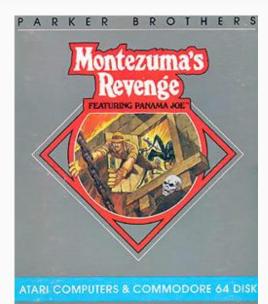
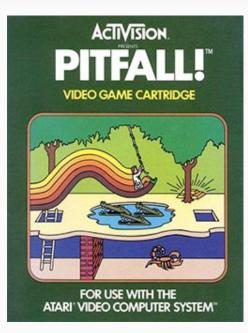
Playing hard exploration games by watching YouTube

Yusuf Aytar, Tobias Pfaff, David Budden, Tom Le Paine, Ziyu Wang, Nando de Freitas

arXiv:1805.11592

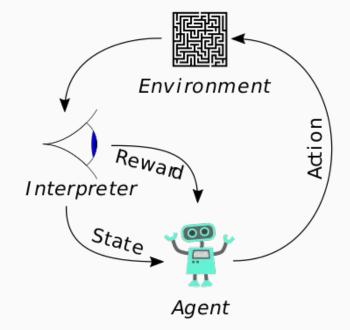
Three Atari games from the early 80s



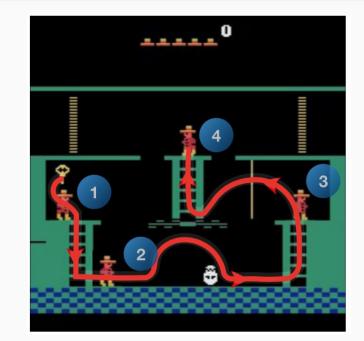


Can we use trial-and-error?

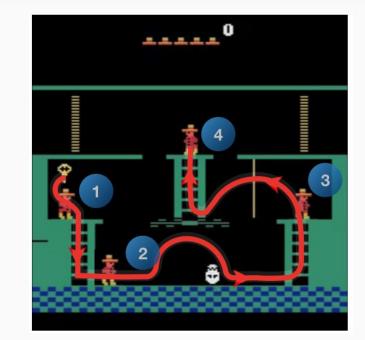
Unfortunately, there's a problem



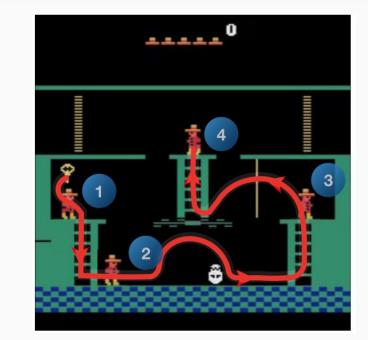
The problem: "hard exploration" sparse environmental rewards 100s of environment steps to even reach the first reward in Montezuma's Revenge



One solution: intrinsic motivation create an auxiliary reward to encourage trying new trajectories; doesn't solve the problem of unknown-unknowns

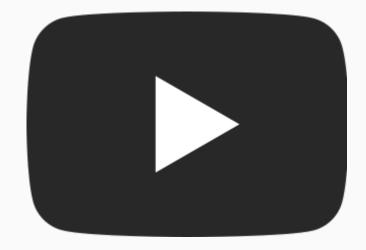


Another solution: imitation learning observe some demonstrations of others playing the game, then imitate their trajectories This can work!



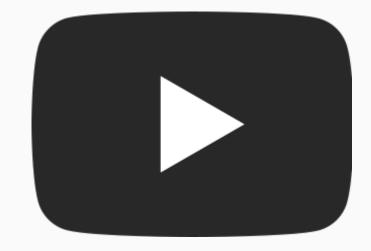
What demonstrations would we use?

YouTube videos: humans can absorb knowledge easily by just watching somebody else do it



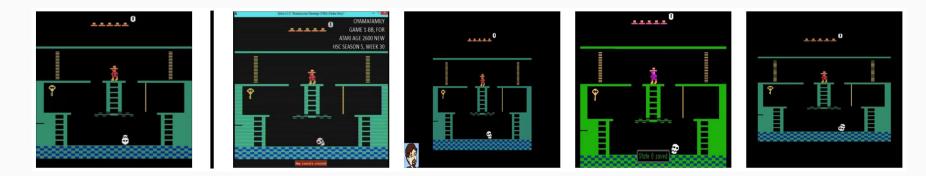
What demonstrations would we use?

YouTube videos: humans can absorb knowledge easily by just watching somebody else do it despite significant differences in timing, lighting, background, sounds, body characteristics etc.



The challenges of using YouTube videos

First frame of Montezuma's Revenge on: the Atari Learning Environment (on the left) vs. four demonstration videos



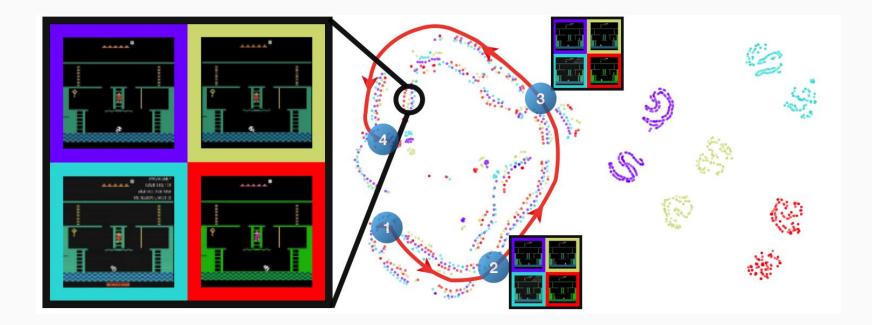
The challenges of using YouTube videos

Notice the different colors, aspect ratios, location within the frame + artifacts like the emulator window, avatar etc. This is the **domain gap**.

The challenges of using YouTube videos

The **domain gap** is a problem, since most methods, including the then-SotA, expect clean demonstrations, as well as complete **action-reward sequences** for them

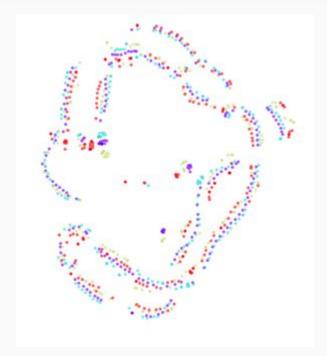
Embedding: overcoming the domain gap



Training the embedder

There are three different training videos per game

The goal is to produce a **common representation** for them



Training the embedder - auxiliary task

- The embedder can be trained by using it to solve an **auxiliary task**, which:
- is self-supervised
- encourages a desirable embedding

Training the embedder - auxiliary task

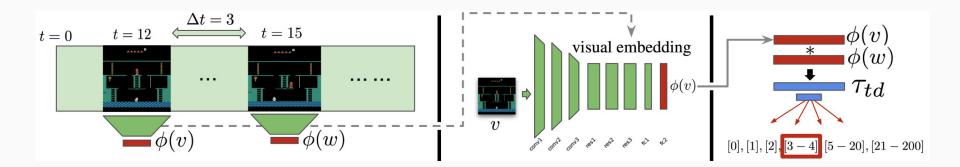
The auxiliary task:

Predicting the **temporal distance** between two frames from the same demonstration using:

- visual-visual embedding
- visual-audio embedding

Temporal distance classification (TDC)

Looking at the embeddings of two frames from one demonstration, determine the number of steps between them

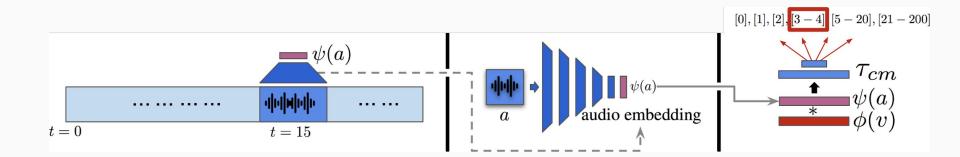


Temporal distance classification (TDC)

$$d_k \in \{[0], [1], [2], [3-4], [5-20], [21-200]\}$$
$$\phi : I \to \mathcal{R}^N$$
$$\tau_{tdc} : \mathcal{R}^N \times \mathcal{R}^N \to \mathcal{R}^K$$

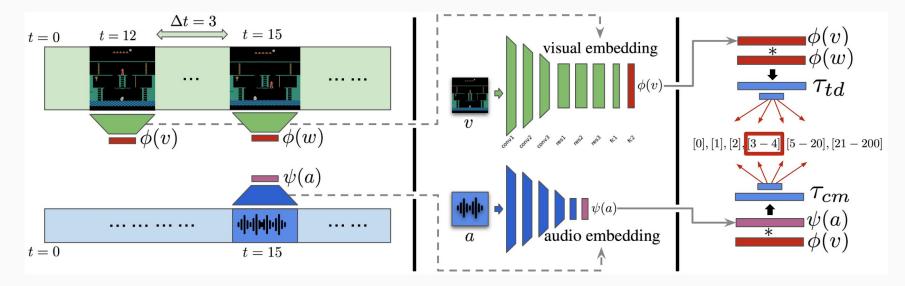
Cross-modal classification (CMC)

Looking at an embedded frame and a sound snippet, determine the time between them (eg. they're synchronized)



Complete classification problem

Training: minimize the weighted sum of cross-entropies.



The dataset for training the embedder

There are three training videos per game.

To get one pair of training frames:

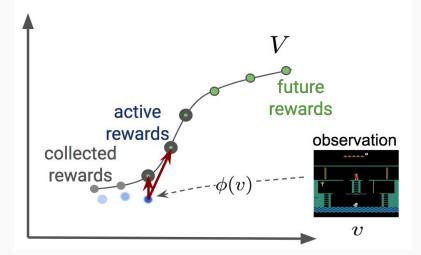
- sample one of three videos
- sample a time interval
- randomly select two frames separated by that interval

The last step - one-shot imitation

Combine:

- a standard RL agent
- the trained embedder
- another YouTube video

The goal: imitate the video.



The last step - one-shot imitation

Every 16 frames make a checkpoint, add an auxiliary reward for "visiting" the checkpoints in the right order.

$$r_{\text{imitation}} = \begin{cases} 0.5 & \text{if } \bar{\phi}(v_{\text{agent}}) \cdot \bar{\phi}(v_{\text{checkpoint}}) > \alpha \\ 0.0 & \text{otherwise} \end{cases} \quad \alpha = 0.5$$

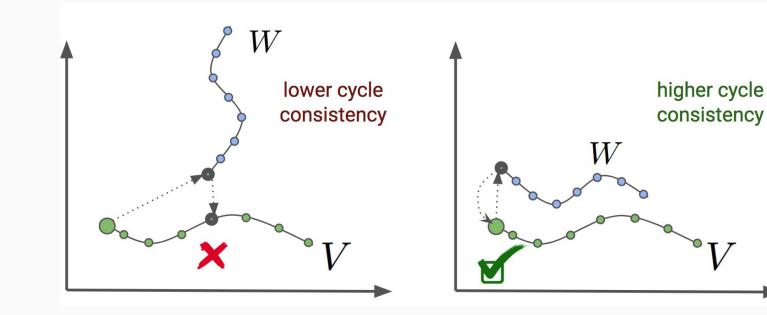
$$v_{\text{checkpoint}} \in \{v^{(n+1)}, \dots, v^{(n+1+\Delta t)}\} \qquad \Delta t = 1$$

Evaluating the embedder

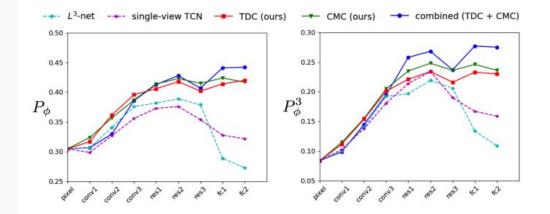
To successfully use YouTube videos as demonstrations, the embedder should exhibit:

- cycle-consistency and alignment capabilities
- meaningful abstractions of the game state

Cycle-consistency



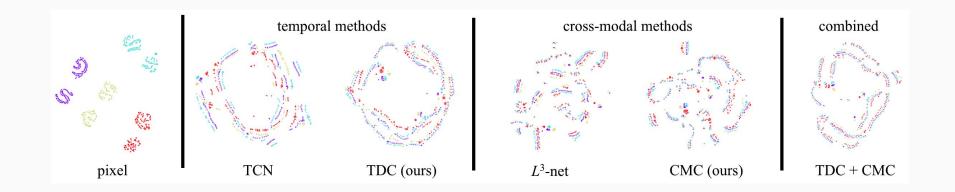
Cycle-consistency



Embedding Method	$ P_{\phi}$	P_{ϕ}^3
l_2 pixel distance	30.5	08.4
single-view TCN [34]	32.2	15.9
TDC (ours)	42.0	23.0
L^{3} -Net [3]	27.3	10.9
CMC (ours)	41.7	23.6
combined (TDC+CMC)	44.2	27.5

Embedding and alignment

https://youtu.be/RyxPAYhQ-Vo



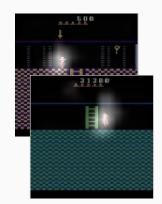
Embedding and alignment

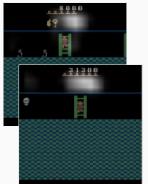
t-SNE visualization shows:

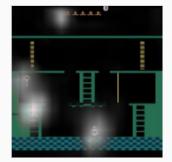
- different videos are recognized as following a similar path
- clear step-by-step trajectory
- not one cycle but two the level requires "there and back again", long-range dependency

Embedding and abstractions

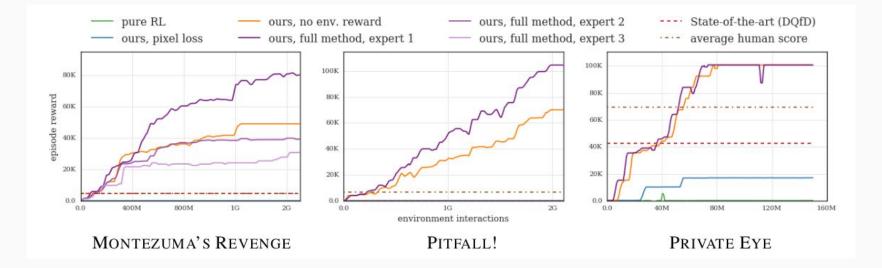
The neurons focus on important things (inventory, player and enemy location); audio helps shift attention to inventory.







Overall results



Overall results

	MONTEZUMA'S REVENGE	PITFALL!	PRIVATE EYE
Rainbow [19]	384.0	0.0	4,234.0
ApeX [22]	2,500.0	-0.6	49.8
DQfD [20]	4,659.7	57.3	42,457.2
Average Human [43]	4,743.0	6,464.0	69,571.0
Ours $(r_{\text{imitation}} \text{ only})$	37,232.7	54,912.4	98,212.5
Ours $(r_{\text{imitation}} + r_{\text{env}})$	58,175.1	76,812.5	98,763.2

Thank you for your attention