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Non-standard growth: wrong de�ntion

Lp spaces: functions f : Ω→ R such that Lp norm is �nite:[∫
Ω
|f (x)|p dx

]1/p
<∞.

Lp(x) spaces: we want something like:[∫
Ω
|f (x)|p(x) dx

]1/p(x)

<∞.

but this de�nition does not make sense.
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Non-standard growth: the correct de�ntion

Lp spaces: functions f : Ω→ R such that

‖f ‖p = inf

{
λ > 0 :

∫
Ω

∣∣∣∣ f (x)

λ

∣∣∣∣p dx ≤ 1
}
<∞.

Lp(x) spaces: functions f : Ω→ R such that

inf

{
λ > 0 :

∫
Ω

∣∣∣∣ f (x)

λ

∣∣∣∣p(x)

dx ≤ 1

}
<∞.

and this de�nition makes sense.
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Musielak � Orlicz spaces

We generalize role of the function M(x , ξ) = |ξ|p(x).

Let M(x , ξ) be nonnegative, convex in ξ, measurable in x , with
appropriate growth near 0 and at ∞, M(x , ξ) = M(x ,−ξ).

Just think about M(x , ξ) = |ξ|p(x) with 1 << p(x) <<∞

LM(Ω) spaces: functions f : Ω→ Rd such that

inf

{
λ > 0 :

∫
Ω
M(x , u(x)) dx ≤ 1

}
<∞.
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Basic duality in Musielak - Orlicz spaces

If 1 < p <∞, we have (Lp)∗ = Lq where 1

p + 1

q = 1. This follows
from Young's inequality.

General Young's inequality: if M(x , ξ) is an N-function, its convex
conjugate is

M∗(x , η) = sup
ξ∈Rd

[
ξ · η −M(x , ξ)

]

We have:
η · ξ ≤ M(x , ξ) + M∗(x , η).

In particular, if u ∈ LM(Ω) and v ∈ LM
∗
(Ω) we have u · v ∈ L1(Ω).
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Parabolic PDEs in Musielak - Orlicz spaces

Consider the problem

ut(t, x) = divA(t, x ,∇u(t, x)) + f (t, x) in (0,T )× Ω.

A is a monotone operator satisfying growth and coercivity
assumption:

M(t, x , ξ) ≤ c A(t, x , ξ) · ξ, M∗(t, x ,A(t, x , ξ)) ≤ M(t, x , ξ)

Weak solutions should have at least regularity

u ∈ L1(0,T ;W 1,1
0

(Ω)) and ∇u ∈ LM((0,T )× Ω)

and satisfy weak formulation.
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Examples

p(t, x)-Laplacian with 1 << p(t, x) <<∞:

ut = div
[
|∇u|p(t,x)−2∇u

]
+ f

with N-function: M(t, x , ξ) = |ξ|p(t,x),

double phase problems with 1 << p(t, x), q(t, x) <<∞:

ut = div
[
|∇u|p(t,x)−2∇u + a(t, x) |∇u|q(t,x)−2∇u

]
+ f

where a(t, x) is a nonnegative function
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Motivating example

Consider

ut =

{
div∇u in (0, 1]× Ω,

div
(
|∇u|2∇u

)
in (1, 2]× Ω,

and u(0, x) = u0(x) is given.
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Typical well-posedness theory

One constructs Galerkin approximations, establishes uniform
bounds and extracts weakly converging subsequences.

Identi�cation of the limits and uniqueness of solutions is based on
the energy equalities of the form∫

Ω

[
u2(t, x)− u20(x)

]
dx =

∫ t

0

∫
Ω
f (s, x) u(s, x) dx ds

−
∫ t

0

∫
Ω
A(s, x ,∇u(s, x)) · ∇u(s, x) dx ds.

To obtain energy equality, one tests PDE

ut(t, x) = divA(t, x ,∇u(t, x)) + f (t, x)

with the solution itself
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Can we test with the solution?

Equation is:

ut(t, x) = divA(t, x ,∇u(t, x)) + f (t, x)

The troublemaker:∫
ΩT

A(t, x ,∇u)︸ ︷︷ ︸
∈LM∗

· [∇u(t, x)]εx ,εt︸ ︷︷ ︸
∈LM???

dt dx

By Young's inequality and DCT we need something like∫
ΩT

M

(
t, x ,
∇u(t, x)− [∇u(t, x)]ε,δ

λ

)
dt dx → 0

for some λ > 0 (modular convergence).
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Biggest problem: convergence of molli�cations

We cannot test with the solution but we can test with the molli�ed
solution.

Convergence of molli�cations:∫ T

0

∫
Ω
M

(
t, x ,

∫
B(0,ε)

ηε(y)∇u(t, x − y)
)
dy

)
dx dt ≤∫ T

0

∫
Ω

∫
B(0,ε)

ηε(y)M
(
t, x,∇u(t, x− y)

))
dy dx dt

Continuity of M in x is needed to get

M
(
t, x,∇u(t, x − y)

))
≈ M

(
t, x− y,∇u(t, x− y)

))
.

Moreover, continuity of M in t is needed for chain rule.

Jakub Skrzeczkowski, students.mimuw.edu.pl/∼js357970 arXiv:1911.10826



Biggest problem: convergence of molli�cations

We cannot test with the solution but we can test with the molli�ed
solution. Convergence of molli�cations:∫ T

0

∫
Ω
M

(
t, x ,

∫
B(0,ε)

ηε(y)∇u(t, x − y)
)
dy

)
dx dt ≤∫ T

0

∫
Ω

∫
B(0,ε)

ηε(y)M
(
t, x,∇u(t, x− y)

))
dy dx dt

Continuity of M in x is needed to get

M
(
t, x,∇u(t, x − y)

))
≈ M

(
t, x− y,∇u(t, x− y)

))
.

Moreover, continuity of M in t is needed for chain rule.

Jakub Skrzeczkowski, students.mimuw.edu.pl/∼js357970 arXiv:1911.10826



Biggest problem: convergence of molli�cations

We cannot test with the solution but we can test with the molli�ed
solution. Convergence of molli�cations:∫ T

0

∫
Ω
M

(
t, x ,

∫
B(0,ε)

ηε(y)∇u(t, x − y)
)
dy

)
dx dt ≤∫ T

0

∫
Ω

∫
B(0,ε)

ηε(y)M
(
t, x,∇u(t, x− y)

))
dy dx dt

Continuity of M in x is needed to get

M
(
t, x,∇u(t, x − y)

))
≈ M

(
t, x− y,∇u(t, x− y)

))
.

Moreover, continuity of M in t is needed for chain rule.

Jakub Skrzeczkowski, students.mimuw.edu.pl/∼js357970 arXiv:1911.10826



Biggest problem: convergence of molli�cations

We cannot test with the solution but we can test with the molli�ed
solution. Convergence of molli�cations:∫ T

0

∫
Ω
M

(
t, x ,

∫
B(0,ε)

ηε(y)∇u(t, x − y)
)
dy

)
dx dt ≤∫ T

0

∫
Ω

∫
B(0,ε)

ηε(y)M
(
t, x,∇u(t, x− y)

))
dy dx dt

Continuity of M in x is needed to get

M
(
t, x,∇u(t, x − y)

))
≈ M

(
t, x− y,∇u(t, x− y)

))
.

Moreover, continuity of M in t is needed for chain rule.

Jakub Skrzeczkowski, students.mimuw.edu.pl/∼js357970 arXiv:1911.10826



Our approach

Only molli�cation in spatial variable x is necessary.

If we mollify equation in space, we get:

uεxt (t, x) = divAεx (t, x ,∇u(t, x)) + f εx (t, x)

Clearly, uεx is smooth in spatial variable x

But also uεx has Sobolev regularity in time =⇒ chain rule.
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Examples

Our results covers exponents roughly changing in time for:

p(t, x)-Laplacian with 1 << p(t, x) <<∞:

ut = div
[
|∇u|p(t,x)−2∇u

]
+ f

double phase problems with 1 << p(t, x), q(t, x) <<∞:

ut = div
[
|∇u|p(t,x)−2∇u + a(t, x) |∇u|q(t,x)−2∇u

]
+ f
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Paper �Parabolic equations in
Musielak � Orlicz spaces with
discontinuous in time N-function�
on arXiv:1911.10826.

Other topics (not discussed
today):

existence theory ...

Minty-Browder monotonicity
trick ...

local energy equalities ...
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