
Introduction to PDEs (SS 20/21)

(special problems)

Compiled on 24/05/2021 at 3:37pm

Each problem has assigned number of points and deadline. The deadline may be extended (depend-

ing on number of submitted solutions). Please submit the solutions using Moodle.

If not stated otherwise, Ω is always a bounded, open, connected and smooth domain in Rn.

1. (2 points, 22.04.2021) Mean value property implies continuity.

(A) Let f ∈ L1(Rd) and g ∈ L∞(Rd). Prove that the convolution f ∗ g is a continuous and

bounded function. Hint: First, consider f smooth and compactly supported.

(B) Suppose that u : Ω→ R is an integrable function such that for all x ∈ Ω

u(x) =

 
∂B(x,r)

u(y) dS(y)

for all balls compactly contained in Ω. Prove that u is continuous.

2. (2 points, 22.04.2021) Weyl's Lemma.
Let u ∈ L1(Ω). We say that u : Ω→ R is weakly harmonic if for all ϕ ∈ C∞c (Ω) we have

ˆ
Ω

∆ϕ(x)u(x) = 0.

(A) Prove that if u ∈ C2(Ω) and ∆u = 0 then u is weakly harmonic.

(B) Prove the converse: if u is weakly harmonic then u ∈ C2(Ω) and ∆u = 0. Hint: Molli�ers

and mean value property.

This is the simplest example that motivates and illustrates modern approach to PDEs: �rst,

prove existence of some (seemingly) much weaker solution and then upgrade its regularity to

the strong solution.
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3. (2 points, 27.05.2021) Di�erence quotients A.
Let u : Ω → R and let U be compactly contained in Ω. For x ∈ U and h ∈ R such that

0 < |h| < dist(U, ∂Ω) we de�ne i-th di�erence quotient of size h:

Dh
i u(x) =

u(x+ h ei)− u(x)

h

where ei is the usual unit vector. We also de�ne

Dhu = (Dh
1u,D

h
2u, ...,D

h
nu).

The link between di�erence quotients and usual derivatives is well-known. The target of this

(and the next) problem is to study the link between di�erence quotients and Sobolev deriva-

tives. As a warm up, use standard approximation argument to prove the following.

Suppose that 1 ≤ p <∞ and u ∈W 1,p(Ω). Then

‖Dhu‖Lp(U) ≤ C ‖u‖W 1,p(Ω),

where constant C is independent of h.

4. (3 points, 27.05.2021) Di�erence quotients B.
It is much more interesting to understand when integrability of di�erence quotients implies

that the function has Sobolev regularity. For this we will need Banach-Alaoglu theorem for

Lp spaces:

Theorem. Let 1 < p < ∞ and {un}n∈N be a sequence bounded in Lp(Ω). Then, {un}n∈N
has a subsequence converging weakly.

Proof. For p = 2 we proved this in the functional analysis class using orthonormal basis

and diagonal argument (review this if you don't remember!). For 1 < p < ∞, one proceeds

similarly using separability of Lp(Ω), its re�exivity and diagonal argument again.

(A) Prove integration by parts formula for di�erence quotients: if ϕ ∈ C∞c (U) and h is

su�ciently small ˆ
U
u(x)Dh

i ϕ(x) = −
ˆ
U
D−hi u(x)ϕ(x).

(B) Suppose that 1 < p <∞, u ∈ Lp(Ω) and

‖Dhu‖Lp(U) ≤ C for 0 < |h| < 1

2
dist(U, ∂Ω),

where C is independent of h. Prove that u ∈W 1,p(U).

(C) (important!) Show with a simple example that (B) cannot be expected for p = 1.
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5. (3 points, 10.06.2021) Euler-Lagrange equations and calculus of variations
This problem is an introduction to the �eld of calculus of variations that study minimization

of functionals of the form

I[u] =

ˆ
Ω
F (∇u, u, x) dx

de�ned for instance on Sobolev spaces. As an example consider

I[u] =

ˆ
Ω
|∇u|2 − f(x)u(x)

de�ned for u ∈ H1
0 (Ω). Here, f is a �xed function in L∞(Ω) and Ω is a bounded domain. We

will see that there exists the unique minimizer of I over H1
0 (Ω) and it is a weak solution to

Poisson equation

−∆u = f in Ω, u = 0 on ∂Ω.

(A) Prove that there is at most one function u ∈ H1
0 (Ω) such that infu∈H1

0 (Ω) I[u] = I[u].

(B) Let c = infu∈H1
0 (Ω) I[u]. Prove that c is �nite.

(C) Prove that there exists a sequence {un}n∈N such that I[un]→ c as n→∞ and {un}n∈N
is bounded in H1(Ω).

(D) Use Banach-Alaoglu to obtain a subsequence of {un}n∈N converging weakly in H1
0 (Ω).

Prove that its limit u satis�es I[u] = m, i.e. u is a minimizer. Hint: In Hilbert space H
if xn ⇀ x we have ‖x‖ ≤ lim infn→∞ ‖xn‖.

(E) Prove that u solves Poisson equation in the weak sense. Hint: Consider u+ ε φ for small

ε and arbitrary φ ∈ H1
0 (Ω).

Remark: One can generalize this method to a wider class of functionals. As a consequence,

one proves existence and uniqueness to rather complicated elliptic PDEs which could not be

attacked directly. The PDE solved by the minimizer is called Euler-Lagrange equation.
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6. (4 points, 10.06.2021) Stampacchia's Theorem
In this problem we show how to generalize Lax-Milgram Lemma to study nonlinear equations.

A particular example we have in mind is

−∆u+ g(u) = f in Ω ⊂ Rn

u = 0 on ∂Ω,
(1)

where Ω is bounded, g : R→ R is assumed to be Lipschitz continuous and increasing. I follow

the formulation from Problem Set 2 in NPDE I course at UniBonn. To establish existence

and uniqueness we prove:

Stampacchia's Theorem. Let H be a Hilbert space. Let a : H ×H → R. Assume that a
satis�es

(1) for each u ∈ H, the map v 7→ a(u, v) is continuous and linear (it belongs to H∗),

(2) |a(u1, v)− a(u2, v)| ≤ β ‖u1 − u2‖ ‖v‖,
(3) a(u1, u1 − u2)− a(u2, u1 − u2) ≥ γ ‖u1 − u2‖2

for some constants β and γ. Then for every l ∈ H∗, there exists uniquely determined u such

that a(u, v) = l(v) for all v ∈ H.

We proceed as follows:

(A) Prove that if a (nonlinear!) map A : H → H satis�es

(1) ‖A(u1)−A(u2)‖ ≤ β ‖u1 − u2‖,
(2) 〈A(u1)−A(u2), u1 − u2〉 ≥ γ ‖u1 − u2‖2,
then for every f ∈ H there is a unique uf ∈ H such that A(uf ) = f .

Hint: Apply Banach Fixed Point Theorem to the map R(u) = u − λA(u) + λ f for

appropriate λ.

(B) Prove Stampacchia's Theorem.

(C) De�ne weak solutions (in H1
0 (Ω)) to (1). Prove that there exists the unique weak solution

to (1).
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https://www.iam.uni-bonn.de/afa/teaching/17w/nonlinear-pde

