1. Let A_{1}, \ldots, A_{m} be distinct subsets of an n element set. Suppose that $A_{i} \cap A_{j} \neq \emptyset$ for all i, j. Show that $m \leq 2^{n-1}$.
Solution. Let \mathcal{F} be the family of A_{1}, \ldots, A_{m}. Since $A \in \mathcal{F}, A^{\complement} \notin \mathcal{F}$, because $A \cap A^{\complement}=\emptyset$. There exist exactly 2^{n} distinct subsets of an n element set. Thus, $m \leq 2^{n-1}$, as each set in \mathcal{F} excludes exactly one from the family of all subsets.
2. Prove that if \mathcal{F} is a family of distinct pairwise intersecting subsets of an n element set X, then there exists a family \mathcal{F}^{\prime} of distinct pairwise intersecting subsets of X, such that $\mathcal{F} \subseteq \mathcal{F}^{\prime}$ and $\left|\mathcal{F}^{\prime}\right|=2^{n-1}$.

Solution. By contradiction: we assume that no set can be added to \mathcal{F} and $m<2^{n-1}$. Then, we can choose set A such that $A, A^{\complement} \notin \mathcal{F}$. As both A and A^{\complement} cannot be added to \mathcal{F}, we can find sets B and C in \mathcal{F}, such that $A \cap B=\emptyset$ and $A^{\complement} \cap C=\emptyset$. It follows $B \subset A^{\complement}$ and $C \subset A$, so $B \cap C=\emptyset$. The contradiction proves $m=2^{n-1}$.
3. Let A_{1}, \ldots, A_{m} be a family of distinct subsets of an n element set, such that $\left|A_{i}\right|$ and $\left|A_{i} \cap A_{j}\right|$ are even for all i, j. Prove that $m \leq 2^{[n / 2]}$. Is this bound tight?

Solution. Let $v_{1}, \ldots, v_{m} \in \mathbb{Z}_{2}$ vectors such that j th coordinate of vector v_{i} is 1 iff $j \in A_{i}$. Consider the standard scalar product where the sum is taken in \mathbb{Z}_{2}. Let U be span $\left\{v_{1}, \ldots v_{m}\right\}$. By the assumptions we have $\left\langle v_{i}, v_{j}\right\rangle=0$ for all i, j so $U \subseteq U^{\perp}$. As $\operatorname{dim} U+\operatorname{dim} U^{\perp}=n$, $\operatorname{dim} U \leq\left\lfloor\frac{n}{2}\right\rfloor$. We get $m \leq|U|=2^{\operatorname{dim} U} \leq 2^{\left\lfloor\frac{n}{2}\right\rfloor}$
Consider family \mathcal{A} of subsets $\{1,2\},\{3,4\}, \ldots,\left\{2\left\lfloor\frac{n}{2}\right\rfloor-1,2\left\lfloor\frac{n}{2}\right\rfloor\right\}$. Family \mathcal{F} of subsets such that every $A \in \mathcal{F}$ is an union of a number of sets from \mathcal{A} (including the empty set) satisfies the assumptions and $|\mathcal{F}|=2^{\left\lfloor\frac{n}{2}\right\rfloor}$. It proves the bound is tight.
4. Let n be odd. Let A_{1}, \ldots, A_{m} be a family of distinct subsets of an n element set, such that $\left|A_{i}\right|$ is even for all i and $\left|A_{i} \cap A_{j}\right|$ is odd for all i, j. Prove that $m \leq n$. Is this bound tight?

Solution. We consider the complements of A_{1}, \ldots, A_{m} and get the thesis of Clubs in Oddtown Problem. Indeed, $\left|A_{i}^{C}\right|=n-\left|A_{i}\right| \equiv 1-0=1(\bmod 2)$ and $A_{i}^{C} \cap A_{j}^{C}=n-\left|A_{i}\right|-\left|A_{j}\right|+\left|A_{i} \cap A_{j}\right| \equiv$ $1-0-0+1 \equiv 0(\bmod 2)$. So, we get the inequality $m \leq n$.
5. Let A be a $2 n \times 2 n$ matrix with zeroes on the main diagonal and ± 1 elsewhere. Show that A is non-singular over \mathbb{R}.

Solution. We will show that A is non-singular over \mathbb{Z}_{2}. Let v_{1}, \ldots, v_{m} be the rows of the matrix. Over \mathbb{Z}_{2}, we have $-1=1$ so $v_{i}=(1,1, \ldots, 1,0,1, \ldots, 1)$ such that 0 is the i th coordinate of v_{i}. Consider again the standard scalar product where the sum is taken in \mathbb{Z}_{2}. $\left\langle v_{i}, v_{i}\right\rangle=2 n-1(\bmod 2)=1$ for all i and $\left\langle v_{i}, v_{j}\right\rangle=2 n-2(\bmod 2)=0$ for all $i \neq j$. It means that v_{1}, \ldots, v_{m} are orthogonal, so as a result they are linearly independent.
6. Suppose \mathbb{F} is a subfield of \mathbb{G}. Suppose v_{1}, \ldots, v_{k} are linearly independent in the vector space $\left(\mathbb{F}^{n}, \mathbb{F}\right)$. Does it follow that v_{1}, \ldots, v_{k} are linearly independent in the vector space $\left(\mathbb{G}^{n}, \mathbb{G}\right)$?
Solution. v_{1}, \ldots, v_{k} are linearly independent vectors in the vector space $\left(\mathbb{F}^{n}, \mathbb{F}\right)$ so there exist vectors $v_{k+1}, \ldots, v_{n} \in \mathbb{F}^{n}$ such that set $\left\{v_{1}, \ldots, v_{n}\right\}$ is a basis of \mathbb{F}^{n}. Take matrix A whose rows are vectors $\left\{v_{1}, \ldots, v_{n}\right\} . \operatorname{rk}(A)=\operatorname{dim}\left(\operatorname{span}\left(v_{1}, \ldots, v_{n}\right)=n\right.$. It is maximal so $\operatorname{det}(A) \neq 0$ in the field \mathbb{F} as well as in the field \mathbb{G}, because \mathbb{F} is a subfield of \mathbb{G}. It proves that v_{1}, \ldots, v_{n} are linearly independent in the vector space $\left(\mathbb{G}^{n}, \mathbb{G}\right)$.
7. A family S_{1}, \ldots, S_{k} of subsets of a given set X is called a sunflower with k petals and core A (it could be that $A=\emptyset$) if $S_{i} \cap S_{j}=A$ for all $i \neq j$ and $S_{i} \backslash A$ is nonempty for all i.
Prove that every family of s element subsets of X satisfying $|\mathcal{F}|>s!(k-1)^{s}$ contains a sunflower with k petals.

Solution. Induction by s.
8. Let \mathcal{F} be an antichain of subsets (with an inclusion order) of an n element set. Suppose that all of these sets have cardinality at most k where $2 k \leq n$. Show that $|\mathcal{F}| \leq\binom{ n}{k}$.
9. Let $n \leq 2 k$ and let A_{1}, \ldots, A_{m} be distinct k element subsets of a give set X with n elements. Suppose $A_{i} \cup A_{j} \neq X$ for all i, j. Show that $m \leq\left(1-\frac{k}{n}\right)\binom{n}{k}$.

Solution. By considering complements to sets A_{1}, \ldots, A_{m} we get the thesis of Erdos-Ko-Rado theorem.
10. Let A_{1}, \ldots, A_{m} and B_{1}, \ldots, B_{m} be subsets of a given finite set X such that $A_{i} \cap B_{j}=\emptyset$ if and only if $i=j$. Let $a_{i}=\left|A_{i}\right|$ and $b_{i}=\left|B_{i}\right|$. Prove the inequality

$$
\sum_{i=1}^{m}\binom{a_{i}+b_{i}}{a_{i}}^{-1} \leq 1
$$

11. Let A_{1}, \ldots, A_{m} be a element subsets and B_{1}, \ldots, B_{m} be b element subsets of a given finite set X, such that $A_{i} \cap B_{j}=\emptyset$ if and only if $i=j$. Show that $m \leq\binom{ a+b}{a}$. Is this bound tight?
12. Let v_{1}, \ldots, v_{n} be real numbers such that $\left|v_{i}\right| \geq 1$ for $i=1, \ldots, n$. Define

$$
A=\left\{x=\left(x_{1}, \ldots, x_{n}\right) \in\{-1,1\}^{n}:\left|v_{1} x_{1}+\cdots+v_{n} x_{n}\right|<1\right\} .
$$

Prove that $|A| \leq\binom{ n}{[n / 2]}$.
In other words, the probability that the n step random walk with steps $\pm v_{i}$ (each taken with probability $\frac{1}{2}$) ends up in the interval $[-1,1]$ is upper bounded by $2^{-n}\binom{n}{[n / 2]}=O(1 / \sqrt{n})$.

1. Let v_{1}, \ldots, v_{n} be real numbers such that $\left|v_{i}\right| \geq 1$ for $i=1, \ldots, n$. Define

$$
A=x=\left(x_{1}, \ldots, x_{n}\right) \in-1,1^{n}:\left|v_{1} x_{1}+\cdots+v_{n} x_{n}\right|<1
$$

Prove that $|A| \leq\binom{ n}{\left\lfloor\frac{n}{2}\right\rfloor}$.
In other words, the probability that the n step random walk with steps $\pm v_{i}$ (each taken with probability $\frac{1}{2}$) ends up in the interval [$\left.-1,1\right]$ is upper bounded by $\binom{2^{-n} n}{\lfloor n\rfloor n / 2]=O(1 / \sqrt{n})}$

Solution. Without loss of generality, we can assume that $v_{1}, \ldots, v_{n}>0$. For every vector $x=\left(x_{1}, \ldots, X_{n}\right) \in A$ consider subset X of an n element set $\{1,2, \ldots, n\}$ such that $i \in X$ iff $x_{i}=1$. Subsets constructed in this operation form an antichain in $\{-1,1\}^{n}$. Indeed, if $X \subsetneq Y$ there exists i such that $x_{i}=-1$ and $y_{i}=1$. Then $\left|x_{1} V-1+\ldots+x_{n} v_{n}\right|+\left|y_{1} v_{1}+\ldots+y_{n} v_{n}\right| \geq$ $\left|\left(y_{1}-x_{1}\right) v_{1}+\ldots+\left(y_{n}-x_{n}\right) v_{n}\right| \geq 2$. As a result, either x or y does not belong to A. From Sperner's lemma we get $|A| \leq\binom{ n}{\left\lfloor\frac{n}{2}\right\rfloor}$
2. Suppose that in a given finite partial order the maximal length of a chain is equal to r. Prove that this partial order can be partitioned into r antichains.

Proof. Let f be a function, such that $f(x)$ is length of the longest chain ended by x (i.e. length of the longest chain $\left.x_{1} \preceq x_{2} \preceq \ldots \preceq x\right)$. We will show thet for every $i \in\{1,2, \ldots$, set $A_{i}:=\{x \in S: f(x)=i\}$ is antichain (obviously $\forall i \in\{1,2, \ldots, r\} \quad A_{i} \neq \varnothing$). Assume by contradiction that $\exists x, y \in A_{i}: x \preceq y$. Then:

$$
f(x)=i \Rightarrow \underbrace{x_{1} \preceq x_{2} \preceq \ldots \preceq x}_{i \text {-elements }} \preceq y \Rightarrow f(y)=i+1
$$

Thus A_{i} is antichain for every $i \in\{1,2, \ldots, r\}$.
3. Let s, r be positive integers. Show that in any partial order on a set of $n \geq s r+1$ elements, there exists a chain of length $s+1$ or an antichain of size $r+1$.

Solution. By contradiction, assume that both: the length s^{\prime} of the longest chain in this partial order P is at most s and the length r^{\prime} of the biggest antichain is at most r. From Dilworth's theorem we get that P can be partitioned into r^{\prime} chains. The cardinality of P is at most $r^{\prime} s^{\prime} \leq r s<r s+1$.
4. Let s, r be positive integers. Show that every sequence of $s r+1$ real numbers contains a non-decreasing subsequence of length $s+1$ or a non-increasing subsequence of length $r+1$.

Solution. This is the thesis of Erdős-Shekeres theorem.
5. Show that the above theorem is tight.

Solution.

6. Find $R(3,3)$ and $R(4,3)$.

Solution. First, we will show that $R(3,3) \leq 6$. We consider a complete graph G with six vertices. From a vertex v from G there goes five edges to other vertices from G. By pigeonhole principle three of them are in the same color (suppose it is blue). As edges $\left(v, v_{1}\right),\left(v, v_{2}\right)$, $\left(v, v_{3}\right)$ are blue, one of edges between vertices v_{1}, v_{2}, v_{3} is blue or all of them are red. In both cases we get one-colored triangle.
7. Show that for any integer $m \geq 3$ there exists an integer $n=n(m)$ such that any set of n points in the Euclidean plane, no three of which are collinear, contains m points which are the vertices of a convex m-gon.

Proof. Let $n=R_{2}(3, m)$ and A be set of n points in the Euclidean plane. Let us define coloring of triples of points, such that $\chi(a, b, c)=1$, if number of points lying in the interior of triangle spanned by a, b, c is odd and $\chi(a, b, c)=0$ otherwise. Then, from definition of n, there exists set $S \subseteq A$, such that $|S|=m$ and every triple of points contained in S has the same color. Then S is convex m-gon, because by contradiction, assume that S is not convex (i.e. exists $a, b, c, d \in S$, such that d is the interior of triangle spanned by a, b, c):

Then:

$$
\chi(a, b, c)=\chi(a, b, d)+\chi(a, c, d)+\chi(b, c, d)+1 \bmod 2
$$

contradicting the definition of S.
8. Show that for every $r \geq 2$ there exists $n=n(r)$ such that in every coloring of $1, \ldots, n$ with r colors there exists monochromatic triple of distinct numbers satisfying $x+y=z$.

Solution. Let $k:[n] \rightarrow[r]$, where $[n]=\{1,2, \ldots, n$ and $[\mathrm{r}]$ is the set of colours, be an arbitrary coloring. Define $k^{\prime}: \rightarrow[r] k^{\prime}(a, b)=k(|a-b|)$. From Ramsey's theorem we know that there exist n such that if we colour 2 element subsets of $X(|X| \geq$

