
1. Let A1, . . . , Am be distinct subsets of an n element set. Suppose that Ai ∩Aj 6= ∅ for all i, j.
Show that m ≤ 2n−1.

Solution. Let F be the family of A1, . . . , Am. Since A ∈ F , A{ /∈ F , because A ∩ A{ = ∅.
There exist exactly 2n distinct subsets of an n element set. Thus, m ≤ 2n−1, as each set in
F excludes exactly one from the family of all subsets.

2. Prove that if F is a family of distinct pairwise intersecting subsets of an n element set X,
then there exists a family F ′ of distinct pairwise intersecting subsets of X, such that F ⊆ F ′
and |F ′| = 2n−1.

Solution. By contradiction: we assume that no set can be added to F and m < 2n−1. Then,
we can choose set A such that A,A{ /∈ F . As both A and A{ cannot be added to F , we can
find sets B and C in F , such that A∩B = ∅ and A{ ∩C = ∅. It follows B ⊂ A{ and C ⊂ A,
so B ∩ C = ∅. The contradiction proves m = 2n−1.

3. Let A1, . . . , Am be a family of distinct subsets of an n element set, such that |Ai| and |Ai∩Aj|
are even for all i, j. Prove that m ≤ 2[n/2]. Is this bound tight?

Solution. Let v1, . . . , vm ∈ Z2 vectors such that jth coordinate of vector vi is 1 iff j ∈ Ai.
Consider the standard scalar product where the sum is taken in Z2. Let U be span{v1, . . . vm}.
By the assumptions we have 〈vi, vj〉 = 0 for all i, j so U ⊆ U⊥. As dimU + dimU⊥ = n,

dimU ≤
⌊
n
2

⌋
. We get m ≤ |U | = 2dimU ≤ 2b

n
2 c

Consider family A of subsets {1, 2}, {3, 4}, . . . , {2
⌊
n
2

⌋
− 1, 2

⌊
n
2

⌋
}. Family F of subsets such

that every A ∈ F is an union of a number of sets from A (including the empty set) satisfies

the assumptions and |F| = 2b
n
2 c. It proves the bound is tight.

4. Let n be odd. Let A1, . . . , Am be a family of distinct subsets of an n element set, such that
|Ai| is even for all i and |Ai ∩ Aj| is odd for all i, j. Prove that m ≤ n. Is this bound tight?

Solution. We consider the complements of A1, . . . , Am and get the thesis of Clubs in Oddtown
Problem. Indeed, |AC

i | = n−|Ai| ≡ 1−0 = 1(mod 2) and AC
i ∩AC

j = n−|Ai|−|Aj|+|Ai∩Aj| ≡
1− 0− 0 + 1 ≡ 0(mod 2). So, we get the inequality m ≤ n.

5. Let A be a 2n× 2n matrix with zeroes on the main diagonal and ±1 elsewhere. Show that
A is non-singular over R.

Solution. We will show that A is non-singular over Z2. Let v1, . . . , vm be the rows of the
matrix. Over Z2, we have −1 = 1 so vi = (1, 1, ..., 1, 0, 1, ..., 1) such that 0 is the ith
coordinate of vi. Consider again the standard scalar product where the sum is taken in Z2.
〈vi, vi〉 = 2n− 1(mod 2) = 1 for all i and 〈vi, vj〉 = 2n− 2(mod 2) = 0 for all i 6= j. It means
that v1, . . . , vm are orthogonal, so as a result they are linearly independent.

6. Suppose F is a subfield of G. Suppose v1, . . . , vk are linearly independent in the vector space
(Fn,F). Does it follow that v1, . . . , vk are linearly independent in the vector space (Gn,G)?

Solution. v1, . . . , vk are linearly independent vectors in the vector space (Fn,F) so there exist
vectors vk+1, . . . , vn ∈ Fn such that set {v1, . . . , vn} is a basis of Fn. Take matrix A whose
rows are vectors {v1, . . . , vn}. rk(A) = dim(span(v1, . . . , vn) = n. It is maximal so det(A) 6= 0
in the field F as well as in the field G, because F is a subfield of G. It proves that v1, . . . , vn
are linearly independent in the vector space (Gn,G).
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7. A family S1, . . . , Sk of subsets of a given set X is called a sunflower with k petals and core
A (it could be that A = ∅) if Si ∩ Sj = A for all i 6= j and Si \ A is nonempty for all i.

Prove that every family of s element subsets of X satisfying |F| > s!(k − 1)s contains a
sunflower with k petals.

Solution. Induction by s.

8. Let F be an antichain of subsets (with an inclusion order) of an n element set. Suppose that
all of these sets have cardinality at most k where 2k ≤ n. Show that |F| ≤

(
n
k

)
.

9. Let n ≤ 2k and let A1, . . . , Am be distinct k element subsets of a give set X with n elements.
Suppose Ai ∪ Aj 6= X for all i, j. Show that m ≤ (1− k

n
)
(
n
k

)
.

Solution. By considering complements to sets A1, . . . , Am we get the thesis of Erdos-Ko-Rado
theorem.

10. Let A1, . . . , Am and B1, . . . , Bm be subsets of a given finite set X such that Ai ∩ Bj = ∅ if
and only if i = j. Let ai = |Ai| and bi = |Bi|. Prove the inequality

m∑
i=1

(
ai + bi
ai

)−1
≤ 1.

11. Let A1, . . . , Am be a element subsets and B1, . . . , Bm be b element subsets of a given finite
set X, such that Ai ∩Bj = ∅ if and only if i = j. Show that m ≤

(
a+b
a

)
. Is this bound tight?

12. Let v1, . . . , vn be real numbers such that |vi| ≥ 1 for i = 1, . . . , n. Define

A = {x = (x1, . . . , xn) ∈ {−1, 1}n : |v1x1 + · · ·+ vnxn| < 1} .

Prove that |A| ≤
(

n
[n/2]

)
.

In other words, the probability that the n step random walk with steps ±vi (each taken with
probability 1

2
) ends up in the interval [−1, 1] is upper bounded by 2−n

(
n

[n/2]

)
= O(1/

√
n).
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1. Let v1, . . . , vn be real numbers such that |vi| ≥ 1 for i = 1, . . . , n. Define

A = x = (x1, . . . , xn) ∈ −1, 1n : |v1x1 + · · ·+ vnxn| < 1

Prove that |A| ≤
(

n

bn2 c
)
.

In other words, the probability that the n step random walk with steps ±vi (each taken with

probability 1
2
) ends up in the interval [−1, 1] is upper bounded by

(
2−nn

bncn/2]=O(1/
√
n)

)
Solution. Without loss of generality, we can assume that v1, . . . , vn > 0. For every vector
x = (x1, . . . , Xn) ∈ A consider subset X of an n element set {1, 2, . . . , n} such that i ∈ X iff
xi = 1. Subsets constructed in this operation form an antichain in {−1, 1}n. Indeed, ifX ( Y
there exists i such that xi = −1 and yi = 1. Then |x1V −1+ . . .+xnvn|+ |y1v1+ . . .+ynvn| ≥
|(y1 − x1)v1 + . . .+ (yn − xn)vn| ≥ 2. As a result, either x or y does not belong to A. From
Sperner’s lemma we get |A| ≤

(
n

bn2 c
)

2. Suppose that in a given finite partial order the maximal length of a chain is equal to r. Prove
that this partial order can be partitioned into r antichains.

Proof. Let f be a function, such that f(x) is length of the longest chain ended by x (i.e.
length of the longest chain x1 � x2 � ... � x). We will show thet for every i ∈ {1, 2, ..., }
set Ai := {x ∈ S : f(x) = i} is antichain (obviously ∀ i ∈ {1, 2, ..., r} Ai 6= ∅). Assume by
contradiction that ∃ x, y ∈ Ai : x � y. Then:

f(x) = i⇒ x1 � x2 � ... � x︸ ︷︷ ︸
i−elements

� y ⇒ f(y) = i+ 1

Thus Ai is antichain for every i ∈ {1, 2, ..., r}.

3. Let s, r be positive integers. Show that in any partial order on a set of n ≥ sr+ 1 elements,
there exists a chain of length s+ 1 or an antichain of size r + 1.

Solution. By contradiction, assume that both: the length s′ of the longest chain in this
partial order P is at most s and the length r′ of the biggest antichain is at most r. From
Dilworth’s theorem we get that P can be partitioned into r′ chains. The cardinality of P is
at most r′s′ ≤ rs < rs+ 1.

4. Let s, r be positive integers. Show that every sequence of sr + 1 real numbers contains a
non-decreasing subsequence of length s+ 1 or a non-increasing subsequence of length r + 1.

Solution. This is the thesis of Erdős-Shekeres theorem.

5. Show that the above theorem is tight.

Solution.

6. Find R(3, 3) and R(4, 3).
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Solution. First, we will show that R(3, 3) ≤ 6. We consider a complete graph G with six
vertices. From a vertex v from G there goes five edges to other vertices from G. By pigeonhole
principle three of them are in the same color (suppose it is blue). As edges (v, v1) , (v, v2),
(v, v3) are blue, one of edges between vertices v1, v2, v3 is blue or all of them are red. In both
cases we get one-colored triangle.

7. Show that for any integer m ≥ 3 there exists an integer n = n(m) such that any set of n
points in the Euclidean plane, no three of which are collinear, contains m points which are
the vertices of a convex m-gon.

Proof. Let n = R2(3,m) and A be set of n points in the Euclidean plane. Let us define
coloring of triples of points, such that χ(a, b, c) = 1, if number of points lying in the interior
of triangle spanned by a, b, c is odd and χ(a, b, c) = 0 otherwise. Then, from definition of n,
there exists set S ⊆ A, such that |S| = m and every triple of points contained in S has the
same color. Then S is convex m-gon, because by contradiction, assume that S is not convex
(i.e. exists a, b, c, d ∈ S, such that d is the interior of triangle spanned by a, b, c):

•
a

•
d

•
b

•c

Then:
χ(a, b, c) = χ(a, b, d) + χ(a, c, d) + χ(b, c, d) + 1 mod 2,

contradicting the definition of S.

8. Show that for every r ≥ 2 there exists n = n(r) such that in every coloring of 1, . . . , n with
r colors there exists monochromatic triple of distinct numbers satisfying x+ y = z.

Solution. Let k : [n] → [r], where [n] = {1, 2, . . . , n and [r] is the set of colours, be an
arbitrary coloring. Define k′ :→ [r] k′(a, b) = k(|a − b|). From Ramsey’s theorem we know
that there exist n such that if we colour 2 element subsets of X (|X| ≥
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