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Structured population models


∂tµt + ∂x(b(x , µt)µt) = c(x , µt)µt R+ × [0,T ],
b(0, µt)Dλµt(0) =

∫
R+ a(x , µt)dµt(x) [0,T ],

µ0 = ν R+.

a - o�spring productivity

b - how fast individuals changes their state

c - survival chances, death rate

Dλµt(0) - Radon-Nikodym derivative of µt wrt Lebesgue
measure at 0
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Measure solutions to SPM

Motivations:

Generalization: some distributions do not have density

Asymptotics: some stationary distributions may not have

density

Numerics: analysis of approximations by Dirac masses

Measure solutions: distributional solution in space of bounded
nonnegative Radon measures.

Natural metric to use is Wasserstein distance:

W1(µ, ν) = sup
f is Lipschitz, ‖Df ‖∞≤1

∫
R+

fd(µ− ν),

however it is useless for not conservative problems:

∂tµt + ∂x(b(x , µt)µt) = c(x , µt)µt
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Measure solutions: narrowly continuous, distributional solution in
space of bounded nonnegative Radon measures equipped with �at
metric:

pF (µ, ν) = sup
f ∈W 1,∞,‖f ‖W1,∞≤1

∫
R+

fd(µ− ν),

In this setting the problem is well - posed (existence, uniqueness,
stability, ...)1.

1P. Gwiazda, T. Lorenz, and A. Marciniak-Czochra. A nonlinear structured
population model: Lipschitz continuity of measure-valued solutions with respect
to model ingredients. J. Di�erential Equations, 248(11):2703 � 2735, 2010.
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Di�erentiability problem

Recall equation:{
∂tµt + ∂x(b(x , µt)µt) = c(x , µt)µt R+ × [0,T ],
b(0, µt)Dλµt(0) =

∫
R+ a(x , µt)dµt(x) [0,T ].

Take as model functions a, b and c perturbed versions of the
form

f h(x , µ) = f 0(x , µ) + hfp(x , µ)

= F 0

(
x ,

∫ ∞
0

KF 0(x , y)dµ(y)

)
+hFP

(
x ,

∫ ∞
0

KFP
(x , y)dµ(y)

)
.

while initial condition is still the same. Denote solution to this
problem with µht .

Is map h 7→ µht di�erentiable and in what sense?

Motivated, for instance, by study of optimal control of
phenomena described by SPM
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Counterexample

Such results cannot be expected in �at metric setting.

Indeed, Kamila discussed yesterday 1D transport equation:

∂tµ
h
t + ∂x((1 + h)µht ) = 0 µh0 = δ0. (1)

Here, sequence µht−µ0t
h is not convergent with respect to �at metric.

This motivates considering a space with linear structure and test
functions a little bit more regular than C 1

b .

Take Z =M(R+)
(C1+α(R+))∗

. Z is a complete, separable space
and Z ∗ is isomorphic to C 1+α 2. This space was successfully used
for similar problems in the case of transport equation.

‖µ‖Z = sup
‖ξ‖C1+α≤1

∫
R+

ξdµ

2P. Gwiazda, S. C. Hille, K. �yczek, and A. Swierczewska-Gwiazda.
Di�erentiability in perturbation parameter of measure solutions to perturbed
transport equation, 2018.
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Linear case

For linear case:{
∂tµt + ∂x(b(x)µt) = c(x)µt R+ × [0,T ],
b(0)Dλµt(0) =

∫
R+ a(x)dµt(x) [0,T ].

we have formula de�ning solution (SEMIGROUP PROPERTY):∫
R+

ξ(x)dµt(x) =

∫
R+

ϕξ,t(x , 0)dµ0(x) for all ξ ∈W 1,∞ ∩ C 1(R+),

where function ϕξ,t(x , s) satis�es (IMPLICIT EQUATION):

ϕξ,t(x , s) =ξ(Xb(t − s, x))e
∫ t−s
0

c(Xb(u,x))du

+

∫ t−s

0

a(Xb(u, x))ϕξ,t(0, u + s)e
∫ u
0
c(Xb(v ,x))dvdu

and Xb(s, x) solves ODE d
dsXb(s, x) = b(Xb(s, x)) with initial

condition Xb(0) = x .
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Proof of di�erentiability in linear case is easy

We want to prove that
µh+∆h
t −µht

∆h is a Cauchy sequence in Z

so we start with small ∆h1 and ∆h2:

∣∣∣∣∣
∣∣∣∣∣µh+∆h1

t − µht
∆h1

− µh+∆h2
t − µht

∆h2

∣∣∣∣∣
∣∣∣∣∣
Z

=

sup
‖ξ‖C1+α≤1

∫
R+

ξ

(
dµh+∆h1

t − dµht
∆h1

− dµh+∆h2
t − dµht

∆h2

)
.

= sup
‖ξ‖C1+α≤1

∫
R+

(
ϕh+∆h1
ξ,t (x , 0)− ϕh

ξ,t(x , 0)

∆h1

−
ϕh+∆h2
ξ,t (x , 0)− ϕh

ξ,t(x , 0)

∆h2

)
dµ0.
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Proof of di�erentiability in linear case is easy

We want to make this quantity small:

= sup
‖ξ‖C1+α≤1

∫
R+

(
ϕh+∆h1
ξ,t (x , 0)− ϕh

ξ,t(x , 0)

∆h1

−
ϕh+∆h2
ξ,t (x , 0)− ϕh

ξ,t(x , 0)

∆h2

)
dµ0.

For any f with Hölder continuous derivative on the domain of
de�nition, one has:

f (y) = f (x)+f ′(x)(x−y)+

∫ 1

0

d

dt
f (ty + (1− t)x)dt − f ′(x)(x − y)︸ ︷︷ ︸

≤C |x−y |1+α

.

Conclusion: we need h 7→ ϕh
ξ,t to have Hölder continuous

derivative.
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Proof of di�erentiability in linear case

Recall ϕh
ξ,t solves:

ϕh
ξ,t(x , s) = ξ(Xbh(t − s, x))e

∫ t−s
0

ch(X
bh

(u,x))du

+

∫ t−s

0

ah(Xbh(u, x))ϕξ,t(0, u + s)e
∫ u
0
ch(X

bh
(v ,x))dvdu

where f h denotes perturbed model function.

Use Implicit Function Theorem in Banach spaces to have
di�erentiability of h 7→ ϕh

ξ,t .

Di�erentiate implicit formula to obtain Hölder continuity of
derivative.
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derivative.
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We have proven:

Theorem

We assume:

(A1) a0, ap, b
0, bp, c

0, cp ∈ C 1,α(R+),

(A2) ah = a0 + aph ≥ 0 for any h ∈ [−1
2
, 1
2

],

(A3) bh(0) = b0(0) + bp(0)h > 0 for any h ∈ [−1
2
, 1
2

].

Consider measure solutions µht to SPM with

a(x) := ah(x) = a0(x) + hap(x), b(x) := bh(x) = b0(x) + hbp(x),
c(x) := ch(x) = c0(x) + hcp(x) and h ∈ [−1

2
, 1
2

]. Then, mapping

h 7→ µht is Fréchet di�erentiable in C ([0,T ],Z ) where

Z =M(R+)
(C1+α)∗

. Moreover, Fréchet derivative H 7→ ∂
∂hµ

h
t |h=H

is Hölder continuous with exponent α.
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Approximation of nonlinear equation

Fix k ∈ N.

Divide interval [0,T ] for 2k subintervals.

For t ∈ [m T
2k
, (m + 1) T

2k
], approximation µh,kt is de�ned

inductively as solution to linear equation:
∂tµt + ∂x(b(x , µm T

2k
)µt) = c(x , µm T

2k
)µt ,

b(0, µm T

2k
)Dλµt(0) =

∫
R+ a(x , µm T

2k
)dµt(x),

µm T

2k
= µm T

2k

It was shown that pF (µt , µ
k
t )→ 0 as k →∞ 3. Hence

‖µt − µkt ‖Z → 0 as k →∞.

3P. Gwiazda and A. Marciniak-Czochra. Structured population equations in
metric spaces. Journal of Hyperbolic Di�erential Equations, 7(4):733�773,
2010.
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General strategy

We are interested in

lim
∆h→0

µh+∆h
t − µht

∆h
= lim

∆h→0
lim
k→∞

µh+∆h,k
t − µh,kt

∆h

.

Theorem

Let fk → f uniformly on a set E in some metric space (X , d). Let
x be a limit point of E and suppose that limt→x fk(t) = Ak . Then,

Ak converges and limt→x f (t) = limk→∞ Ak . In particular,

lim
t→x

lim
n→∞

fk(t) = lim
n→∞

lim
t→x

fk(t).

Take E = [−1
2
, 1
2

] \ {0} and prove that sequence
µh+∆h,k
t −µh,kt

∆h :

converges as ∆h→ 0 (di�erentiability of approximating
sequence).

converges uniformly for all ∆h ∈ E as k →∞,
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Di�erentiability of approximating sequence - k �xed

In the �rst interval [0, T
2k

] equation looks like:
∂tµt + ∂x(bh(x , µ0)µt) = ch(x , µ0)µt ,
bh(0, µ0)Dλµt(0) =

∫
R+ ah(x , µ0)dµt(x),

µ0 = µ0

=⇒ di�erentiability by linear Theorem.

For next intervals of the form [m T
2k
, (m + 1) T

2k
] we have:

∂tµt + ∂x(bh(x , µh,k
m T

2k

)µt) = ch(x , µh,k
m T

2k

)µt ,

bh(0, µh,k
m T

2k

)Dλµt(0) =
∫
R+ ah(x , µh,k

m T

2k

)dµt(x),

µm T

2k
= µh,k

m T

2k

PROBLEM: Perturbation appears in three di�erent places:
initial condition and
ah(x , µh,k

m T

2k

) = a0(x , µh,k
m T

2k

) + hap(x , µh,k
m T

2k

)
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How to handle additional perturbation in nonlinearity?

Upgrade linear Theorem:

a(x) + hap(x)→ a(h, x)

Theorem

Assume

(B1) Assumptions (A2) � (A3) holds for functions a, b

(B2) Functions a(h, x), b(h, x) and c(h, x) are

C 1,α([−1
2
, 1
2

]× R+) in both variables (with uniform

constants in second variables).

Consider measure solution µht of SPM with a(x) := a(h, x),
b(x) = b(h, x), c(x) = c(h, x) and h ∈ [−1

2
, 1
2

]. Then, mapping

h 7→ µht is Fréchet di�erentiable in C ([0,T ],Z ) where

Z =M(R+)
(C1+α)∗

. Moreover, Fréchet derivative H 7→ ∂
∂hµ

h
t |h=H

is Hölder continuous.

Take a(h, x) = ah(x , µh,k
m T

2k

) = a0(x , µh,k
m T

2k

) + hap(x , µh,k
m T

2k

)
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How to get C 1+α regularity in h 7→ f (x , µh)?

We propagate di�erentiability from m-th interval to (m + 1)-th:

For t ∈ [0, T
2k

], µh,kt is given by{
∂tµt + ∂x(bh(x , µ0)µt) = ch(x , µ0)µt ,
bh(0, µ0)Dλµt(0) =

∫
R+ ah(x , µ0)dµt(x)

=⇒ h 7→ µh,kT
2k

∈ C 1+α =⇒ h 7→ f (x , µh,kT
2k

) ∈ C 1+α

For t ∈ [ T
2k
, 2 T

2k
] : ∂tµt + ∂x(bh(x , µh,kT

2k

)µt) = ch(x , µh,kT
2k

)µt ,

bh(0, µh,kT
2k

)Dλµt(0) =
∫
R+ ah(x , µh,kT

2k

)dµt(x)

so we can use upgraded linear Theorem.
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Di�erentiability of approximations - �nal proof

We split desired term:

µh+∆h,k
t − µh,kt

∆h
=
µh+∆h,k
t − µ̄h+∆h,k

t

∆h︸ ︷︷ ︸
:=A

+
µ̄h+∆h,k
t − µh,kt

∆h︸ ︷︷ ︸
:=B

where µ̄h+∆h,k
t evolves with:

perturbed �ow � nonlinearities f (x , µh+∆h,k
t∗ ),

unperturbed initial condition � µh+∆h,k
t∗ .

Therefore, B converges due to upgraded linear theory (with general
perturbation)

For A use semigroup property and induction hypothesis.
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perturbation)

For A use semigroup property and induction hypothesis.
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General strategy RECALL

We are interested in

lim
∆h→0

µh+∆h
t − µht

∆h
= lim

∆h→0
lim
k→∞

µh+∆h,k
t − µh,kt

∆h

.

Theorem

Let fk → f uniformly on a set E in some metric space (X , d). Let
x be a limit point of E and suppose that limt→x fk(t) = Ak . Then,

Ak converges and limt→x f (t) = limk→∞ Ak . In particular,

lim
t→x

lim
n→∞

fk(t) = lim
n→∞

lim
t→x

fk(t).

Take E = [−1
2
, 1
2

] \ {0} and prove that sequence
µh+∆h,k
t −µh,kt

∆h :

DONE!!! converges as ∆h→ 0 (di�erentiability of
approximating sequence).

converges uniformly for all ∆h ∈ E as k →∞,
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Proof of uniform convergence

It is su�cient to obtain estimate:

∆k,t := sup
∆h∈(− 1

2
, 1
2

)

∣∣∣∣∣
∣∣∣∣∣µh+∆h,k+1

t − µh,k+1
t

∆h
−µ

h+∆h,k
t − µh,kt

∆h

∣∣∣∣∣
∣∣∣∣∣
Z

≤ C2−kβ.

Triangle inequalities cannot be used directly (we have to capture
two e�ects simultaneously: k →∞ and ∆h→ 0. We can start by
writing de�nition

∆k,t =

∫
R+

ξ

(
dµh+∆h,k+1

t − dµh,k+1
t

∆h
− dµh+∆h,k

t − dµh,kt

∆h

)
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RECALL: Linear case

For linear case:{
∂tµt + ∂x(b(x)µt) = c(x)µt R+ × [0,T ],
b(0)Dλµt(0) =

∫
R+ a(x)dµt(x) [0,T ].

we have formula de�ning solution (SEMIGROUP PROPERTY):∫
R+

ξ(x)dµt(x) =

∫
R+

ϕξ,t(x , 0)dµ0(x) for all ξ ∈W 1,∞ ∩ C 1(R+),

where function ϕξ,t(x , s) satis�es (IMPLICIT EQUATION):

ϕξ,t(x , s) =ξ(Xb(t − s, x))e
∫ t−s
0

c(Xb(u,x))du

+

∫ t−s

0

a(Xb(u, x))ϕξ,t(0, u + s)e
∫ u
0
c(Xb(v ,x))dvdu

and Xb(s, x) solves ODE d
dsXb(s, x) = b(Xb(s, x)) with initial

condition Xb(0) = x .
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Proof of uniform convergence

We can apply semigroup property (I skip taking supremum over
∆h ∈ (−1

2
, 1
2

) and ξ ∈ C 1+α such that ‖ξ‖ ≤ 1):

∆k,t =

∣∣∣∣∣
∣∣∣∣∣µh+∆h,k+1

t − µh,k+1
t

∆h
− µh+∆h,k

t − µh,kt

∆h

∣∣∣∣∣
∣∣∣∣∣
Z

=

=

∫
R+

ξ

(
dµh+∆h,k+1

t − dµh,k+1
t

∆h
− dµh+∆h,k

t − dµh,kt

∆h

)
=

=

∫
R+

ϕh+∆h,k+1
ξ (x , 0)dµh+∆h,k+1

t∗ (x)− ϕh,k+1
ξ (x , 0)dµh,k+1

t∗ (x)

∆h

−
ϕh+∆h,k
ξ (x , T

2k+1 )dµh+∆h,k
t∗ (x)− ϕh,k

ξ (x , T
2k+1 )dµh,kt∗ (x)

∆h

Crucial observation:
µh,k0 = µh+∆h,k

0 = µh,k+1
0 = µh+∆h,k+1

0 = µ0
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Proof of uniform convergence

We can apply semigroup property until we arrive at time t = 0.

∫
R+

ξ(x)dµh,k
m T

2k

(x) =

∫
R+

ϕh
ξ,t(x , 0)dµh,k

(m−1) T

2k

(x) =

=

∫
R+

ϕh
ϕh
ξ,t ,t

(x , 0)dµh,k
(m−2) T

2k

(x) = ... =

∫
R+

ϕ̄h
ξ,tdµ0(x)

∆k,t =

∫
R+

ϕ̄h+∆h,k+1
ξ,t (x , 0)− ϕ̄h,k+1

ξ,t (x , 0)

∆h

−
ϕ̄h+∆h,k
ξ,t (x , 0)− ϕ̄h,k

ξ,t (x , 0)

∆h
dµ0(x) =

=

∫
R+

∫ 1

0

( ∂

∂H
ϕ̄H,k+1
ξ,t

∣∣∣
H=h+u∆h

− ∂

∂H
ϕH,k
ξ,t

∣∣∣
H=h+u∆h

)
du dµ0(x)

=⇒ ∆k,t ≤ C2(1−2α)k =⇒ di�erentiability result for α > 1
2
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