1. Let A_1, \ldots, A_m be distinct subsets of an *n* element set. Suppose that $A_i \cap A_j \neq \emptyset$ for all i, j. Show that $m \leq 2^{n-1}$.

Solution. Let \mathcal{F} be the family of A_1, \ldots, A_m . Since $A \in \mathcal{F}$, $A^{\complement} \notin \mathcal{F}$, because $A \cap A^{\complement} = \emptyset$. There exist exactly 2^n distinct subsets of an *n* element set. Thus, $m \leq 2^{n-1}$, as each set in \mathcal{F} excludes exactly one from the family of all subsets.

2. Prove that if \mathcal{F} is a family of distinct pairwise intersecting subsets of an n element set X, then there exists a family \mathcal{F}' of distinct pairwise intersecting subsets of X, such that $\mathcal{F} \subseteq \mathcal{F}'$ and $|\mathcal{F}'| = 2^{n-1}$.

Solution. By contradiction: we assume that no set can be added to \mathcal{F} and $m < 2^{n-1}$. Then, we can choose set A such that $A, A^{\complement} \notin \mathcal{F}$. As both A and A^{\complement} cannot be added to \mathcal{F} , we can find sets B and C in \mathcal{F} , such that $A \cap B = \emptyset$ and $A^{\complement} \cap C = \emptyset$. It follows $B \subset A^{\complement}$ and $C \subset A$, so $B \cap C = \emptyset$. The contradiction proves $m = 2^{n-1}$.

3. Let A_1, \ldots, A_m be a family of distinct subsets of an *n* element set, such that $|A_i|$ and $|A_i \cap A_j|$ are even for all i, j. Prove that $m \leq 2^{[n/2]}$. Is this bound tight?

Solution. Let $v_1, \ldots, v_m \in \mathbb{Z}_2$ vectors such that *j*th coordinate of vector v_i is 1 iff $j \in A_i$. Consider the standard scalar product where the sum is taken in \mathbb{Z}_2 . Let U be span $\{v_1, \ldots, v_m\}$. By the assumptions we have $\langle v_i, v_j \rangle = 0$ for all i, j so $U \subseteq U^{\perp}$. As dim $U + \dim U^{\perp} = n$, dim $U \leq \lfloor \frac{n}{2} \rfloor$. We get $m \leq |U| = 2^{\dim U} \leq 2^{\lfloor \frac{n}{2} \rfloor}$ Consider family \mathcal{A} of subsets $\{1, 2\}, \{3, 4\}, \ldots, \{2 \lfloor \frac{n}{2} \rfloor - 1, 2 \lfloor \frac{n}{2} \rfloor\}$. Family \mathcal{F} of subsets such that every $A \in \mathcal{F}$ is an union of a number of sets from \mathcal{A} (including the empty set) satisfies the assumptions and $|\mathcal{F}| = 2^{\lfloor \frac{n}{2} \rfloor}$. It proves the bound is tight.

4. Let n be odd. Let A_1, \ldots, A_m be a family of distinct subsets of an n element set, such that $|A_i|$ is even for all i and $|A_i \cap A_j|$ is odd for all i, j. Prove that $m \leq n$. Is this bound tight?

Solution. We consider the complements of A_1, \ldots, A_m and get the thesis of Clubs in Oddtown Problem. Indeed, $|A_i^C| = n - |A_i| \equiv 1 - 0 = 1 \pmod{2}$ and $A_i^C \cap A_j^C = n - |A_i| - |A_j| + |A_i \cap A_j| \equiv 1 - 0 - 0 + 1 \equiv 0 \pmod{2}$. So, we get the inequality $m \leq n$.

5. Let A be a $2n \times 2n$ matrix with zeroes on the main diagonal and ± 1 elsewhere. Show that A is non-singular over \mathbb{R} .

Solution. We will show that A is non-singular over \mathbb{Z}_2 . Let v_1, \ldots, v_m be the rows of the matrix. Over \mathbb{Z}_2 , we have -1 = 1 so $v_i = (1, 1, \ldots, 1, 0, 1, \ldots, 1)$ such that 0 is the *i*th coordinate of v_i . Consider again the standard scalar product where the sum is taken in \mathbb{Z}_2 . $\langle v_i, v_i \rangle = 2n - 1 \pmod{2} = 1$ for all *i* and $\langle v_i, v_j \rangle = 2n - 2 \pmod{2} = 0$ for all $i \neq j$. It means that v_1, \ldots, v_m are orthogonal, so as a result they are linearly independent.

6. Suppose \mathbb{F} is a subfield of \mathbb{G} . Suppose v_1, \ldots, v_k are linearly independent in the vector space $(\mathbb{F}^n, \mathbb{F})$. Does it follow that v_1, \ldots, v_k are linearly independent in the vector space $(\mathbb{G}^n, \mathbb{G})$?

Solution. v_1, \ldots, v_k are linearly independent vectors in the vector space $(\mathbb{F}^n, \mathbb{F})$ so there exist vectors $v_{k+1}, \ldots, v_n \in \mathbb{F}^n$ such that set $\{v_1, \ldots, v_n\}$ is a basis of \mathbb{F}^n . Take matrix A whose rows are vectors $\{v_1, \ldots, v_n\}$. $\operatorname{rk}(A) = \dim(\operatorname{span}(v_1, \ldots, v_n) = n$. It is maximal so $\det(A) \neq 0$ in the field \mathbb{F} as well as in the field \mathbb{G} , because \mathbb{F} is a subfield of \mathbb{G} . It proves that v_1, \ldots, v_n are linearly independent in the vector space $(\mathbb{G}^n, \mathbb{G})$.

7. A family S_1, \ldots, S_k of subsets of a given set X is called a *sunflower* with k petals and core A (it could be that $A = \emptyset$) if $S_i \cap S_j = A$ for all $i \neq j$ and $S_i \setminus A$ is nonempty for all i.

Prove that every family of s element subsets of X satisfying $|\mathcal{F}| > s!(k-1)^s$ contains a sunflower with k petals.

Solution. Induction by s.

- 8. Let \mathcal{F} be an antichain of subsets (with an inclusion order) of an *n* element set. Suppose that all of these sets have cardinality at most *k* where $2k \leq n$. Show that $|\mathcal{F}| \leq {n \choose k}$.
- 9. Let $n \leq 2k$ and let A_1, \ldots, A_m be distinct k element subsets of a give set X with n elements. Suppose $A_i \cup A_j \neq X$ for all i, j. Show that $m \leq (1 - \frac{k}{n}) \binom{n}{k}$.

Solution. By considering complements to sets A_1, \ldots, A_m we get the thesis of Erdos-Ko-Rado theorem.

10. Let A_1, \ldots, A_m and B_1, \ldots, B_m be subsets of a given finite set X such that $A_i \cap B_j = \emptyset$ if and only if i = j. Let $a_i = |A_i|$ and $b_i = |B_i|$. Prove the inequality

$$\sum_{i=1}^m \binom{a_i+b_i}{a_i}^{-1} \le 1.$$

- 11. Let A_1, \ldots, A_m be a element subsets and B_1, \ldots, B_m be b element subsets of a given finite set X, such that $A_i \cap B_j = \emptyset$ if and only if i = j. Show that $m \leq \binom{a+b}{a}$. Is this bound tight?
- 12. Let v_1, \ldots, v_n be real numbers such that $|v_i| \ge 1$ for $i = 1, \ldots, n$. Define

$$A = \{x = (x_1, \dots, x_n) \in \{-1, 1\}^n : |v_1 x_1 + \dots + v_n x_n| < 1\}.$$

Prove that $|A| \leq {n \choose [n/2]}$.

In other words, the probability that the *n* step random walk with steps $\pm v_i$ (each taken with probability $\frac{1}{2}$) ends up in the interval [-1, 1] is upper bounded by $2^{-n} \binom{n}{[n/2]} = O(1/\sqrt{n})$.

1. Let v_1, \ldots, v_n be real numbers such that $|v_i| \ge 1$ for $i = 1, \ldots, n$. Define

$$A = x = (x_1, \dots, x_n) \in -1, 1^n : |v_1 x_1 + \dots + v_n x_n| < 1$$

Prove that $|A| \leq \binom{n}{\lfloor \frac{n}{2} \rfloor}$.

In other words, the probability that the *n* step random walk with steps $\pm v_i$ (each taken with probability $\frac{1}{2}$) ends up in the interval [-1, 1] is upper bounded by $\binom{2^{-n}n}{\lfloor n \rfloor n/2 \rfloor = O(1/\sqrt{n})}$

Solution. Without loss of generality, we can assume that $v_1, \ldots, v_n > 0$. For every vector $x = (x_1, \ldots, X_n) \in A$ consider subset X of an n element set $\{1, 2, \ldots, n\}$ such that $i \in X$ iff $x_i = 1$. Subsets constructed in this operation form an antichain in $\{-1, 1\}^n$. Indeed, if $X \subsetneq Y$ there exists i such that $x_i = -1$ and $y_i = 1$. Then $|x_1V - 1 + \ldots + x_nv_n| + |y_1v_1 + \ldots + y_nv_n| \ge |(y_1 - x_1)v_1 + \ldots + (y_n - x_n)v_n| \ge 2$. As a result, either x or y does not belong to A. From Sperner's lemma we get $|A| \le {n \choose \lfloor \frac{n}{2} \rfloor}$

2. Suppose that in a given finite partial order the maximal length of a chain is equal to r. Prove that this partial order can be partitioned into r antichains.

Proof. Let f be a function, such that f(x) is length of the longest chain ended by x (i.e. length of the longest chain $x_1 \leq x_2 \leq ... \leq x$). We will show that for every $i \in \{1, 2, ..., \}$ set $A_i \coloneqq \{x \in S : f(x) = i\}$ is antichain (obviously $\forall i \in \{1, 2, ..., r\}$ $A_i \neq \emptyset$). Assume by contradiction that $\exists x, y \in A_i : x \leq y$. Then:

$$f(x) = i \Rightarrow \underbrace{x_1 \preceq x_2 \preceq \dots \preceq x}_{i-\text{elements}} \preceq y \Rightarrow f(y) = i+1$$

Thus A_i is antichain for every $i \in \{1, 2, ..., r\}$.

3. Let s, r be positive integers. Show that in any partial order on a set of $n \ge sr + 1$ elements, there exists a chain of length s + 1 or an antichain of size r + 1.

Solution. By contradiction, assume that both: the length s' of the longest chain in this partial order P is at most s and the length r' of the biggest antichain is at most r. From Dilworth's theorem we get that P can be partitioned into r' chains. The cardinality of P is at most $r's' \leq rs < rs + 1$.

4. Let s, r be positive integers. Show that every sequence of sr + 1 real numbers contains a non-decreasing subsequence of length s + 1 or a non-increasing subsequence of length r + 1.

Solution. This is the thesis of Erdős-Shekeres theorem.

5. Show that the above theorem is tight.

Solution.

6. Find R(3,3) and R(4,3).

Solution. First, we will show that $R(3,3) \leq 6$. We consider a complete graph G with six vertices. From a vertex v from G there goes five edges to other vertices from G. By pigeonhole principle three of them are in the same color (suppose it is blue). As edges (v, v_1) , (v, v_2) , (v, v_3) are blue, one of edges between vertices v_1, v_2, v_3 is blue or all of them are red. In both cases we get one-colored triangle.

7. Show that for any integer $m \ge 3$ there exists an integer n = n(m) such that any set of n points in the Euclidean plane, no three of which are collinear, contains m points which are the vertices of a convex m-gon.

Proof. Let $n = R_2(3, m)$ and A be set of n points in the Euclidean plane. Let us define coloring of triples of points, such that $\chi(a, b, c) = 1$, if number of points lying in the interior of triangle spanned by a, b, c is odd and $\chi(a, b, c) = 0$ otherwise. Then, from definition of n, there exists set $S \subseteq A$, such that |S| = m and every triple of points contained in S has the same color. Then S is convex m-gon, because by contradiction, assume that S is not convex (i.e. exists $a, b, c, d \in S$, such that d is the interior of triangle spanned by a, b, c):

Then:

$$\chi(a, b, c) = \chi(a, b, d) + \chi(a, c, d) + \chi(b, c, d) + 1 \mod 2,$$

contradicting the definition of S.

8. Show that for every $r \ge 2$ there exists n = n(r) such that in every coloring of $1, \ldots, n$ with r colors there exists monochromatic triple of distinct numbers satisfying x + y = z.

Solution. Let $k : [n] \to [r]$, where $[n] = \{1, 2, ..., n \text{ and } [r] \text{ is the set of colours, be an arbitrary coloring. Define <math>k' :\to [r] k'(a, b) = k(|a - b|)$. From Ramsey's theorem we know that there exist n such that if we colour 2 element subsets of $X(|X| \ge 1)$