h−1gU ,h−1xU ) should be
summands in Ag,x, contradicting the fact that the support of Ag,x has at most n+1 elements.

We could cope this difficulty by arranging the domain of Ag,s as not the set G×X itself,
but its power set. Then we could “glue” all the characteristic functions 1(h−1gU ,h−1xU ) into
one characteristic function, say of U . However, this approach is quite far away from the
original definition of the property A, and that is why we decided to formulate the proposition
in its current form first.

In the next section we implement the approach just described and alter the functions Ag,x
to lie on the `1-sphere (we no longer require natural values).

5.3. Equivariant asymptotic dimension via ε-maps to simplicial
complexes or `p-spheres

Theorem 5.3.4 reformulates the problem using F-A-families such that Ag,x ∈ `1(Y ), where
Y is some G-space. The G-space can be chosen to be a VCyc-cover.
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Definition 5.3.1. A G-set Y is called an F-G-set if the stabilisers of y ∈ Y are elements of
F .

Definition 5.3.2. Let Y be a F-G-set. A family {Bg,x}(g,x)∈G×X of functions Bg,x : Y →
[0,∞) is an F-B-family if:

• it is G-invariant; i.e., (hBg,x)(y) ..= Bg,x(h−1y) = Bhg,hx(y),

• for every (g, x) ∈ G ×X, in suppBg,x there is at most one element from each orbit of
the G-action on Y .

Definition 5.3.3. We say that B as above is weakly semicontinuous if it is continuous as a
functionG×X → [0,∞)Y , where the topology on [0,∞) is defined as τ6=0 = {∅, [0,∞), (0,∞)}.

Theorem 5.3.4. The following conditions are equivalent:

1. eq-asdimG ≤ n (the compact set from the definition of eq-asdim is X);

2. there is a countable VCyc-G-space Y such that for every ε > 0 there is a weakly semicon-
tinuous VCyc-B-family {Bg,x}(g,x)∈G×X such that ‖Bg,x‖`1(Y ) = 1 and # suppBg,x ≤
n+ 1, which is ε-Lipschitz with respect to the variable g;

3. there is a countable VCyc-G-space Y such that for every ε > 0 there is a weakly semicon-
tinuous VCyc-B-family {Bg,x}(g,x)∈G×X such that ‖Bg,x‖`p(Y ) = 1 and # suppBg,x ≤
n+ 1, which is ε-Lipschitz with respect to the variable g.

Proof. 1 =⇒ 2 Let Uk be the n-dimensional k-eq-asdim-coverings of G×X and Y =
⋃
k∈N Uk.

It is clearly a countable VCyc-G-set.
Let now ε > 0. We will proceed as in the proof of Theorem 5.2.6. Let k =

⌈
(2n+2)

ε

⌉
. For

U ∈ Uk let
lU (g, x) = min

(
k, sup{r ∈ [0,∞) | {g}r × {x} ⊆ U}

)
.

Note that this function is 1-Lipschitz with respect to the variable g and lower semicontinuous
(the proof is the same as in 5.2.6).

We define B0
g,x =

∑
U3x lU (g, x)·1U . Clearly # suppB0

g,x ≤ n+1. We also see that B is G-
invariant and for U 6= U ′ such that U ′ = hU , we have Bg,x(U)Bg,x(U ′) = 0, because U and U ′

are disjoint, so B is VCyc-B-family. For g, h ∈ G there are at most 2n+2 sets U ∈ U such that
lU > 0 for (g, x) or (h, x), thus (by 1-Lipschitz property of lU ) ‖B0

g,x−B0
h,x‖ ≤ (2n+2)·d(g, h).

Let now Bg,x =
B0
g,x

‖B0
g,x‖ . That is the moment, when we may loose semicontinuity (B0

is semicontinuous, as lU are lower semicontinuous), but weak semicontinuity is preserved,
because lU (g, x) > 0 if and only if lU (g,x)

‖B0
g,x‖ > 0.

We have to check if the family is still Lipschitz with respect to the first argument. Let
g, h ∈ G and denote d = d(g, h). Without loss of generality:

k ≤ ‖B0
g,x‖ ≤ ‖B0

h,x‖ ≤ ‖B0
g,x‖+ (2n+ 2) · d,

thus we can write:∥∥∥∥∥ B0
g,x

‖B0
g,x‖
−

B0
h,x

‖B0
h,x‖

∥∥∥∥∥ ≤
∥∥∥∥∥B0

g,x −B0
h,x

‖B0
g,x‖

+B0
h,x

(
1

‖B0
g,x‖
− 1

‖B0
h,x‖

)∥∥∥∥∥ ≤
(2n+ 2) · d

k
+

(
‖B0

h,x‖
‖B0

g,x‖
− 1

)
≤ (2n+ 2) · d

k
+

(2n+ 2) · d
k

< 2ε · d.
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2 =⇒ 1 Given α < ∞, we choose ε = 1
(n+1)α and a family Bg,x for this ε. Let

Sy =
{

(g, x) ∈ G×X | Bg,x(y) > 0
}

and U = {Sy | y ∈ Y }. By weak semicontinuity it is a
family of open subsets and since each Bg,x is nonzero, it is a covering. Clearly dimU ≤ n.

Assume that (g, x) ∈ Sy; i.e. Bg,x(y) > 0. For h ∈ G stabilising y ∈ Y we have
Bhg,hx(y) = Bg,x(h−1y) = Bg,x(y) > 0. Moreover, if hy 6= y, we have Bhg,hx(y) = Bg,x(h−1y)
and – by the second condition on a VCyc-B-family – this value is equal to zero. Summarising,
if hy = y, then h(g, x) ∈ Sy and if hy 6= y, then h(g, x) 6∈ Sy, which asserts that Sy is a
VCyc-subset. We also have hSy = Shy ∈ U , so U is a VCyc-cover.

Let now (g, x) ∈ G × X and y0 be such an element y ∈ Y that maximises Bg,x(y). We
have Bg,x(y0) ≥ 1

n+1 . Thus, since h 7→ Bh,x is ε-Lipschitz and ε = 1
(n+1)α , for any h ∈ gα, we

have Bh,x(y) ≥ 1
n+1 −

d(g,h)
(n+1)α > 0. Thus gα × {x} ⊆ Sy0 ∈ U . Finally, if G\U is infinite, we

choose a cofinite subcover using Proposition 1.2.8.

2 ⇐⇒ 3. We will use the Mazur map f : for 2 =⇒ 3 let f((ai)) =
(
a
1/p
i

)
and for

2 ⇐= 3 let f((ai)) = (api ), where (ai)i∈I ∈ [0,∞)I . Without loss of generality assume that
we are proving 3 from 2.

Let ε > 0 and B be the family from point 2 that is δ-Lipschitz in variable g. The
parameter δ > 0 (depending only on ε) will be specified in a moment. Our candidate for
a VCyc-B-family is B′g,x = f(Bg,x). Most of the conditions are obviously preserved – we
only need to check Lipschitz constants. The Mazur map f is uniformly continuous8, so if
for d(g, h) = 1 we have ‖Bg,x − Bh,x‖`1 ≤ δ, then we also have ‖B′g,x − B′h,x‖`p ≤ ε for an
appropriately chosen δ for a given ε. As any g, h ∈ G such that d(g, h) = n can be connected
by a chain g = g0, g1, . . . , gn = h satisfying d(gi, gi+1) = 1, the above asserts that the map
(g, x) 7→ B′g,x is ε-Lipschitz with respect to the variable g.

Remark 5.3.5. The condition “‖Bg,x‖`1(Y ) = 1 and # suppBg,x ≤ n + 1” in the above
proposition is equivalent to saying that B acquires its values in an n-dimensional simplicial
complex. Of course usage of the `1-norm on this complex (to define what an ε-Lipschitz map
is) is arbitrary, as all norms are equivalent on finite dimensional vector spaces.

Question 5.3.6. Can we require the families U = U(α) guaranteeing that eq-asdimG ≤ n
to be decomposable into (G-invariant) pairwise disjoint families {Ui}ni=0?

Comment 5.3.7. In the case of asymptotic dimension the transition from the family U
with dimU ≤ n to pairwise disjoint families Ui can be done (([15]) by ε-maps to a simplicial
complex similar to the maps g 7→ Bg,x.

This method cannot be applied directly in our case, because the map (g, x) 7→ Bg,x is not
continuous. It is not even semicontinuous – if for each (g0, x0) the map (g, x) 7→ Bg,x(g0, x0)
is lower semicontinuous, then from the equality

∑
(g0,x0)∈G×X Bg,x(g0, x0) = 1 we can deduce

that it is also upper semicontinuous, thus it is continuous. However, by the construction
Bg,x(g0, x0) acquires only rational values.

Note that in the proof of implication 2 =⇒ 1 we do not use the fact that there is one Y
for all ε or that it is countable. We also do not need the G-invariance of B – it is enough to
have a weaker property: supphBg,x = suppBhg,hx

Remark 5.3.8. A direct construction of a family A described in condition 3 of Theorem
5.2.6 from a family B from 5.3.4 is also possible.

8A reader unfamiliar with this general result can also use a compactness argument in our case.
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Proof. Given R < ∞, we choose a family B for ε = 1
3(n+2)2R

. By multiplying each func-

tion Bg,x by S = 3(n + 2)2, we get functions SBg,x of norm S and the family SB is Sε-
Lipschitz in G-coordinate. Thus, for d(g, h) ≤ R we have ‖SBg,x − SBh,x‖ ≤ SεR and
‖min(SBg,x, SBh,x)‖ ≥ S − SεR. Let Ag,x(y) = dSBg,x(y)e. We get ‖Ag,x − Ah,x‖ ≤
SεR+ 2(n+ 1) and ‖min(Ag,x, Ah,x)‖ ≥ S − SεR. Notice that SεR = 1. Now:

‖Ag,x −Ah,x‖
‖min(Ag,x, Ah,x)‖

≤ 1 + 2(n+ 1)

3(n+ 2)2 − 1
<

2(n+ 2)

2(n+ 2)2
<

1

n+ 1
.

By any injection Y → G × X we can pull back the family Ag,x from `1(Y ) to `1(G × X).
Verification that the obtained family is indeed a VCyc-A-family is easy to check.
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Chapter 6

Transfer reducibility

We recall the notion of transfer reducible from [1]. The property is weaker than finiteness of
eq-asdim (as we show in 6.0.16), but sufficient for proving the Farrell–Jones conjecture (see
[2]).

We will start with a technical definition of an N -dominated space and go on to defining
an equivalent of a group action of G on X.

Definition 6.0.9 (N -dominated space). Let X be a metric space and N ∈ N. The space X
is controlled N -dominated if for every ε > 0, there is a finite CW-complex K of dimension
at most N , and maps i : X → K and p : K → X and a homotopy H joining idX and p ◦ i
such that the diameter of the „trace” of x: H({x} × [0, 1]) is at most ε for every x ∈ X.

Convention 6.0.10. In this chapter we do not assume that G acts on a space X.

Let S be a finite subset of a group G and X be a topological space.

Definition 6.0.11 (Homotopy S-action). A homotopy S-action (φ,H) on X consists of
continuous maps φg : X → X for g ∈ S and homotopies Hg,h : X × [0, 1] → X for g, h ∈ S
and gh ∈ S joining φg ◦ φh with φgh. Additionally, if 1 ∈ S, we require φ1 to be the identity
and H1,1 to be a constant homotopy.

For a homotopy S-action (φ,H) by Fg we denote the set of all levels of homotopies Hh,i

ending at φg:
Fg = {x 7→ Hh,i(x, t) | hi = g, t ∈ [0, 1]}.

Definition 6.0.12. The 2n-antidiagonal homotopic ball centred at (g, x) ∈ G×X (denoted
by ADB(g, x, n)) is the set of all (gh, z) ∈ G×X such that there is:

1. a sequence x0, y0, . . . , xn−1, yn−1, xn with x0 = x and xn = z;

2. a sequence a1, b1, . . . , an, bn ∈ S such that a−11 b1 · · · a−1n bn = h;

3. sequences (fai )ni=1, (f
b
i )ni=1 such that fai ∈ Fai and f bi ∈ Fbi satisfying: f bi (xi) = yi−1 =

fai−1(xi−1).

The situation in the above definition can be described by the following diagram.

x = x0 . . . xn−1 xn = z

y0

fb1
<

fa1

>

. . .
fbn−1

<

......................>
yn−1

fbn
<

fan−1

>
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If the action is not a homotopy action, but an ordinary G-action, then an equivalent of
fai would be ai as an automorphism of X, and the above “ball” would be the set of points
of the form (gh, h−1x) for h of the form a−11 b1 · · · a−1n bn. If we think of S as a symmetric set
of generators of G containing 1, then it is clear, why we called the above set a “2n-ball” and
the presence of elements h, h−1 in the formula explains, why we called it “antidiagonal”.

Definition 6.0.13 (α-long cover). For α ∈ N a cover U of G × X is α-long with respect
to a homotopy S-action (φ,H), if for every (g, x) ∈ G × X, there is U ∈ U containing
ADB(g, x, α).

Definition 6.0.14 (Transfer reducible). We say that a group G is transfer reducible over a
family of subgroups F if there is a number N with the following property.

For every finite subset S of G there are:

i) a contractible compact controlled N -dominated metric space X,
ii) a homotopy S-action (φ,H) on X,
iii) a open cover U of G×X,

satisfying:

a) dimU ≤ N ,
b) U is #S-long with respect to (φ,H),
c) U is an open F-cover with respect to the G action on G×X given by g.(h, x) = (gh, x).

Sometimes, to emphasise the parameter N we will write that G is N -transfer reducible with
respect to F .

The first step in noticing the correspondence between eq-asdim and transfer reducibility
is the following remark.

Remark 6.0.15. Let G be finitely generated group G, F be a family of subgroups and N ∈
N. Under the technical assumption that #G = ∞ or G ∈ F the following conditions are
equivalent:

1. for every finite S ⊆ G and α ∈ N there are X, (φ,H) and U as above such that:

(a) dimU ≤ N ,
(b) U is α-long with respect to (φ,H),
(c) U is an open F-cover with respect to the G action on G ×X given by g.(h, x) =

(gh, x);

2. G is N -transfer reducible over F ;
3. for each r ∈ N, S = 1r and each α ∈ N there are X, (φ,H) and U as above such that
U is α-long with respect to (φ,H) and a), c) as above;

4. for each r ∈ N and S = 1r there are X, (φ,H) and U as above such that U is #S-long
with respect to (φ,H) and a), c) as above.

Proof. The implication 1 =⇒ 2 is obvious as it is enough to fix α = #S. The same with
the implication 1 =⇒ 3, because we fix S = 1r. Similarly for 2 =⇒ 4 and 3 =⇒ 4.

It suffices to prove 4 =⇒ 1. If G is finite and thus G ∈ F we can take a trivial action on
X = {x0} and U = {G×X}, so we will assume that G is infinite.

Let S be a finite subset as in point 1. We take a ball 1r large enough to contain S and
have at least α elements. From 4 we have X, a homotopy action and a covering U , which has
dimension bounded by N , is #1r-long for #1r ≥ α, and is an open F-cover. By restricting
the homotopy 1r-action ((φ)s∈1r , (Hg,h)g,h∈1r) to the S-action ((φ)s∈S , (Hg,h)g,h∈S), we get
the claim.
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The next proposition and corollary are based on [2, Proposition 2.1].

Proposition 6.0.16. Assume that eq-asdimG ≤ N with X being contractible and N -dominated.
Then G is N -transfer reducible.

Proof. Let S be a finite subset of G. The space X from the definition of transfer reducibility
will be X from the assumptions.

As we noticed in comments after Definition 6.0.14, given a group action we can es-
tablish a homotopy action by: φg(x) = gx, Hg,h(t, x) = ghx. Then Fg = {φg} and the
homotopic antidiagonal balls are of the following form ADB(g, x, n) = {(gh, h−1x) | h =
a−11 b1 · · · a−1n bn; ai, bi ∈ S}.

We fix α such that 1α contains the set {a−11 b1 · · · a−1#Sb#S | ai, bi ∈ S}. By eq-asdimG ≤ N
we have a covering U0 of G × X of dimension at most N , with G-Lebesgue number α and
being a VCyc-cover with respect to the diagonal G-action.

We pull this covering back by an automorphism of G × X, which is equivariant with
respect to the diagonal action in the codomain and the action trivial on X in the domain:

(g, x)
ψ7→ (g, gx). The new covering is U = {ψ−1(U0) | U0 ∈ U0}.

U is obviously an open VCyc-cover (with respect to the action g(h, x) = (gh, x)) with
dimension bounded by N . We can also notice that it is #S-long, because of the fact that

ADB(g, x,#S) = {(gh, h−1x) | h = a−11 b1 · · · a−1#Sb#S} ⊆ {(gh, h
−1x) | h ∈ 1α}

and the following equivalence:

{(i, gx) | i ∈ gα} = {(gh, gx) | h ∈ 1α} =

ψ[{(gh, h−1x) | h ∈ 1α}] ⊆ ψ[U ]

⇐⇒
{(gh, h−1x) | h ∈ 1α} ⊆ U.

So we can see that transfer reducibility is indeed a property weaker than finite eq-asdim if
we omit the technical assumptions about X for the first notion and lack of such assumptions
for the second. As we can see from the proof, the fact that group actions on the Cartesian
product differ in the two definitions is unimportant – we can rewrite the definition of eq-asdim
so that these actions agree. The important difference is the fact that we can choose different
spaces X in the definition of transfer reducible and we do not require an actual group action,
but accept a homotopy action.

As explained in quotation 1.3.2 in practise (see [2]) spaces X are chosen to be big balls
in a space Y equipped with a G-action. The group-action homeomorphism φ0g(y) = gy is
restricted to that ball and composed with a retraction of Y onto X to produce φg and then
the necessary homotopies Hg,h are constructed using the fact that Y is a uniquely geodesic
space.

Corollary 6.0.17. Hyperbolic groups are transfer reducible over VCyc.

Sketch of proof. The fact that hyperbolic groups have finite equivariant asymptotic dimension
is the main result of [3]. The space X used to show that fact is a so-called Rips complex of
G (with sufficiently big parameter) which (in this case) is a finite dimensional contractible
simplicial complex and has a compactification X being contractible and metrisable1.

1We refer the reader to [2, Proposition 2.1].
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Moreover, there is a homotopy such that H( · , 0) = idX and for all t > 0: H(X, t) ⊆ X.
So – by compactness – the function x 7→ Ht(x) ..= H(x, t) has image contained in a finite
subcomplex Kt of X. Again by compactness for each ε > 0 there is δ > 0 such that
Hδ(x, t) = H(x, δt) satisfies diamHδ({x}, [0, 1]) < ε. Summing up, p = Hδ and the inclusion
i : Kδ → X together with a homotopy Hδ joining idX and i ◦ p guarantee that X is N -
dominated, where N is the dimension of X as a simplicial complex.

Finally, Proposition 6.0.16 can be applied.
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Chapter 7

Equivariant topological dimension

Recall that the Lebesgue covering dimension of a topological space X is the smallest integer n
such that any open covering has a refinement1 of dimension at most n. The number n is
sometimes called the topological dimension and is denoted by dimX.

If X is an F -space for some group F , a natural question to ask is whether any F -covering
has an F -refinement of dimension n. By an F -covering we mean an F-cover, where F is the
family of all subgroups of F . In other words: the covering is F -invariant and two distinct
elements of an orbit are disjoint.

The question was asked and answered in positive in [10] for a finite group F acting on a
metric space by isometries. This made the bound in propositions 3.2, 3.3 of [3] independent
of the order of the group F .

In [3, 5] a bound on the orders of the finite subgroups F of a group was needed. Due to
the above improvement, in [16] a proof of the Farrell–Jones conjecture became possible in a
situation, where no such bound exists.

We will prove that the assumption that the group F acting on the space is finite, is
superfluous. It is enough to assume properness of the action.

7.1. Dimension theory – necessary definitions and facts

Recall some definitions and facts from dimension theory after [13]. In brackets, we reference
the corresponding statements from [13].

Definition 7.1.1 (5.1.1). The local dimension, loc dimX, of a topological space X is defined
as follows. If X is empty, then loc dimX = −1. Otherwise, loc dimX is the smallest integer
n such that for every point x ∈ X there is an open set U 3 x such that dimU ≤ n. If there
is no such n, then loc dimX =∞.

Theorem 7.1.2 (5.3.4). If X is a metric space, then loc dimX = dimX.

Corollary 7.1.3. If V is an open subset of a metric space X, then dimV ≤ dimX.

Proof. It is enough to prove the claim for loc dim. Consider x ∈ V . There is an open (inX) set
U0 with dimU0 ≤ loc dimX. We also have an open neighbourhood Vx 3 x such that V x ⊆ V .
Thus U = U0 ∩Vx is an open neighbourhood of x, its closure in X is equal to its closure in V
and it is a closed subset of U0, so dimU ≤ dimU0 ≤ loc dimX (dimension of a closed subset
never exceeds dimension of the space). Thus loc dimV = supx∈V infU3x dimU ≤ loc dimX,
as needed (where U are open sets of V and closures are taken in V ).
1Family of sets V refines U if any V ∈ V is contained in some U ∈ U .
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Corollary 7.1.4. In the case of metric spaces, there is no need for taking closures of neigh-
bourhoods in the definition of local dimension (it is enough to consider open neighbourhoods
and calculate their dimension).

Proof. Fix x ∈ X. It suffices to check the equality infU3x dimU = infU3x dimU , where U
are open neighbourhoods of x. Let Ux be an open neighbourhood of x such that Ux has the
smallest possible dimension. Then dimension of Ux – by Corollary 7.1.3 – is no larger. On the
other hand, if there is an open neighbourhood V of x such that dimV < dimUx, then there
would be an open neighbourhood W such that W ⊆ V and thus dimW ≤ dimV < dimUx
contradicting the minimality of U .

Proposition 7.1.5. The dimension of a metric space X is equal to the supremum of di-
mensions of its open subsets. It is enough to consider a supremum over any open cover of
X.

Proof. Let U by any open covering of X. By Corollary 7.1.3, the dimension of X is no smaller
than dimensions of its open subsets, thus dimX ≥ supU∈U dimU . On the other hand, it is
equal to the local dimension, which is equal – by Corollary 7.1.4 – to the supremum over
points of infima over open neighbourhoods of their dimensions. But clearly, we have the
inequality:

dimX = sup
x

inf
U3x

dimU ≤ sup
x

inf
U3U3x

dimU ≤ sup
x, U3U3x

dimU = sup
U∈U

dimU.

Theorem 7.1.6 (9.2.16). Let f : X → Y be a continuous open surjection of metrisable spaces.
If every fibre f−1(y) is finite, then dimX = dimY .

7.2. Equivariant refinements

The following proposition strengthens [10, Corollary 2.5].

Proposition 7.2.1. Let (Y, d) be a metric space with an isometric proper action of a group H.
Then dimH\Y = dimY .

Proof. We can fix a pseudometric on the quotient space: d′([y], [y′]) = infh,h′∈H d(hy, h′y′).
The action is isometric, so it is equal to infh∈H d(hy, y′). If [y] 6= [y′], then – by properness
of the action – there is no infinite sequence hny convergent to y′ and thus d′([y], [y′]) > 0.
Thus H\Y is a metric space (it is easy to check, that the quotient topology and the metric
topology agree).

Let y ∈ Y . Similarly as above, there is ε > 0 such that y2ε is disjoint with all the other
elements of the orbit Hy. Consequently, yε is disjoint with its translates and has a finite
stabiliser S (the one of y).

Denote by g the restriction of f to yε. For y′ ∈ yε and z′ = g(y′), the fibre g−1(z′) is
contained in Sy′ and thus finite. Clearly g is an open surjection onto its (open) image, so
Theorem 7.1.6 applies: dim f(yε) = dim g(yε) = dim yε.

Using the openness and the surjectivity again, we notice, that the family {f(yε)} – where
y ∈ Y and ε = ε(y) – is an open covering of H\Y . With Proposition 7.1.5 we conclude:

dimH\Y = sup dim f(yε) = sup dim yε = dimY.

Finally, we can prove a version of [10, Proposition 2.6].
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Proposition 7.2.2. Let Y be a metric space with an isometric proper action of a group H
and dimY = n. Any open H-cover U of Y has an open H-refinement W with dimension at
most n.

Proof. Denote the quotient map by q. By Proposition 7.2.1, we know that the open covering
{q(U) | U ∈ U} of H\Y has a refinement V of dimension at most n.

Clearly q−1(V ) for V ∈ V is H-invariant, in particular it is an H-subset. The covering
{q−1(V ) | V ∈ V} has the same dimension as V.

In order to obtain the required refinement of U , it is enough to divide each q−1(V ) into
appropriate disjoint parts. Note that a division into disjoint parts does not increase the
dimension of a covering. Let UV be such an element of U that V ⊆ q(UV ). Then clearly:

q−1(V ) ⊆ q−1(q(UV )) =
⊔

[h]∈H/S

hUV ,

where S is the stabiliser of UV . The required division of q−1(V ) is
⊔

[h] q
−1(V ) ∩ hUV . The

covering W = {q−1(V ) ∩ hUV | V ∈ V, h ∈ H} is clearly an H-covering2 and refines U .

2Moreover, if U is an F-cover, then W also is, as the stabiliser of q−1(V )∩UV is the same as the stabiliser
of UV .
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Summary

In the light of our findings, the geometry of Cartesian product of a group and its appropriate
boundary as a G-space is crucial for the notion of equivariant asymptotic dimension. It may
suggest, that the boundary, not the compactification, is the appropriate space to occur in
the definition of eq-asdim. Nonetheless, in practise, the whole compactification ([4]) or even
parts of its “interior” ([1]) are used and different restrictions (contractibility, CW-structure)
are put on them.

The study of coverings of products of a discrete group with a relatively simple topological
space (like the Cantor set in the case of F2) appears feasible and has unexpectedly far reaching
consequences for important topological conjectures of Farrell–Jones and Borel. However,
finding such coverings is much more involved than one could initially suppose as we deduce
from our considerations, the volume of article [3] and the lack of other results. In this context,
the study of transfer reducibility – even if (or perhaps because of this fact) the formulation
of the notion is more complicated – can appear more promising.

We provided a number of alternative characterisations of equivariant asymptotic dimen-
sion in language of d-multiplicity, maps into `p-spaces similar as for property A and ε-maps
into simplicial complexes. It is an open question if an eq-asdim-covering of dimension n can
be divided into n+ 1 disjoint families.

We proved a theorem relating a geometric property of equivariant asymptotic dimension
with the algebraic property of being virtually cyclic. It asserts that eq-asdim equal to zero
is equivalent to virtual cyclicity.
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