
Introduction to PDEs (SS 20/21)

Homeworks

Compiled on 24/05/2021 at 9:49pm

General instruction: Problems have to be solved in groups of 2 students and the solutions have

to be submitted via moodle before the class begins (10:15).

It is highly recommended to submit your solutions in English (or French).
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Homework 1: problems for 11/03/2021

1. Let b : Rn → Rn be a C1 and Lipschitz vector �eld. Let u0 : Rn → R be a C1 and Lipschitz

function. Use Problems 4 and 5 (PS A1) to establish well-posedness theory for C1 solutions

to equation

∂tu(t, x) + b(x) · ∇xu(t, x) = 0, u(0, x) = u0(x)

similarly as in Problem 1 (PS A1). Comment on existence, uniqueness, stability with respect

to vector �eld b as well as initial data u0, maximum principle and semigroup property.

2. A typical feature of nonlinear hyperbolic equations is formation of discontinuities or singular-

ities i.e. even if one starts with a smooth initial condition, the solution becomes discontinuous

in a �nite time. As an example, consider Burger's equation

ut + uux = 0, u(0, x) = u0(x),

where u(t, x) : R+ × R→ R.

(A) Show that characteristics method implies implicit equation u(t, u0(x) t+ x) = u0(x).

(B) Find solution to Burger's equation with u0(x) = 1 − x for 0 ≤ t < 1. What happens at

t = 1?
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Homework 2: problems for 18/03/2021

1. We establish a connection between harmonic and holomorphic functions. In what follows we

identify C with R2. For Ω ⊂ C, we write Ω̃ for the subset of R2 corresponding to Ω.

(A) Prove that if u : Ω→ C is holomorphic then real and imaginary parts of u are harmonic

functions as maps from Ω̃ to R. Hint: use Cauchy-Riemann equations.

(B) Conversely, assume that Ω is simply connected and let u : Ω̃→ R be a harmonic function.

Prove that there is a holomorphic function v : Ω → C such that real part of v equals

u. Hint: Consider complex derivative of u, namely w(x+ iy) = ux(x, y)− i uy(x, y) and
use path integration to �nd its antiderivative. Observe that u is the real part of the

antiderivative.

2. In what follows we establish comparison, maximum principle and stability for Poisson's equa-

tion. As always we assume u, v ∈ C2(Ω) ∩ C(Ω) with Ω ⊂ Rn open, connected and bounded.

Moreover, we assume that u1, u2 solve{
−∆u = f1 in Ω

u = g1 on ∂Ω
,

{
−∆v = f2 in Ω

v = g2 on ∂Ω
,

where f1, f2 ∈ C(Ω) and g1, g2 ∈ C(∂Ω).

(A) (comparison principle) Suppose that f1 ≤ f2, g1 ≤ g2. Then, u1 ≤ u2.

(B) (maximum principle) We have

‖u‖L∞(Ω) ≤ C
(
‖f1‖L∞(Ω) + ‖g1‖L∞(∂Ω)

)
,

where C is a constant that depends only on the size of Ω. Hint: Consider ũ(x) =
u(x)

‖f1‖L∞(Ω)+‖g1‖L∞(∂Ω)
and w(x) =

M−x2
1

2 + 1 for appropriate M . Apply (A) to w and ũ.

(C) (stability) Deduce from (B) that

‖u− v‖L∞(Ω) ≤ C
(
‖f1 − f2‖L∞(Ω) + ‖g1 − g2‖L∞(∂Ω)

)
.
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Homework 3: problems for 25/03/2021

1. In this exercise we �nd measure solution to the PDE (called continuity equation)

∂tµt + ∂x(b(x)µt) = 0.

with initial condition µ0. Recall that {µt}t∈R+ is a measure solution if for all test functions

ϕ ∈ C∞c ([0,∞)× R) we have∫
R+×R

∂tϕ(t, x) dµt(x)dt +

∫
R+×R

∂xϕ(t, x) b(x) dµt(x)dt+

∫
R
ϕ(0, x) dµ0(x) = 0

This will generalize the case b(x) = b known from the class. The idea is to de�ne appropriate

transport operator acting on measures.

(A) Let (X1,Σ1), (X2,Σ2) be two measure spaces (here Σ1, Σ2 denotes σ-algebras of subsets
of X1 and X2 respectively). Let µ be a nonnegative measure on (X1,Σ1) and T be a

measurable map T : (X1,Σ1)→ (X2,Σ2). Prove that

T#µ(A) = µ(T−1(A))

de�nes a nonnegative measure on (X2,Σ2). We say that T#µ is a push-forward of µ
along T .

(B) Let µ be a bounded (i.e. µ(X1) < ∞) and nonnegative measure. Prove change-of-

variables formula: for all bounded f : X2 → R we have∫
X2

f(x) dT#µ(x) =

∫
X1

f(T (x)) dµ(x).

Hint: �rst, consider simple function f(x) = 1A(x) where A ∈ Σ2. Then, prove the result

for all nonnegative bounded functions and �nally for all bounded.

(C) Let µ0 be a nonnegative bounded measure on R and let Xb(t, x) : R→ R be the �ow of

the vector �eld b. Prove that µt := Xb(t, x)#µ0 is a measure solution to the continuity

equation.

2. In the next class we will prove that given g ∈ C(∂BR(x)) there exists unique

u ∈ C2(BR(x)) ∩ C(BR(x))

such that ∆u = 0 in BR(x) and u = g on ∂BR(x). Use this to prove the following.

(A) Let u ∈ C(Ω). Prove that u is harmonic in Ω if and only if for all balls BR(y) compactly

contained in Ω

u(y) = -

∫
∂BR(y)

u(x).

Hence, mean value property upgrades regularity of u from C(Ω) to C2(Ω)!!!

Hints: (1) Fix ball BR(y) and use solvability of Laplace equation to choose harmonic

function with appropriate boundary value. (2) Observe that mean value property implies

all maximum principle results.

(B) Conclude that the limit of a uniformly convergent sequence of harmonic functions is

harmonic.
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Homework 4: problems for 8/04/2021

Problem 1 is worth 1.5 point while Problem 2 is worth 0.5 point.

1. (molli�ers once again) Let η : Rd → R be a smooth nonnegative function supported on the

unit ball B1(0) such that
∫
Rd η(x) dx = 1. We de�ne

ηε(x) =
1

εd
η
(x
ε

)
.

For any f : Rd → R we write f ∈ L1
loc

(Rd) if f ∈ L1(K) for all compact sets K ⊂ Rd.
Similarly we de�ne Lp

loc
(Rd). Finally, if f ∈ L1

loc
(Rd), we de�ne

f ∗ ηε =

∫
Rd
f(y) ηε(x− y) dy.

(A) Give an example of f ∈ L1
loc

(Rd) but f /∈ L1(Rd).
(B) Prove inclusions Lp(Rd) ⊂ Lp

loc
(Rd) ⊂ L1

loc
(Rd).1

(C) Function ηε is again a smooth nonnegative function supported on the unit ball Bε(0)
such that

∫
Rd ηε(x) dx = 1.

(D) If f ∈ L1
loc

(Rd) then f ∗ ηε is smooth.

(E) If f is continuous then f ∗ ηε → f uniformly on compact subsets of Rd.
(F) If f ∈ Lp(Rd) then f ∗ ηε → f in Lp(Rd).
(G) If f ∈ Lp

loc
(Rd) then f ∗ ηε → f in Lp(K) for all compact K ⊂ Rd.

Hints and comments: (D) follows from di�erentiation under integral while (E) uses (C). Part

(F) requires density of continuous compactly supported functions in Lp(Rd) and Young's

convolution inequality which may be assumed without the proof. Parts (E) and (F) may be

found in Brezis (Proposition 4.21, Theorem 4.22) which you should consult in case of troubles.

Part (G) is an easy adaptaion of argument in (F).

2. Let Φ(x) be the scaled fundamental solution to Laplace equation

Φ(x) =

{
1

n (2−n)αn
|x|2−n if n > 2,

− 1
2π log |x| if n = 2.

Prove estimates

|DiΦ(x)| ≤ 1

nαn
|x|1−n, |Di,jΦ(x)| ≤ 1

αn
|x|−n

1This is why most theorems are formulated for f ∈ L1
loc(Rd) as this is the most general setting.
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Homework 5: problems for 15/04/2021

1. Let Ω ⊂ Rd be a bounded domain and f ∈ L∞(Ω) ∩ Cα(Ω) for some α ∈ (0, 1]. Consider Ω0

such that Ω ⊂ Ω0 and extend f = 0 in Ω0 \ Ω. Prove that wf ∈ C2(Ω) and

Di,jwf (x) =

∫
Ω0

Di,jΦ(x− y) (f(x)− f(y)) dy − f(x)

∫
∂Ω0

DiΦ(x− y)nj(y) dS(y)

where nj is the j-th component of n and wf is the Newtonian potential of f .

Steps:

(A) If f ∈ Cα(Ω), then there is a constant Cf such that for all x, y ∈ Ω,

|f(x)− f(y)| ≤ C |x− y|α.

Use this to prove that the function above (candidate for the second derivative) is well-

de�ned (�nite).

(B) As when computing �rst derivative, use function ξε to remove singularity around x ≈ y
and consider vε(x) =

∫
ΩDiΦ(x− y) ξε(x− y) f(y) dy. Observe that Ω may be replaced

with Ω0 in the de�nition of vε(x).

(C) Compute Djvε and split f(y) = (f(y) − f(x)) + f(x). Use integration by parts in the

second term. What can be said about ξε in the second term for small ε?

(D) Prove that Djvε converges uniformly on compact subsets of Ω to the candidate for

Di,jwf (x). Combine this with uniform convergence of vε to Diwf (x) and with the fact

that C2 is a Banach space to conclude the proof.

2. (energy method for uniqueness to heat equation) Let u(t, x) be a classical solution to

ut −∆u = f(x) in [0, T ]× Ω,

u(0, x) = u0(x) for x ∈ Ω,

u(t, x) = g(x) for x ∈ ∂Ω

(1)

on a bounded domain Ω ⊂ Rn. Assume that

∂tu(t, x) ∈ C([0, T ]× Ω), ∂i∂ju(t, x) ∈ C([0, T ]× Ω), i, j = 1, ..., n,

i.e. u is C1 in time and C2 in space.

(A) Let f(x) = g(x) = 0. De�ne energy with E(t) =
∫

Ω |u(t, x)|2 dx. Prove that E(t) is

nonincreasing.

(B) Deduce uniqueness for solutions to (1).

We did a similar thing for Poisson equation.
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Homework 6: problems for 22/04/2021

This week, there are two small problems but see below!

1. Let Ω ⊂ Rn be a bounded domain. In the class we have seen the following interpolation

inequality between Holder spaces: for all ε > 0 there exists a constant C(ε) such that for all

u ∈ C2,α(Ω)
‖u‖C2(Ω) ≤ C(ε) ‖u‖∞ + ε [D2u]Cα(Ω).

Generalize it to the case of Lp spaces, i.e.

‖u‖C2(Ω) ≤ C(ε) ‖u‖Lp(Ω) + ε [D2u]Cα(Ω).

2. (maximum principle for porous media equation) Let u(t, x) be a smooth functon satisfying

ut −∆F (u) ≤ 0 in [0, T ]× Ω

on the bounded domain Ω. Here, F is a strictly increasing function (F ′(λ) > 0 for all λ).
Prove that u attains its maximum either at t = 0 or x ∈ ∂Ω (i.e. on the so-called parabolic

boundary). Deduce uniqueness for porous media equation:

ut −∆F (u) = f(x) in [0, T ]× Ω,

u(0, x) = u0(x) for x ∈ Ω,

u(t, x) = g(x) for x ∈ ∂Ω

(2)

Additional task:
In the assigned groups, prepare 2-3 minutes talk and blackboard outlining the most important things

about:

(A) transport equations, hyperbolic equations in general,

(B) Laplace and Poisson equation: everything without existence,

(C) Laplace and Poisson equation: existence using Green's function, regularity,

(D) heat equation, parabolic equations in general.

Have a look at both lecture and tutorial material to prepare for the �nal exam.
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Homework 7: problems for 29/04/2021

This week, there are four quick problems for getting familiar with distributions and distributional

derivatives.

1. Let k ∈ N and x0 ∈ Ω⊂ R. Prove that Tk(ϕ) = ϕ(k)(x0) (i.e. k-th derivative at x0) is a

distribution and �nd its degree.

2. Prove that the formula T (ϕ) =
∑∞

k=1 ϕ
(k) (1/k) de�nes a distribution on Ω = (0,∞). Find

its degree.

3. Compute distributional derivative of the function 1x>0 on (−1, 1).

4. Prove that distributional derivatives satisfy Schwarz lemma (their order can be interchanged).
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Homework 8: problems for 6/05/2021

1. Consider u(x) = 1|x|<1 in Rd.

(A) Prove that u ∈W 1,p(B1(0)) where B1(0) = {|x| < 1} and �nd its weak gradient.

(B) Prove that u /∈W 1,p(Rd).
(C) Find distributional gradient of u in Rd, i.e. �nd formula for the distribution (∂xiTu)(φ)

where Tu(φ) =
∫
Rd u(x)φ(x)dx. Is there a function vi ∈ L1

loc
(Rd) such that

(∂xiTu)(φ) =

∫
Rd
vi(x)φ(x)dx?

2. Let 1 ≤ p ≤ ∞ and Ω be a bounded domain. Prove that if u ∈W 1,p(Ω) then its modulus |u|,
positive part u+ := u1u>0 and negative part u− := −u1u<0 belong to W 1,p(Ω). Find their

derivatives in terms of Du.

Hint: For ε > 0 consider function Fε(z) = (z2 + ε2)1/2− ε. Prove that Fε(z) is Lipschitz with
constant 1 and C1 with |F ′ε| ≤ 1. Moreover Fε(z) → |z| and F ′ε(z) → sgn(z)1z 6=0 as ε → 0.

Similarly, consider function Gε(z) =

{
(z2 + ε2)1/2 − ε if z ≥ 0,

0 if z < 0.

9



Homework 9: problems for 13/05/2021

1. Watch the video on unbounded operators and solve the following problem. Let (M,D(M))
be an unbounded operator on L2(R):

(Mf)(x) = x f(x)

with the domain de�ned as

D(M) = {ϕ ∈ L2(R) : xϕ(x) ∈ L2(R)}.

Decide whether:

(A) M is bounded as an operator M : L2(R)→ L2(R),

(B) (M,D(M)) is densely de�ned,

(C) (M,D(M)) is closed.

Hint: Recall that when fn → f in L2, one may choose a subsequence converging a.e.

2. Prove that on H2
0 (Ω), the map u 7→ ‖∆u‖2 de�nes an equivalent norm, i.e. there is a constant

C (independent of u!) such that

‖∆u‖2 ≤ ‖u‖H2 , ‖u‖H2 ≤ C ‖∆u‖2.

Hint: Use both Poincare inequality and smooth approximation. Observe that if u is smooth

and compactly supported in Ω we have
∫

Ω uxi xi uxj xj =
∫

Ω uxi xj uxi xj .
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Homework 10: problems for 20/05/2021

1. Let u ∈ W 1,p
0 (Ω). Prove that the trivial extension ũ(x) =

{
u(x) if x ∈ Ω,

0 if x ∈ Rn \ Ω
belongs to

W 1,p(Rd) so that in this case we don't need extension theorem. Hint: Extend approximation

of u.

2. This problem shows that all integration-by-parts formulas hold true for Sobolev functions if

their boundary value is replaced with its trace. For example, prove that∫
Ω
Dju(x) v(x) +

∫
Ω
u(x)Djv(x) =

∫
∂Ω

(Tu)(x) (Tv)(x)nj(x)

for u ∈ W 1,p(Ω), v ∈ W 1,p′(Ω), where Tu and Tv denotes traces of u and v, 1 < p < ∞ and

p′ is the usual Holder conjugate.

This week's problems are easier but please take time to work on the second group project about

Sobolev spaces.
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Homework 11: problems for 27/05/2021

1. (A) Let u ∈ W 1,p(Ω) where Ω is bounded and connected domain. Prove that if u vanishes

on U ⊂ Ω and |U | > 0 then

‖u‖Lp(Ω) ≤ C(Ω, U, p) ‖Du‖Lp(Ω).

Hint: Argue by contradiction (as in Problem 1, Homework 6) and use compact embedding

of W 1,p(Ω) in Lp(Ω).

(B) Deduce from (A) Poincare inequality for u ∈W 1,p
0 (Ω):

‖u‖Lp(Ω) ≤ C(Ω, p) ‖Du‖Lp(Ω).

We proved this before with integration by parts. Hint: Use extension from previous

homework.

2. For this problem you may assume the following general Poincare inequality with averages: if

u ∈W 1,p(Ω) where Ω is bounded with C1 boundary we have

‖u− (u)Ω)‖Lp(Ω)) ≤ C(Ω, p) ‖Du‖Lp(Ω),

where (u)Ω is average of u over Ω:

(u)Ω =
1

|Ω|

∫
Ω
u(x) dx.

This will be proved in the lecture using compact embedding of W 1,p(Ω) in Lp(Ω) as in the

Problem 1(A) above.

(A) Prove explicit form of Poincare inequality for balls: if u ∈W 1,p(B(x, r))

‖u− (u)B(x,r)‖Lp(B(x,r)) ≤ C(p) r ‖Du‖Lp(B(x,r))

and the constant C is independent of r.
Hint: Consider v(y) = u(x+ r y) and prove that v ∈W 1,p(B(0, 1)).

(B) Prove that if u ∈W 1,n(Rn)∩L1(Rn) then u belongs to the space of functions of bounded

mean oscillation (BMO), i.e.

|u|BMO := sup
B(x,r)⊂Rn

1

|B(x, r)|

∫
B(x,r)

|u− (u)B(x,r)| <∞

This is Sobolev embedding for p = n.

Space BMO became absolutely fundamental in PDEs after John and Nirenberg proved

celebrated John-Nirenberg inequality in the paper from 1961 published in CPAM. Among

an others, it was used by Moser to solve XIX Hilbert's Problem.
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Homework 12: problems for 10/06/2021

1. Let f ∈ L2(Ω). We say that u ∈ H2
0 (Ω) is a weak solution to the biharmonic equation

∆2u = f in Ω, u =
∂u

∂n
= 0 on ∂Ω

provided for all ϕ ∈ H2
0 (Ω) we have ∫

Ω
∆u∆ϕ =

∫
Ω
f ϕ.

(A) Suppose that u ∈ C4(Ω)∩C1(Ω) is a classical solution to the biharmonic equation. Prove

that it is also a weak solution. Hint: If u ∈ H2
0 (Ω) then uxi ∈ H1

0 (Ω).

(B) Prove that there exists the unique weak solution of biharmonic equation.

2. Let λ ∈ R, f ∈ L2(Ω) and consider equation

−∆u+ λu = f in Ω, u = 0 on ∂Ω. (3)

(A) De�ne weak solutions in H1
0 (Ω)

(B) For which λ one can use Lax-Milgram to obtain well-posedness of this problem in H1
0 (Ω)?

(C*) One can prove that in fact the unique solution to (3) belongs to H2(Ω)∩H1
0 (Ω). Consider

unbounded operator A = ∆ with D(A) = H2(Ω) ∩ H1
0 (Ω). Prove that (0,∞) belongs

to the resolvet of A. Moreover, if Rλ : L2(Ω)→ L2(Ω) is resolvent operator we have an
estimate

‖Rλ‖ ≤
C

λ
(λ > 0),

the constant C is independent of λ. This shows that A satis�es assumptions of Hille-

Yosida theorem.
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