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Structured population models

atﬂt + 8X(b(x7 :UJt):ut) = C(X7 :ut):ut R* x [07 T]a
b(0, 1) Dap(0) = Jg+ alx, pe)dpe(x) [0, T],
Lo =v RT.

a - offspring productivity
b - how fast individuals changes their state

¢ - survival chances, death rate

Dy /+(0) - Radon-Nikodym derivative of 1; wrt Lebesgue
measure at 0
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Measure solutions to SPM

o Motivations:
o Generalization: some distributions do not have density
e Asymptotics: some stationary distributions may not have
density
o Numerics: analysis of approximations by Dirac masses
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Measure solutions to SPM

@ Motivations:

o Generalization: some distributions do not have density

e Asymptotics: some stationary distributions may not have
density

o Numerics: analysis of approximations by Dirac masses

@ Measure solutions: distributional solution in space of bounded
nonnegative Radon measures.

@ Natural metric to use is Wasserstein distance:

Wi (1, v) = sup [l v),
f is Lipschitz, | Df||co<1 JR*
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Measure solutions to SPM

o Motivations:
o Generalization: some distributions do not have density
e Asymptotics: some stationary distributions may not have
density
o Numerics: analysis of approximations by Dirac masses

@ Measure solutions: distributional solution in space of bounded
nonnegative Radon measures.

@ Natural metric to use is Wasserstein distance:

Wi (1, v) = sup [l v),
f is Lipschitz, | Df||co<1 JR*

however it is useless for not conservative problems:

Orpue + Ox(b(x, pue)pue) = c(x, pue) e
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Measure solutions: narrowly continuous, distributional solution in
space of bounded nonnegative Radon measures equipped with flat
metric:

pe(,v) = sup / fd(p —v),
fervOO,HfHWLoogl R+

In this setting the problem is well - posed (existence, uniqueness,
stability, )1

1P, Gwiazda, T. Lorenz, and A. Marciniak-Czochra. A nonlinear structured
population model: Lipschitz continuity of measure-valued solutions with respect
to model ingredients. J. Differential Equations, 248(11):2703 - 2735, 2010.

Jakub Skrzeczkowski Measure solutions to perturbed SPM



Differentiability problem

@ Recall equation:

{ Oetir + Ox(b(x, pre)pue) = c(x, foe) pie R x [0, T,
b0, 1) Dagae(0) = fis a6, pe)dpe(x) [0, TI.
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Differentiability problem

@ Recall equation:

{ Oepue + Ox(b(x, pe)pe) = c(x, pue) e R x [0, T,
b0, 1) Dagae(0) = fis a6, pe)dpe(x) [0, TI.

o Take as model functions a, b and ¢ perturbed versions of the
form

fh(Xa M) = fO(Xa M) + hfP(qu)

= F° (X7 /000 K,m(x,y)du(y)) +hFp <X, /000 KFP(X,y)d,u(y)>.

while initial condition is still the same. Denote solution to this
problem with zf.
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e Is map h > pul differentiable and in what sense?
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Differentiability problem

@ Recall equation:

{ Oepue + Ox(b(x, pe)pe) = c(x, pue) e R x [0, T,
b0, 1) Dagae(0) = fis a6, pe)dpe(x) [0, TI.

o Take as model functions a, b and ¢ perturbed versions of the
form

fh(Xa M) = fO(Xa M) + hfP(qu)

= F° (X7 /000 K,m(x,y)du(y)) +hFp <X, /000 KFP(X,y)d,u(y)>.

while initial condition is still the same. Denote solution to this
problem with zf.

e Is map h > pul differentiable and in what sense?

o Motivated, for instance, by study of optimal control of
phenomena described by SPM
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Counterexample

Such results cannot be expected in flat metric setting.

2P, Gwiazda, S. C. Hille, K. tyczek, and A. Swierczewska-Gwiazda.
Differentiability in perturbation parameter of measure solutions to perturbed
transport equation, 2018.
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Counterexample

Such results cannot be expected in flat metric setting.
Indeed, Kamila discussed yesterday 1D transport equation:

Oeptl + Ox(L+ Mpf) =0 pf = bo. (1)

h_,0 . . .
Here, sequence “*t is not convergent with respect to flat metric.

2P, Gwiazda, S. C. Hille, K. tyczek, and A. Swierczewska-Gwiazda.
Differentiability in perturbation parameter of measure solutions to perturbed
transport equation, 2018.
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Such results cannot be expected in flat metric setting.
Indeed, Kamila discussed yesterday 1D transport equation:

Oeptl + Ox(L+ Mpf) =0 pf = bo. (1)

Here, sequence “?;h“? is not convergent with respect to flat metric.
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Counterexample

Such results cannot be expected in flat metric setting.
Indeed, Kamila discussed yesterday 1D transport equation:

Oeptl + Ox(L+ Mpf) =0 pf = bo. (1)

h_,0 | . .
Here, sequence “*t is not convergent with respect to flat metric.
This motivates considering a space with linear structure and test

functions a little bit more regular than C}.
T (CTRY) -

Take Z = M(R™) . Z is a complete, separable space

and Z* is isomorphic to C1T 2. This space was successfully used

for similar problems in the case of transport equation.

lullz = sup Edp
1€l c1pa <1 JRE

2P, Gwiazda, S. C. Hille, K. tyczek, and A. Swierczewska-Gwiazda.
Differentiability in perturbation parameter of measure solutions to perturbed
transport equation, 2018.
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Linear case

For linear case:

{ Oepre + Ox(b(xX)pe) = c(x ),U R* x [0, T],
b(O)DANt(O) = fR+ alx dﬂt ) [07 T]

Jakub Skrzeczkowski Measure solutions to perturbed SPM



Linear case

For linear case:

{ Oepre + Ox(b(xX)pe) = c(x ),U R* x [0, T],
b(O)DANt(O) = fR+ alx dﬂt ) [07 T]

we have formula defining solution (SEMIGROUP PROPERTY):

/ E(x)dpe(x) =/ pe.i(x,0)duo(x)  forall € € WH™n CH(RY),
R+ R+
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Linear case

For linear case:

{ Oepre + Ox(b(xX)pe) = c(x ),U R* x [0, T],
b(O)DANt(O) = fR+ alx dﬂt ) [07 T]

we have formula defining solution (SEMIGROUP PROPERTY):

/ E(x)dpe(x) =/ pe.i(x,0)duo(x)  forall € € WH™n CH(RY),
R+ R+

where function ¢ ¢(x, s) satisfies (IMPLICIT EQUATION):

o t(x,5) =E(Xp(t — S’X))efo*‘s c(Xp(u,x))du

t—s
+ / a(Xp(u, X))pe £ (0, u + s)elo CXolv)dv g,
0
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Linear case

For linear case:

{ Oepre + Ox(b(xX)pe) = c(x ),U R* x [0, T],
b(O)DANt(O) = fR+ alx dﬂt ) [07 T]

we have formula defining solution (SEMIGROUP PROPERTY):

/ E(x)dpe(x) =/ pe.i(x,0)duo(x)  forall € € WH™n CH(RY),
R+ R+

where function ¢ ¢(x, s) satisfies (IMPLICIT EQUATION):

o t(x,5) =E(Xp(t — S’X))efo*‘s c(Xp(u,x))du

t—s
+ / a(Xp(u, X))pe £ (0, u + s)elo CXolv)dv g,
0

and Xp(s, x) solves ODE 4 X,(s, x) = b(Xp(s,x)) with initial
condition Xp(0) = x.



Proof of differentiability in linear case is easy

W hat “22"=1l o o Cauch in 7
e want to prove that N Is a Cauchy sequence In
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so we start with small Ah; and Ahy:
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Proof of differentiability in linear case is easy

W hat “22"=1l o o Cauch in 7
e want to prove that N Is a Cauchy sequence In

so we start with small Ah; and Ahy:

pe Attt
Ahy Ahy ,
h+Ah h+Ah
/ dpd ™" —dpg T — dd
sup & — .
€]l c1+a <1 JRF A Ahy

Jakub Skrzeczkowski Measure solutions to perturbed SPM



Proof of differentiability in linear case is easy

W hat “22"=1l o o Cauch in 7
e want to prove that N Is a Cauchy sequence In

so we start with small Ah; and Ahy:

pe Attt
Ahy Ahy ,
h+Ah h+Ah
/ dpd ™" —dpg T — dd
sup & — .
€]l c1+a <1 JRF A Ahy

= sup
HE”CIJraS]-

/ (ngﬁ;Ahl()g 0) - (pgt(xao)
- A

h+Ah
e (60) — g (0
Ahy Ko
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Proof of differentiability in linear case is easy

We want to make this quantity small:

h+Ah

/ («pg,t 1(x,0) — @f ,(x,0)

= sup
1€l crra<t SR Ah

h+Ah
e 060 e (60
Ahy Ko
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Proof of differentiability in linear case is easy

We want to make this quantity small:

h+Ah
/ @g; 1(X7 0) - (pg7t(x7 0)
R+

TP Ahy

H£”C1+a <1

h+Ah
e 060 e (60
Ahy Ho-

For any f with Holder continuous derivative on the domain of
definition, one has:

g
fly) = f(x)—H”(x)(x—y)—i—/0 Ef(ty +(1—t)x)dt — f'(x)(x — y).

<Clx—y|tte
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Proof of differentiability in linear case is easy

We want to make this quantity small:

h+Ah
/ Cee T (x,0) = ¢f (x,0)
R+

TP Ahy

H£”C1+a <1

h+Ah
e 060 e (60
Ahy Ho-

For any f with Holder continuous derivative on the domain of
definition, one has:

g
fly) = f(x)—H”(x)(x—y)—i—/0 af(ty +(1—t)x)dt — f'(x)(x — y).

<Clx—y|tte

Conclusion: we need h — apgt to have Holder continuous
derivative.
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Proof of differentiability in linear case

o Recall gogt solves:

gpgl_(x7 5) = g(th(t — s, X))efot_s Ch(th(U,X))du

t—s
+/ (th(u X))sOg f(O U+S)ef0 bh VX))dVdu
0

where 5 denotes perturbed model function.
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o Recall gogt solves:

gpgl_(x7 5) = g(th(t — s, X))efot_s Ch(th(U,X))du

t—s
+/ (th(u X))sﬂg f(O U+S)ef0 bh VX))dVdu
0

where 5 denotes perturbed model function.

@ Use Implicit Function Theorem in Banach spaces to have
differentiability of h — cpg -
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Proof of differentiability in linear case

o Recall gogt solves:

gpgl_(x7 5) = g(th(t — s, X))efot_s Ch(th(U,X))du

t—s
+/ (th(u X))sﬂg f(O U+S)ef0 bh VX))dVdu
0

where 5 denotes perturbed model function.

@ Use Implicit Function Theorem in Banach spaces to have
differentiability of h — cpg -

o Differentiate implicit formula to obtain Hélder continuity of
derivative.
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We have proven:

Theorem
We assume:

(A1) a% ap, B°, by, 0, c, € CLH(RT),

(A2) ah = 2%+ aph > 0 for any h € [-3, 1],

(A3) b"(0) = b°(0) + bp(0)h > 0 for any h € [-3,3
Consider measure solutions uf! to SPM with
a(x) := a(x) = a%(x) + hap(x), b(x) := b'(x) = bO(x) + hb,(x),
c(x) := c(x) = ®(x) + hep(x) and h € [-3, 5]. Then, mapping
h s ul is Fréchet differentiable in C([0, T], Z) where
2 = M(R+)(C1+a)*. Moreover, Fréchet derivative H — 21|,y
is Hélder continuous with exponent c.
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Approximation of nonlinear equation

o Fix k e N.

3P. Gwiazda and A. Marciniak-Czochra. Structured population equations in
metric spaces. Journal of Hyperbolic Differential Equations, 7(4):733-773,
2010.
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Approximation of nonlinear equation

o Fix k e N.

o Divide interval [0, T] for 2% subintervals.

3P. Gwiazda and A. Marciniak-Czochra. Structured population equations in
metric spaces. Journal of Hyperbolic Differential Equations, 7(4):733-773,
2010.
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Approximation of nonlinear equation

e Fix k e N.
o Divide interval [0, T] for 2% subintervals.
e Forte [m2k, (m+ 1)2%] approximation ¥ is defined
inductively as solution to linear equation:
Oepue + Ox(b(x, 11, % Jue) = C(X>/1mlk)ﬂt>
2
b(o o, )Dwt(O) = Jar 30x 11 1)),

3P. Gwiazda and A. Marciniak-Czochra. Structured population equations in
metric spaces. Journal of Hyperbolic Differential Equations, 7(4):733-773,
2010.
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Approximation of nonlinear equation

e Fix k e N.
o Divide interval [0, T] for 2% subintervals.
e Forte [m2k, (m+ 1)2%] approximation ¥ is defined
inductively as solution to linear equation:
Oepue + Ox(b(x, 11, % Jue) = C(X>/1mlk)ﬂt>
2
b(o o, )Dwt(O) = Jar 30x 11 1)),

o It was shown that pg (s, 1¥) — 0 as k — co 3. Hence
e — k]| z — 0 as k — oc.

3P. Gwiazda and A. Marciniak-Czochra. Structured population equations in
metric spaces. Journal of Hyperbolic Differential Equations, 7(4):733-773,
2010.
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General strategy

We are interested in
h+Ah h h+Ah k h,k
lim Kt T He oy im Kt el
Ah—0 Ah Ah—0 k—oo Ah
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General strategy

We are interested in

h+Ah h h+Ah,k h,k
lim Kt T He oy im Kt el
Ah—0 Ah Ah—0 k—oo Ah

Theorem

Let fx — f uniformly on a set E in some metric space (X, d). Let
x be a limit point of E and suppose that lim¢_, fi(t) = Ax. Then,
Ay converges and lim;_,, f(t) = limy_,o0 Ak. In particular,

lim lim fi(t) = lim lim f(t).
t—Xx n—o0 n—oo t—x
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h+Ah h h+Ah,k h,k
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Theorem

Let fx — f uniformly on a set E in some metric space (X, d). Let
x be a limit point of E and suppose that lim¢_, fi(t) = Ax. Then,
Ay converges and lim;_,, f(t) = limy_,o0 Ak. In particular,

lim lim fi(t) = lim lim f(t).
t—Xx n—o0 n—oo t—x

- h+Ahk bk
Take £ = [—3, 3]\ {0} and prove that sequence f—z7-F—:
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h+Ah h h+Ah,k h,k
lim Kt T He oy im Kt el
Ah—0 Ah Ah—0 k—oo Ah

Theorem

Let fx — f uniformly on a set E in some metric space (X, d). Let
x be a limit point of E and suppose that lim¢_, fi(t) = Ax. Then,
Ay converges and lim;_,, f(t) = limy_,o0 Ak. In particular,

lim lim fi(t) = lim lim f(t).
t—Xx n—o0 n—oo t—x

- h+Ahk bk
Take £ = [—3, 3]\ {0} and prove that sequence f—z7-F—:

e converges as Ah — 0 (differentiability of approximating
sequence).
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General strategy

We are interested in

h+Ah h h+Ah,k h,k
lim Kt T He oy im Kt el
Ah—0 Ah Ah—0 k—oo Ah

Theorem

Let fx — f uniformly on a set E in some metric space (X, d). Let
x be a limit point of E and suppose that lim¢_, fi(t) = Ax. Then,
Ay converges and lim;_,, f(t) = limy_,o0 Ak. In particular,

lim lim fi(t) = lim lim f(t).
t—Xx n—o0 n—oo t—x

- h+Ahk bk
Take £ = [—3, 3]\ {0} and prove that sequence f—z7-F—:

e converges as Ah — 0 (differentiability of approximating
sequence).

e converges uniformly for all Ah € E as k — oo,
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Differentiability of approximating sequence - k fixed

@ In the first interval [0, 2Ik] equation looks like:

i + Ox (B (x, o) pe) - = €"(x, o) e,
b"(0, 110) Dasu¢(0) = Jrr a"(x, o) dpe(x),
Mo = Ko

— differentiability by linear Theorem.
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Differentiability of approximating sequence - k fixed

@ In the first interval [0, 2Ik] equation looks like:

i + Ox (B (x, o) pe) - = €"(x, o) e,
b"(0, 110) Dasu¢(0) = Jrr a"(x, o) dpe(x),
Mo = Ko

— differentiability by linear Theorem.
@ For next intervals of the form [mzlk, (m+ 1)2Ik] we have:

3tﬂt+3(b"(xu D) = el

2 2
b(0, 1, ) Dayae(0) = Jpr @, 1" Y dpue(x),
oy ok
BT =/ 1
2k mak
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Differentiability of approximating sequence - k fixed

@ In the first interval [0, 2Ik] equation looks like:

i + Ox (B (x, o) pe) - = €"(x, o) e,
b"(0, 110) Dasu¢(0) = Jrr a"(x, o) dpe(x),
Mo = Ko

— differentiability by linear Theorem.
@ For next intervals of the form [mzlk, (m+ 1)2Ik] we have:

3tﬂt+3(b"(xu D) = el

2 2
b(0, 1, ) Dayae(0) = Jpr @, 1" Y dpue(x),
oy ok
BT =/ 1
2k mak

e PROBLEM: Perturbation appears in three different places:
initial condition and

a”(X,u:;klk) 2 (x, )+ hap(x, 111" )
2
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How to handle additional perturbation in nonlinearity?

Upgrade linear Theorem:
a(x) + hap(x) — a(h, x)
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How to handle additional perturbation in nonlinearity?

Upgrade linear Theorem:
a(x) + hap(x) — a(h, x)

Theorem
Assume
(B1) Assumptions (A2) — (A3) holds for functions a, b
(B2) Functions a(h, x), b(h,x) and c(h, x) are
C2([~3,3] x R*) in both variables (with uniform
constants in second variables).
Consider measure solution ' of SPM with a(x) := a(h, x),
b(x) = b(h, x), c(x) = c(h,x) and h € [-3,3]. Then, mapping
h s pl is Fréchet differentiable in C([0, T], Z) where
Z = M@EH
is Holder continuous.

. Moreover, Fréchet derivative H — %,uﬂh:H
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How to handle additional perturbation in nonlinearity?

Upgrade linear Theorem:
a(x) + hap(x) — a(h, x)

Theorem
Assume
(B1) Assumptions (A2) — (A3) holds for functions a, b
(B2) Functions a(h, x), b(h,x) and c(h, x) are
C2([~3,3] x R*) in both variables (with uniform
constants in second variables).

Consider measure solution ' of SPM with a(x) := a(h, x),
b(x) = b(h, x), c(x) = c(h,x) and h € [-3,3]. Then, mapping
h s ull is Fréchet differentiable in C([0, T], Z) where

(e .
7= M(R+)( 7 Moreover, Fréchet derivative H — %,uﬂh:H
is Holder continuous.
h,k h,k h,k
Take a(h, x) = a"(x, poT)= a%(x, o)+ hap(x, )
3 ok 3

2 2
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How to get C1*° regularity in h > f(x, u")?

We propagate differentiability from m-th interval to (m + 1)-th:

Jakub Skrzeczkowski Measure solutions to perturbed SPM



How to get C1*° regularity in h > f(x, u")?

We propagate differentiability from m-th interval to (m + 1)-th:
o For t € [0, L], u™* is given by

5%
{ Oepie + Ou(b"(x, po)pe) = "(x, puo)pue,
b"(0, 10) Dapa(0) = [+ a"(x, p10)dpe(x)

— he pf e Ot — b f(x, 1) e Cte

2k 2k
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How to get C1*° regularity in h > f(x, u")?

We propagate difFerentiabiIity from m-th interval to (m + 1)-th:
e For t €0, 2k] 1"k is given by

{ Oepie + Ou(b"(x, po)pe) = "(x, puo)pue,
b"(0, 10) Dapa(0) = [+ a"(x, p10)dpe(x)

— hes e e — b f(x, 1) e Clte
2k 2k

e Forte [2k,22Tk] :

Bt + Ox(b(x, M”l’kk)ur) = ch(x, T )ut,

2

b (0, /1 )Dwt( ) = Jps 2 (x, ,, )dut( )

so we can use upgraded linear Theorem.
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Differentiability of approximations - final proof

We split desired term:

h+Ah k hk h+Ahk  —htAhk  —htAhk hk
Mt+ —He ,Ut+ _:“'t+ +:“/t+ My
Ah Ah Ah

=A =B
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Differentiability of approximations - final proof

We split desired term:

h+Ahk bk h+Ahk  —h+Ahk  —htAhk _ hk
My T He M Mt + My My
Ah Ah Ah
=A =B
where ﬁ?+Ah"k evolves with:
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Differentiability of approximations - final proof

We split desired term:

h+Ohk  hk h+Ohk _ —h+Ahk  —htAhk bk
My T He M Mt + My My
Ah Ah Ah
=A =B
where ﬁ?+Ah"k evolves with:
. .. h+Ahk
e perturbed flow — nonlinearities f(x, p, ),
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Differentiability of approximations - final proof

We split desired term:

h+Ohk  hk h+Ohk _ —h+Ahk  —htAhk bk
My T He M Mt + My My
Ah Ah Ah
=A =B
where ﬁ?+Ah"k evolves with:
. .. h+Ahk
e perturbed flow — nonlinearities f(x, p, ),

@ unperturbed initial condition — p't’:rAh’k.
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Differentiability of approximations - final proof

We split desired term:

h+Ohk  hk h+Ohk _ —h+Ahk  —htAhk bk
My T He M Mt + My My
Ah Ah Ah
=A =B
where ﬁ?+Ah"k evolves with:
. .. h+Ahk
e perturbed flow — nonlinearities f(x, p, ),

@ unperturbed initial condition — p't’:rAh’k.

Therefore, B converges due to upgraded linear theory (with general
perturbation)
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Differentiability of approximations - final proof

We split desired term:

h+Ohk  hk h+Ohk _ —h+Ahk  —htAhk bk
My T He M Mt + My My
Ah Ah Ah
=A =B
where ﬁ?+Ah"k evolves with:
. .. h+Ahk
e perturbed flow — nonlinearities f(x, p, ),

@ unperturbed initial condition — p't’:rAh’k.

Therefore, B converges due to upgraded linear theory (with general
perturbation)

For A use semigroup property and induction hypothesis.
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General strategy

We are interested in

h+Ah h h+Ah,k h,k
lim Kt T He oy im Kt el
Ah—0 Ah Ah—0 k—oo Ah

Theorem

Let fx — f uniformly on a set E in some metric space (X, d). Let
x be a limit point of E and suppose that lim:_, fi(t) = Ax. Then,
Ay converges and limy_,, f(t) = limy_,o0 Ak. In particular,

lim lim fi(t) = lim lim f(t).
t—Xx n—00 n—oo t—x

- h+Ahk bk
Take £ = [—3, 3]\ {0} and prove that sequence f—z7=F—:

e DONE!!! converges as Ah — 0 (differentiability of
approximating sequence).

@ converges uniformly for all Ah € E as k — oo,
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Proof of uniform convergence

It is sufficient to obtain estimate:
h+Ah k+1 h,k+1 h+Ah,k h,k
Akt . Hi My _ Hye My < C2kB.

sup
Ahe(-1.1) Ah Ah z
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Proof of uniform convergence

It is sufficient to obtain estimate:
h+Ah k+1 h,k+1 h+Ah,k h,k
Akt . Hi My _ Hye My < C2kB.

sup
Ahe(-1.1) Ah Ah z

Triangle inequalities cannot be used directly (we have to capture
two effects simultaneously: kK — oo and Ah — 0.
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Proof of uniform convergence

It is sufficient to obtain estimate:

h+Ahk+1

hk+l  h+Ahk
1223 t

h,k
H My M
Ah Ah

ARt .= sup < C27KP,

Ahe(-1.1)

z

Triangle inequalities cannot be used directly (we have to capture
two effects simultaneously: k — oo and Ah — 0. We can start by
writing definition

h+Ah,k+1 hk+1 h+Ah,k hk
Akt — / g(dﬂtJr T —dpT _ dpg —dpuy )
R+

Ah Ah
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Linear case

For linear case:

{ Oepre + Ox(b(xX)pe) = c(x ),U R* x [0, T],
b(O)DANt(O) = fR+ alx dﬂt ) [07 T]

we have formula defining solution (SEMIGROUP PROPERTY):

[ €00dut) = [ el 0)dnalx) forall ¢ € Wi €l(),
R+ R+

where function ¢ ¢(x, s) satisfies (IMPLICIT EQUATION):

o t(x,5) =E(Xp(t — S’X))efo*‘s c(Xp(u,x))du

t—s
+ / a(Xp(u, X))pe £ (0, u + s)elo CXolv)dv g,
0

and Xp(s, x) solves ODE 4 X,(s, x) = b(Xp(s,x)) with initial
condition Xp(0) = x.



Proof of uniform convergence

We can apply semigroup property (I skip taking supremum over
Ahe (—1,1)and € € C1H such that [|¢]| < 1):
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Proof of uniform convergence

We can apply semigroup property (I skip taking supremum over
Ahe (—1,1)and € € C1H such that [|¢]| < 1):

h+Ah k+1 hk+1 h+Ah k h,k
122 — My g — M

Ah B Ah

Ak,t B ||

V4
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Proof of uniform convergence

We can apply semigroup property (I skip taking supremum over
Ahe (—1,1)and € € C1H such that [|¢]| < 1):

h+Ah k+1 hk+1 h+Ah k h,k
Akt — || Ht — M My — M _
Ah Ah
V4
h+Ah k+1 hk+1 h+Ah k h,k
:/ e dre T i R e
R+ Ah Ah
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Proof of uniform convergence

We can apply semigroup property (I skip taking supremum over
Ahe (—1,1)and € € C1H such that [|¢]| < 1):
h+Ah k+1 hk+1 h+Ah,k h,k
Ht+ - My i _ Nt+ — M
Ah Ah 5

h+Ah,k+1 h,k+1 h+Ah,k h,k
:/ e dre T i R e
R+ Ah Ah

Ak,t B ||

h,k+1(x)

¢ M, 0)dpae M () — o (x, 0)d g

_/ Pe
" e Ah

h+Ah,k h,k h,k
AR (e, Tl B () — o (, o )y (x)
Ah
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Proof of uniform convergence

We can apply semigroup property (I skip taking supremum over
Ahe (—1,1)and € € C1H such that [|¢]| < 1):

h+Ahk+1 hk+1 h+Ah,k h,k
Akt — || Ht — M My — M _
Ah Ah
Z
h+Ah k+1 hk+1 h+Ah,k h,k
:/ e dre T i R e
R+ Ah Ah
h+Ah,k+1 h+Ah,k+1 hk+1 hk+1
_/ @ng N (X’ O)dl'l’tj M (X) - @5 * (Xvo)dut* * (X)
g Ah
h-+Ah,k h-+Ah,k h,k h,k
_905+ (%, g ) e =7 (%) = @ (%, ) d e (%)
Ah
Crucial observation:
h,k h+Ah,k hk+1 h+Ah,k+1
Ho :No+ = Ko - :No+ * = Ko
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Proof of uniform convergence

We can apply semigroup property until we arrive at time t = 0.
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Proof of uniform convergence

We can apply semigroup property until we arrive at time t = 0.

/R+g(x)o/u:;ki(x)—/]R e (x, O)du 1)T(X):
:/]R+ e O)d,u( 2)T(x)z...z/]R+ ¢ +dpio(x)
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Proof of uniform convergence

We can apply semigroup property until we arrive at time t = 0.

| etant (0= [ ehx 0l 1 () =
R+ max R+ (m )2k

_ h h,k _ _ -h
= /R+ %Q’tvt(&O)du(m_z)%(X) == /IR+ @¢ ¢dpio(x)

¢h+Ah,k+1(X7 0) _h,k+1(X7 0)

¥
Ak,t — £1t gﬂt
/R+ Ah
—h+Ah,k —h,k
_ 805:; (X7 0) - 905,t (Xa 0) d (X) .
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Proof of uniform convergence

We can apply semigroup property until we arrive at time t = 0.

/ £(X)duf’,;kr(><)—/ Pl (x, O)du 1)T(X):
R+ 2k R+
_ h h,k _ _ -h
= /R+ %Q’tvt(&O)du(m_z)%(X) == /IR+ @¢ ¢dpio(x)

—h+Ahk+1 _hkil
Akvt _/ 805—; " ( ) Sog t+ (X 0)
 Jre Ah
—htAhk
Per b 0) - By 0, (x) =
Ah Ho =
0 Hk+1) 0 Hk
pr— Y , d d
/W/O <3H Y6t |phruan OH 76 H:h+uAh> u dyio(x)
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Proof of uniform convergence

We can apply semigroup property until we arrive at time t = 0.

/ £(X)duf’,;kr(><)—/ Pl (x, O)du 1)T(X):
R+ 2k R+
_ h h,k _ _ -h
= /R+ %Q’tvt(&O)du(m_z)%(X) == /IR+ @¢ ¢dpio(x)

_h+Dhk+1 _hk+1
e [ FIEARIE (¢ g) _ ghF1(x 0)
= Jar Ah
—h+Ahk
805:; (x,0) — Spgt(x O)d (x) =
3 Hk+1) 9 Hk
——, ] dud
/]R+/ OHTE  |ychiuan OHTER H:h+uAh> u djio(x)

_— Ak’t < C2(172a)k
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Proof of uniform convergence

We can apply semigroup property until we arrive at time t = 0.

/ £(X)duf’,;kr(><)—/ Pl (x, O)du 1)T(X):
R+ 2k R+
_ h h,k _ _ -h
= /R+ %Q’tvt(&O)du(m_z)%(X) == /IR+ @¢ ¢dpio(x)

_h+Ahk+1 _hkt1
Ak,t_/ P M, 0) = @ T (x,0)
~ Jre Ah
—h+Ahk hk
B, 0) - g (x,o)d o
Ah Ho =
3 Hk+1) 0 Hk
— a5 P 1 dud
/W/ oH Yo H=h+ulh (‘)ngfvt H:h+uAh> u dpo(x)

= ARt < 2007200k — (differentiability result for o > %

Jakub Skrzeczkowski Measure solutions to perturbed SPM



MEASURE SOLUTIONS TO PERTURBED STRUCTURED POPULATION MODELS —
DIFFERENTIABILITY WITH RESPECT TO PERTURBATION PARAMETER

JAKUB SKRZECZKOWSKI

Faculty of Mathematics, Informatics and Mechanics, University of Warsaw

Banacha 2, 02-097 Warsau

ABSTRACT. This paper s devoted to study messure soltions e 0 pertrbed nonlinear steuctured popls-
ion el wher 1 et e 1 contaoll th e of pertbation. We ke dercntaily of ap
o . e shoving Mt s e of el o b et i spac of o s
Racon measures M(R" ) cquipped with flat etri, we movo o slighly bigger spaces 7 = M

W prove that when > b, tuap h +5 i diferentiable in Z. Tho proof oxplits approsimation of
nonlncar problem eom [] s basd on eraton of mplict integral equations obtaned from sy of
Uncar cquaion. The Rt I otivatad by opimal coniolof phenosna goved by sich 75 of model:

CoNTENTS

[ Tseon p

¥ oo sl sl 3

T Measue Soitions o sractoral populaton o0l i
7

6
Rogulaly ofshiioos o 59 i espettc Pl et B s
3

ropertics of flow assosciated 1o model funciion

55 Appleation of thoory for (3.5) (s iruetured popultion w0t

I
L
B1_Tffect of perturbation i model Fmctions] I
2

[T Noulmear problo]

1. Rogrity of map s [, ") when s s different

Ve 7] 2

12 Stability estimates for sequence 27|
4.3 Differcutiability of map h " 20
T UwiTorm convorgencs of dferonce quotiats s proof o Thecrem (1] 3
5. Summary, discussion and future perspectives 10
Adknowlodgements] 12
[References’

turod population modeld 3

Appendix A. Fxtension of well-poscdness theory for s
[Appendix B. Technical computations from Section m
[Appendix C.Technical computations from Section [3.1) 51

-l address: jakub. skrzscakovsiciostutent .us.sdu.pL.

Jakub Skrzeczkowsk Measure solutions to perturbed SPM



MEASURE SOLUTIONS TO PERTURBED STRUCTURED POPULATION MODELS —
DIFFERENTIABILITY WITH RESPECT TO PERTURBATION PARAMETER

JAKUB SKRZECZKOWSKI

Paper “Measure solutions to
bt ot e, Dy of W perturbed structured population
‘T"fﬁfmfﬂ T\'”,‘?'"“u"/“:‘H'“::“y”»\”u""‘m‘"“\’f'”' mOdE|S - dlfFerentlablllty Wlth
Ho e 0 e respect to perturbation
parameter’ soon on arXiv.

Radon measures rpd i i, v s oy s
573 map oo i differentiablo in Z. Tho proof exploits appro
o 5 2nd 1o based an eration ofmplici iegral cquadions cbained rom s of
Tincar cquation. “The result s motivated by optimal control of phenomena governed by such type of modols.

CoNTENTS

[T Tntroduction]

2
2 Roview of usefal wsalis 3
T Measure sofutions to straciared populafion modsl 3
trmmsport oquat 5

car problen] 6

It respoct 1o porturlation parmmotor s

7 Troperties of flow assosciate to model Function | 1
/33 Application of theory for (3.5) to structured population 1aodcl] 15
3.1 Tfect of perturbation i model Fanctions s
T NouTwear problon] 20
ity o g 1> [ ) o o s st n 7) 2

12, Stability ostimatoo for soquence 27
15, Differentiability of wap -+ 47 3
1.1, Uniformn convergence of dffererice quotients and proof of Theorem[L1] 31
E 10
[Acknowledgements| 12
Meferences 1
- Grisasion of wellpogslis theoey 3
[Abpondix B Technical computations from Section 53 m
[Appendix C.—Technical computations from Section 3.1] 51

-l address: jakub. skrzscakovsiciostutent .us.sdu.pL.

Jakub Skrzeczkowski Measure solutions to perturbed SPM



MEASURE SOLUTIONS TO PERTURBED STRUCTURED POPULATION MODELS —
DIFFERENTIABILITY WITH RESPECT TO PERTURBATION PARAMETER

Paper “Measure solutions to
perturbed structured population
models — differentiability with
respect to perturbation
parameter’ soon on arXiv. Other

JAKUB SKRZECZKOWSKI

University of Warsaw

2 topics (not discussed):
o technical details,
i computations, ...
@ iteration inequalities for
solutions to implicit
i equations

Jakub Skrzeczkowski Measure solutions to perturbed SPM



Acknowledgements

o | would like to thank Piotr Gwiazda, for suggesting this topic
and a lot of valuable discussions.

Jakub Skrzeczkowski Measure solutions to perturbed SPM



Acknowledgements

o | would like to thank Piotr Gwiazda, for suggesting this topic
and a lot of valuable discussions.

@ | was supported by National Science Center, Poland (scho -
larship for MSc students, grant no. 2017/27/B/ST1/01569).

Jakub Skrzeczkowski Measure solutions to perturbed SPM



Acknowledgements

o | would like to thank Piotr Gwiazda, for suggesting this topic
and a lot of valuable discussions.

@ | was supported by National Science Center, Poland (scho -
larship for MSc students, grant no. 2017/27/B/ST1/01569).

@ Thank you for your attention!

Jakub Skrzeczkowski Measure solutions to perturbed SPM



