Introduction to PDEs (SS 20/21)

(special problems)
Compiled on 24/05/2021 at 3:37pm

Each problem has assigned number of points and deadline. The deadline may be extended (depend-
ing on number of submitted solutions). Please submit the solutions using Moodle.

If not stated otherwise, €2 is always a bounded, open, connected and smooth domain in R"™.
1. (2 points, 22.04.2021) Mean value property implies continuity.

(A) Let f € LY(R?) and g € L>®(R?). Prove that the convolution f * g is a continuous and
bounded function. Hint: First, consider f smooth and compactly supported.

(B) Suppose that u: Q — R is an integrable function such that for all z € Q

u(z) = ][BBW) u(y) dS(y)

for all balls compactly contained in 2. Prove that u is continuous.

2. (2 points, 22.04.2021) Weyl’s Lemma.
Let u € LY(Q)). We say that u : Q — R is weakly harmonic if for all p € C°(Q) we have

/QAcp(x) u(z) =0.

(A) Prove that if u € C%(Q) and Au = 0 then u is weakly harmonic.

(B) Prove the converse: if u is weakly harmonic then u € C?(2) and Au = 0. Hint: Mollifiers
and mean value property.

This is the simplest example that motivates and illustrates modern approach to PDEs: first,
prove existence of some (seemingly) much weaker solution and then upgrade its regularity to
the strong solution.



3. (2 points, 27.05.2021) Difference quotients A.
Let u : © — R and let U be compactly contained in 2. For x € U and h € R such that
0 < |h| < dist(U, 0N2) we define i-th difference quotient of size h:

u(x + he;) —u(z)

Dl =
Pu(o) .

where e; is the usual unit vector. We also define
DMy = (D, Dhu, ..., D).

The link between difference quotients and usual derivatives is well-known. The target of this
(and the next) problem is to study the link between difference quotients and Sobolev deriva-
tives. As a warm up, use standard approximation argument to prove the following.

Suppose that 1 < p < oo and u € WHP(Q). Then
10"l o1y < C llullwroq),
where constant C' is independent of h.

4. (3 points, 27.05.2021) Difference quotients B.
It is much more interesting to understand when integrability of difference quotients implies
that the function has Sobolev regularity. For this we will need Banach-Alaoglu theorem for
LP spaces:

Theorem. Let 1 < p < oo and {uy }nen be a sequence bounded in LP(§2). Then, {u,}nen
has a subsequence converging weakly.

Proof. For p = 2 we proved this in the functional analysis class using orthonormal basis
and diagonal argument (review this if you don’t remember!). For 1 < p < oo, one proceeds
similarly using separability of LP((2), its reflexivity and diagonal argument again.

(A) Prove integration by parts formula for difference quotients: if ¢ € C°(U) and h is
sufficiently small

| @ Dlo@) = - [ Diul@)pla).
U U
(B) Suppose that 1 < p < oo, u € LP(Q2) and
|D"ullpy < C for 0< JB] < %dist(U, 99),

where C' is independent of h. Prove that u € WP (U).
(C) (important!) Show with a simple example that (B) cannot be expected for p = 1.



5. (3 points, 10.06.2021) Euler-Lagrange equations and calculus of variations
This problem is an introduction to the field of calculus of variations that study minimization
of functionals of the form

Iu] :/QF(Vu,u,a:) dz

defined for instance on Sobolev spaces. As an example consider
Ml = [ V4P = f@)u(o)

defined for u € HZ (). Here, f is a fixed function in L>(2) and Q is a bounded domain. We
will see that there exists the unique minimizer of I over Hj(Q) and it is a weak solution to

Poisson equation
—Au = fin Q, u =0 on 0.

(A) Prove that there is at most one function u € HE(2) such that inf, c 1) Iu] = I[u].
(B) Let ¢ = inf, ¢ g1 () I[u]. Prove that c is finite.

(C) Prove that there exists a sequence {uy, }nen such that I{u,] — ¢ as n — oo and {uy }nen
is bounded in H'(Q).

(D) Use Banach-Alaoglu to obtain a subsequence of {uy}nen converging weakly in HE(Q).
Prove that its limit u satisfies I[u] = m, i.e. w is a minimizer. Hint: In Hilbert space H
if z, — = we have ||z|| < liminf,, o ||zn]]-

(E) Prove that u solves Poisson equation in the weak sense. Hint: Consider u + ¢ ¢ for small
e and arbitrary ¢ € H} ().

Remark: One can generalize this method to a wider class of functionals. As a consequence,
one proves existence and uniqueness to rather complicated elliptic PDEs which could not be
attacked directly. The PDE solved by the minimizer is called Euler-Lagrange equation.



6. (4 points, 10.06.2021) Stampacchia’s Theorem
In this problem we show how to generalize Lax-Milgram Lemma to study nonlinear equations.
A particular example we have in mind is

—Au+g(u)=fin Q CR" )
u =0 on 0,
where €) is bounded, g : R — R is assumed to be Lipschitz continuous and increasing. 1 follow

the formulation from Problem Set 2 in NPDE I course at UniBonn. To establish existence
and uniqueness we prove:

Stampacchia’s Theorem. Let H be a Hilbert space. Let a : H x H — R. Assume that a
satisfies

(1) for each u € H, the map v — a(u,v) is continuous and linear (it belongs to H*),

(2) la(ur,v) — aug,v)| < B |lur —usg| [|v],

(3) alur,ur — uz) — aluz, w1 — uz) >y [lur — ua?

for some constants § and . Then for every [ € H*, there exists uniquely determined u such
that a(u,v) = [l(v) for all v € H.

We proceed as follows:

(A) Prove that if a (nonlinear!) map A : H — H satisfies
(1) [[A(u1) = Aug)|] < B llur — sz,
(2) (A(ur) = A(uz),ur —u2) = 7 [Jur — uelf?,
then for every f € H there is a unique uy € H such that A(uy) = f.

Hint: Apply Banach Fixed Point Theorem to the map R(u) = u — A A(u) + A f for
appropriate A.

(B) Prove Stampacchia’s Theorem.

(C) Define weak solutions (in H}(€2)) to (1). Prove that there exists the unique weak solution
to (1).


https://www.iam.uni-bonn.de/afa/teaching/17w/nonlinear-pde

