Problem Set C2.

Kuba Slemakeashi
(1)
(A) $u \in C^{2}(\Omega) \cap C \overline{(\Omega)}$ anot

$$
\begin{aligned}
& \int_{\|} \nabla u-\nabla \varphi=\int \varphi f \\
& -\int_{\|} \Delta u \cdot \varphi
\end{aligned}
$$

Moveover, $u=0$ on $\partial \Omega \Rightarrow u \in H_{0}^{1}(\Omega)$.
(B) $H^{\wedge}(\Omega)$ is equipped with horm:

$$
u \mapsto\left(\|u\|_{L^{2}}^{2}+\|D u\|_{L^{2}}^{2}\right)^{1 / 2}
$$

scalar product:

$$
(u, v)=\int u \cdot v+\int D u \cdot P v
$$

This is scolow preduct
(1) Lineority daar
(2) Conjugate symmetry - u.o issue, he Woule on \mathbb{R}.
(3) Positive definiteness $\quad \int u^{2}+\int D u^{2}=0$ $\Rightarrow u$ is 0.
$H_{0}^{1}(\Omega)={\overline{C_{0}^{\infty}(\Omega)}}^{H^{1}(\Omega)}$ is closed subspace of
BS So it is itself Banach space cent with the inhented inner product, it is Hillsertspace :).
Note: $O_{n} H_{0}^{1}(\Omega)$ we have equivalent norm $u \mapsto\|D u\|_{2}$ by Poincare inequality

$$
\|u\|_{2} \leqslant C(\Omega)\|D u\|_{2} .
$$

(c) We need to find constants

$$
\begin{aligned}
& |a(u, v)| \leqslant C_{1}\|u\|\|v\| F\|D x\|_{2} \\
& a(u, u) \geqslant c\|u\|^{2}
\end{aligned}
$$

The first one: $\left|\int D u \cdot D v\right| \leqslant C\|D u\|_{2}\|D v\|_{2}$ by Hölder.
The second is obvious as $a(u, w)=\|D u\|_{2}^{2}$.
(d) We need to find C sit.

$$
\left|\int_{\Omega} f \varphi\right| \leqslant C\|\varphi\|
$$

We have, by Holder, $\left|\int_{\sim} f \varepsilon\right| \leqslant\|f\|_{2}\|e\|_{2}$

$$
\underset{\uparrow}{\leqslant}\|f\|_{\infty}\|D C\|_{2} \text { norm on } H_{0}^{1}(\Omega)
$$

Poincare
tilde again
(e) Problem is equivalent isth $L-M$ which gives the unique solution in $\mathrm{H}_{6}^{1}(\Omega)$.
(f) This is usual approx. Argument as

$$
\begin{aligned}
& \quad H_{0}^{7}(\Omega)=\overline{C_{0}^{\infty}(\Omega)} H^{1} . \\
& 2,3 \Rightarrow \pi
\end{aligned}
$$

(4) If $u \in C^{2}(\Omega) \cap C^{1}(\bar{\Omega})$ and
(A)

$$
-\Delta u=f \text { in } \Omega, \quad \frac{\partial u}{\partial x}=0 \text { on } \partial \Omega
$$

we multiply eq. by $\zeta \in C^{\infty}(\bar{\Omega})$ to get

$$
\begin{aligned}
& -\int_{\Omega u \cdot \varphi=} \int_{1} f 6 \\
& \int \nabla u \cdot \nabla \varphi-\int_{\partial \Omega} \frac{\partial u}{\partial n} \cdot \varphi=0 \\
& \left.\Omega \nabla u \cdot \nabla\}=\int_{\imath} f\right\}
\end{aligned}
$$

Then, we consider seq. $\zeta_{m} \rightarrow \zeta,\left\{\varphi_{m}\right\} \subset C^{\infty}(\bar{\Omega})$

(B) If there is a wale solution then re take $b=1$ to get $\int_{\Omega} f=0$.
(C) Consider

$$
\mathcal{H}=\left\{u \in M^{n}(\Lambda): \int_{\Omega} u=0\right\} .
$$

\mathcal{L} is closed in $H^{n}(\Omega)$ as if $u_{n} \rightarrow 4$ in H^{1}, $\left\{u_{n}\right\} \subset H$ then $u_{n} \rightarrow u \operatorname{in} L^{2} \Rightarrow u_{n} \rightarrow a \operatorname{in} L^{n}$ and finally $\int_{\Omega} u_{n} \rightarrow \int_{\Omega} u$. But $\int_{\Omega} u_{n}=0$.

Therefore $\left(H,\|\cdot\|_{H^{1}}\right)$ is a Banach space and so, it is a Hilbert space. We claim that Lax-Milgram orsumptious lure satisfied in H .

Indeed, we tole $a(u, v)=\int_{\Omega} \nabla u \cdot \nabla v$

$$
l(v)=\int_{\Omega} f \cdot v
$$

and we only need to prove coercinity of 0 .
We have $a(u, u)=\int_{\Omega}\left(\left.\nabla u\right|^{2} \geqslant\left(\left\|u-(u)_{\Omega}\right\|^{2}\right.\right.$

$$
\begin{aligned}
& C\|u\|_{L^{2}}^{2} \leqslant a(u, u) \\
& C\|D u\|_{L^{2}}^{2}=C a(u, u)
\end{aligned} \Rightarrow \frac{C}{C+1}\|u\|_{H^{1}}^{2} \leqslant a(u, u) .
$$

(D) If u is a wale solution, then $u+1$ is doe a weak solution.
(5)

$$
\begin{aligned}
& \int \nabla u_{i} \nabla \phi=\int f_{1} \cdot \phi \quad \forall_{\phi \in H_{0}^{1}(\Omega)} \\
& -\int \nabla u_{2} \cdot \nabla \phi=\int f_{2} \phi \quad \forall_{\phi \in H_{0}^{1}(\Omega)} \\
& \int \nabla\left(u_{1}-u_{2}\right) \cdot \nabla \phi=\int \phi\left(f_{1}-f_{2}\right)
\end{aligned}
$$

Take $\phi=u_{1}-u_{2}$

$$
\begin{aligned}
& \int\left|\nabla\left(u_{1}-u_{2}\right)\right|^{2}=\int\left(f_{1}-f_{2}\right)\left(u_{1}-u_{2}\right) \\
& \left\|u_{1}-u_{2}\right\|_{H_{0}^{1}}^{2}
\end{aligned}
$$

Recall $a b \leqslant \frac{a^{2}}{2}+\frac{b^{2}}{2}$. Apply this with $\varepsilon a, \frac{b}{\varepsilon}$ $a b \leqslant \frac{\varepsilon^{2}}{2} a+\frac{b^{2}}{2 \varepsilon^{2}}$.

Then $\int\left(f_{1}-f_{2}\right)\left(u_{1}-u_{2}\right) \leqslant$

$$
\begin{aligned}
& \leqslant \frac{1}{2 \varepsilon^{2}}\left\|f_{1}-f_{2}\right\|_{L^{2}}^{2}+\frac{\varepsilon^{2}}{2}\left\|u_{1}-u_{2}\right\|_{L^{2}}^{2} \\
& \leqslant \frac{1}{2 \varepsilon^{2}}\left\|f_{n}-f_{2}\right\|_{L^{2}}^{2}+\frac{C \varepsilon^{2}}{2}\left\|D u_{1}-D u_{2}\right\|_{L^{2}}^{2}
\end{aligned}
$$

Choose ε so that $\frac{C \varepsilon^{2}}{2}<\frac{1}{2}$. Then

$$
\begin{equation*}
\frac{4}{2}\left\|D u_{1}-D u_{2}\right\|_{L^{2}}^{2} \leqslant \frac{1}{2 \varepsilon^{2}}\left\|f_{1}-f_{2}\right\|_{L^{2}}^{2} \tag{D.}
\end{equation*}
$$

(6) $H^{-1}(\Omega)=\left(H_{\theta}^{1}(\Omega)\right)^{*}$
(A) $f \in L^{2}(\Omega)$, then $\left.\varphi \mapsto \int f\right\} \in H^{-1}(\Omega)$ ludered,

$$
\mid \int f\left(\varphi \mid \leqslant\|f\|_{L^{2}}\|\varphi\|_{L^{2}} \leqslant\|f\|_{L^{2}}\|\varphi\|_{H^{1}(r)}\right.
$$

(B) $\quad W^{1, p}(\Omega)<L^{q}(\Omega) \quad \forall_{q}<p^{*}=\frac{p n}{n-p}$ In our case $p=2 \quad H^{1}(\Omega)<c L^{q} \quad \forall \quad q<\frac{2 m}{m-2}$. and $\|G\|_{L^{q}} \leqslant C\|\varphi\|_{H^{1}(\Omega)}$.

$$
\begin{aligned}
& \left|\int f \varphi\right| \leqslant\|f\|_{L^{\prime}}\|\varphi\|_{L^{\prime}} \leqslant \\
& \leqslant\left(\|f\|_{q^{\prime}}\|\varphi\|_{H^{\prime}(\Omega)}\right. \\
& q<\frac{2 m}{n-2} \Leftrightarrow \frac{1}{q}>\frac{n-2}{2 x} \Leftrightarrow 1-\frac{1}{q}>\frac{n-2}{2 m} \\
& \Leftrightarrow 1-\frac{n-2}{2 n}>\frac{1}{q^{\prime}} \Leftrightarrow \frac{2 x-n+2}{2 x}>\frac{1}{q^{\prime}} \Leftrightarrow \\
& \Leftrightarrow q^{\prime}>\frac{2 x}{n+2} \\
& n=3 \quad \frac{2 x}{n+2}=\frac{6}{5}<2
\end{aligned}
$$

as $n \rightarrow \infty \quad \frac{2 m}{n+2} \rightarrow 2$.
(c) If $f \in l^{2}(\Omega), \partial_{x_{i}} f$ extends to $H^{-1}(\Omega)$

First, $\partial_{x_{i}} f$ is well-defined for $\zeta \in C_{c}^{\infty}(\Omega)$:

$$
\begin{aligned}
\left.\mid \partial \partial_{x_{i}} f, \varphi\right)\left|=\left|\int_{\Omega} f \varphi_{x_{i}}\right|\right. & \leqslant\|f\|_{L^{2}}\left\|\varphi_{x_{i}}\right\|_{L^{2}} \\
& \leq\|f\|_{L^{2}}\|\varepsilon\|_{H_{b}^{\prime}(\Omega)} .
\end{aligned}
$$

As C_{c}^{∞} is dense in $H_{0}^{1}(\Omega)$
$\partial_{x_{i}}$ f has ce unique extension (with Cauchy sequences).
(D) This is straight formand as Lax-Milognan lemma is originally formulated for l in the dual space.

So we can solve eq. like $-\Delta u=\partial_{x_{i}} f$ where f is only $L^{2}(\Omega)$!

