. Let Ay, ..., A, be distinct subsets of an n element set. Suppose that A; N A; # () for all 4, 5.
Show that m < 271,

Solution. Let F be the family of Ay,..., A,,. Since A € F, A ¢ F, because AN AL = ¢.
There exist exactly 2" distinct subsets of an n element set. Thus, m < 2"°! as each set in
F excludes exactly one from the family of all subsets.

. Prove that if F is a family of distinct pairwise intersecting subsets of an n element set X,
then there exists a family F” of distinct pairwise intersecting subsets of X, such that F C F’
and | F'| =271,

Solution. By contradiction: we assume that no set can be added to F and m < 2"~!. Then,
we can choose set A such that A, A° ¢ F. As both A and AL cannot be added to F, we can
find sets B and C in F, such that ANB = and A*NC = 0. Tt follows B ¢ AL and C C A4,
so BN C = (. The contradiction proves m = 2"~ 1.

. Let Ay, ..., A, be a family of distinct subsets of an n element set, such that |4;| and |A;NA;]
are even for all 7,j. Prove that m < 2[*/2_ Is this bound tight?

Solution. Let vq,...,v,, € Zy vectors such that jth coordinate of vector v; is 1 iff 7 € A,.
Consider the standard scalar product where the sum is taken in Zy. Let U be span{vy, ... v, }.
By the assumptions we have (v;,v;) = 0 for all 4,j so U C Ut. As dimU + dim U+ = n,
dimU < [2]. We get m < |U] = 29m¥ < 2[3]

Consider family A of subsets {1,2},{3,4},...,{2 2] — 1,2 |2|}. Family F of subsets such
that every A € F is an union of a number of sets from A (including the empty set) satisfies

the assumptions and |F| = ols] 1t proves the bound is tight.

. Let n be odd. Let Aq,...,A,, be a family of distinct subsets of an n element set, such that
|A;| is even for all ¢ and |A; N A;| is odd for all 7, j. Prove that m < n. Is this bound tight?

Solution. We consider the complements of Ay, ..., A,, and get the thesis of Clubs in Oddtown
Problem. Indeed, |A{| = n—|A;| = 1-0 = 1(mod 2) and ATNAY = n—|A;|—|A;|+]AiNA;| =
1-0—-0+1=0(mod2). So, we get the inequality m < n.

. Let A be a 2n x 2n matrix with zeroes on the main diagonal and 41 elsewhere. Show that
A is non-singular over R.

Solution. We will show that A is non-singular over Z,. Let vq,...,v,, be the rows of the
matrix. Over Z,, we have —1 = 1 so v; = (1,1,...,1,0,1,...;1) such that 0 is the ith
coordinate of v;. Consider again the standard scalar product where the sum is taken in Zs.
(v, v;) = 2n — 1(mod 2) = 1 for all i and (v;,v;) = 2n —2(mod 2) = 0 for all ¢ # j. It means
that vq,...,v,, are orthogonal, so as a result they are linearly independent.

. Suppose F is a subfield of G. Suppose v1, ..., v are linearly independent in the vector space
(F™,TF). Does it follow that vy, ..., vy are linearly independent in the vector space (G",G)?

Solution. vy, ..., vy are linearly independent vectors in the vector space (F",[F) so there exist
vectors Vi1, ..., v, € F" such that set {vy,...,v,} is a basis of F". Take matrix A whose
rows are vectors {vy, ..., v, }. rk(A) = dim(span(vy, ..., v,) = n. It is maximal so det(A4) # 0

in the field F as well as in the field G, because F is a subfield of G. It proves that vq,..., v,
are linearly independent in the vector space (G", G).

1



10.

11.

12.

A family Si,..., S, of subsets of a given set X is called a sunflower with k petals and core
A (it could be that A =0) if S;NS; = A for all i # j and S; \ A is nonempty for all 7.

Prove that every family of s element subsets of X satisfying |F| > s!(k — 1)° contains a
sunflower with £k petals.

Solution. Induction by s.

Let F be an antichain of subsets (with an inclusion order) of an n element set. Suppose that
all of these sets have cardinality at most k& where 2k < n. Show that |F| < (7).

Let n < 2k and let Ay, ..., A,, be distinct k element subsets of a give set X with n elements.
Suppose A; U A; # X for all 4, j. Show that m < (1 — %)(Z)

Solution. By considering complements to sets Ay, ..., A,, we get the thesis of Erdos-Ko-Rado
theorem.

Let Ay,..., A, and By, ..., By, be subsets of a given finite set X such that A, N B; = 0 if
and only if i = j. Let a; = |4;| and b; = | B;|. Prove the inequality

) e
i=1 i

Let Ay, ..., A,, be a element subsets and By, ..., B,, be b element subsets of a given finite
set X, such that A; N B; = ( if and only if ¢ = j. Show that m < (a:b). Is this bound tight?

Let vy, ..., v, be real numbers such that |v;| > 1 for i = 1,...,n. Define
A={x=(1,...,2,) € {1, 1}": |viz1 + -+ vx,| < 1}.

Prove that |A| < ([n%]).

In other words, the probability that the n step random walk with steps +v; (each taken with
probability 1) ends up in the interval [—1, 1] is upper bounded by 2*”([7172]) =0(1/4y/n).



1. Let vy, ..., v, be real numbers such that |v;| > 1 for ¢ = 1,...,n. Define
A=z=(x1,...,2,) € =1, 1" vz + - -+ v, < 1

Prove that |A| < (LZJ)
In other words, the probability that the n step random walk with steps +v; (each taken with

probability %) ends up in the interval [—1, 1] is upper bounded by (Ln In /2?:10’21 / \/ﬁ))
Solution. Without loss of generality, we can assume that vq,...,v, > 0. For every vector

r = (x1,...,X,) € A consider subset X of an n element set {1,2,...,n} such that i € X iff
x; = 1. Subsets constructed in this operation form an antichain in {—1, 1}". Indeed, if X C Y
there exists ¢ such that z; = —1 and y; = 1. Then |z, V —1+...+z,0,|+|1v1+. . .+ Ynva| >
|(y1 — z1)v1 + ... + (Yn — Tn)vn| > 2. As a result, either x or y does not belong to A. From
Sperner’s lemma we get |A| < (L%‘J)

2. Suppose that in a given finite partial order the maximal length of a chain is equal to r. Prove
that this partial order can be partitioned into r antichains.

Proof. Let f be a function, such that f(x) is length of the longest chain ended by z (i.e.
length of the longest chain x; < 25 < ... < ). We will show thet for every i € {1,2,...;}
set A; :={x € S: f(x) =1} is antichain (obviously Vi € {1,2,...,7} A; # &). Assume by
contradiction that 3 x,y € A; : = < y. Then:

ifelgrrnents

Thus A; is antichain for every i € {1,2,...,r}. ]

3. Let s, r be positive integers. Show that in any partial order on a set of n > sr + 1 elements,
there exists a chain of length s + 1 or an antichain of size r + 1.

Solution. By contradiction, assume that both: the length s’ of the longest chain in this
partial order P is at most s and the length " of the biggest antichain is at most r. From
Dilworth’s theorem we get that P can be partitioned into r’ chains. The cardinality of P is
at most r's’ <rs < rs+ 1.

4. Let s, r be positive integers. Show that every sequence of sr + 1 real numbers contains a
non-decreasing subsequence of length s 4+ 1 or a non-increasing subsequence of length r + 1.

Solution. This is the thesis of Erdds-Shekeres theorem.

5. Show that the above theorem is tight.

Solution.

6. Find R(3,3) and R(4,3).



Solution. First, we will show that R(3,3) < 6. We consider a complete graph G with six
vertices. From a vertex v from G there goes five edges to other vertices from G. By pigeonhole
principle three of them are in the same color (suppose it is blue). As edges (v,v1) , (v,vq),
(v,v3) are blue, one of edges between vertices vy, vy, v is blue or all of them are red. In both
cases we get one-colored triangle.

. Show that for any integer m > 3 there exists an integer n = n(m) such that any set of n
points in the Euclidean plane, no three of which are collinear, contains m points which are
the vertices of a convex m-gon.

Proof. Let n = Ry(3,m) and A be set of n points in the Euclidean plane. Let us define
coloring of triples of points, such that x(a,b,c) = 1, if number of points lying in the interior
of triangle spanned by a, b, ¢ is odd and x(a, b, c) = 0 otherwise. Then, from definition of n,
there exists set S C A, such that |S| = m and every triple of points contained in S has the
same color. Then S is convex m-gon, because by contradiction, assume that S is not convex
(i.e. exists a,b,c,d € S, such that d is the interior of triangle spanned by a, b, ¢):

c
a b
Then:
x(@b,¢) = x(a,b,d) + x(a e, d) + x(b, ¢, d) + 1mod2,
contradicting the definition of S. m
. Show that for every r > 2 there exists n = n(r) such that in every coloring of 1,...,n with

r colors there exists monochromatic triple of distinct numbers satisfying = + y = z.

Solution. Let k : [n] — [r], where [n] = {1,2,...,n and [r] is the set of colours, be an
arbitrary coloring. Define k' :— [r] k'(a,b) = k(Ja — b|). From Ramsey’s theorem we know
that there exist n such that if we colour 2 element subsets of X (| X| >



