
Introduction to PDEs (SS 20/21), Problem Set A2

Laplace and Poisson equation: examples of elliptic equations

Compiled on 24/03/2021 at 4:22pm

The target is to obtain well-posedness theory for Poisson's equation

−∆u = f in Ω

equipped with Dirichlet boundary conditions u = g on ∂Ω. We will do that for Ω being a ball or

the whole space.

Green's identities, integration by parts
Let u, v ∈ C2(Ω) and Ω ⊂ Rd be a smooth domain for which the divergence theorem holds.

A1. Show that ∫
Ω

∆u =

∫
∂Ω

∂u

∂n
.

A2. Prove Green's �rst identity:∫
Ω
v∆u dx+

∫
Ω
∇u · ∇v =

∫
∂Ω
v
∂u

∂n
.

A3. Prove Green's second identity:∫
Ω

(v∆u−∆v u) =

∫
∂Ω

(
v
∂u

∂n
− u ∂v

∂n

)
.

A4. Prove integration by parts formula∫
Ω
Dju(x) v(x) +

∫
Ω
u(x)Djv(x) =

∫
∂Ω
u(x) v(x)nj(x)

where nj is the j-th component of n.

Properties of harmonic functions
Function u ∈ C2(Ω) is called harmonic (subharmonic, superharmonic) in Ω if it satis�es ∆u = 0
(∆u ≥ 0, ∆u ≤ 0) in Ω.

B1. We establish a connection between harmonic and holomorphic functions. In what follows we

identify C with R2. For Ω ⊂ C, we write Ω̃ for the subset of R2 corresponding to Ω.

(A) Prove that if u : Ω→ C is holomorphic then real and imaginary parts of u are harmonic

functions as maps from Ω̃ to R. Hint: use Cauchy-Riemann equations.

(B) Conversely, assume that Ω is simply connected and let u : Ω̃→ R be a harmonic function.

Prove that there is a holomorphic function v : Ω → C such that real part of v equals

u. Hint: Consider complex derivative of u, namely w(x+ iy) = ux(x, y)− i uy(x, y) and
use path integration to �nd its antiderivative. Observe that u is the real part of the

antiderivative.

B2. Let u be harmonic in Ω. Prove that v = ϕ(u) is subharmonic whenever ϕ is smooth and

convex.
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B3. Let u be subharmonic in Ω. Prove that for any ball BR(y) ⊂ Ω we have

u(y) ≤ -

∫
BR(y)

u(y), u(y) ≤ -

∫
∂BR(y)

u(y).

Formulate corresponding results for superharmonic and harmonic functions.

B4. (maximum principle for Laplace equation) Let u be subharmonic in Ω and suppose that u
attains its maximum in the interior of Ω. Prove that u is constant. Formulate corresponding

results for superharmonic and harmonic functions.

B5. (maximum principle for Laplace equation) Let u ∈ C2(Ω)∩C(Ω). Assume that Ω is bounded.

Prove that u attains its supremum on the boundary:

sup
x∈Ω

u(x) = sup
x∈∂Ω

u(x).

Formulate corresponding results for superharmonic and harmonic functions.

B6. Find all nonnegative solutions to the nonlinear PDE

∆u = u2 in B1(0), u(x) = 0 on ∂B1(0).

Consequences for Poisson's equation

C1. (uniqueness for Poisson's equation) Prove uniqueness for solutions u ∈ C2(Ω)∩C(Ω) to Poisson
equation in bounded domains Ω.

C2. (energy method) Use integration by parts to deduce uniqueness for Poisson's equation.

C3. (comparison, maximum principle and stability for Poisson's equation) As always we assume

u, v ∈ C2(Ω) ∩ C(Ω) with Ω ⊂ Rd open, connected and bounded. Moreover, we assume that

u1, u2 solve {
−∆u = f1 in Ω

u = g1 on ∂Ω
,

{
−∆v = f2 in Ω

v = g2 on ∂Ω
,

where f1, f2 ∈ C(Ω) and g1, g2 ∈ C(∂Ω).

(A) (comparison principle) Suppose that f1 ≤ f2, g1 ≤ g2. Then, u1 ≤ u2.

(B) (maximum principle) We have

‖u‖L∞(Ω) ≤ C
(
‖f1‖L∞(Ω) + ‖g1‖L∞(∂Ω)

)
,

where C is a constant that depends only on the size of Ω. Hint: Consider ũ(x) =
u(x)

‖f1‖L∞(Ω)+‖g1‖L∞(∂Ω)
and w(x) =

M−x2
1

2 + 1 for appropriate M . Apply (A) to w and ũ.

(C) (stability) Deduce from (B) that

‖u− v‖L∞(Ω) ≤ C
(
‖f1 − f2‖L∞(Ω) + ‖g1 − g2‖L∞(∂Ω)

)
.

C4. Discuss uniqueness for ∆u = f in Rd.
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Green's method and Laplace equation in the ball
We write Φ(x) for the scaled fundamental solution to Laplace equation

Φ(x) =

{
1

n (2−n)αn
|x|2−n if n > 2,

− 1
2π log |x| if n = 2

D1. Prove estimates

|DiΦ(x)| ≤ 1

nαn
|x|1−n, |Di,jΦ(x)| ≤ 1

αn
|x|−n

D2. Find fundamental solution (i.e. spherically symmetric function u such that u′′(x) = −δ0) in

one space dimension.

D3. Using ∆Φ = −δ0, formally justify that for all u ∈ C2(Ω)

u(x) = −
∫
∂Ω
u(y)

∂Φ

∂n
(y − x) dS(y) +

∫
∂Ω

Φ(y − x)
∂u

∂n
(y) dS(y)−

∫
Ω

Φ(y − x) ∆u(y) dy

(this will be rigorously proved in the lecture).

D4. Prove that if u ∈ C2(Ω) solves Poisson equation

{
−∆u = f in Ω

u = g on ∂Ω
, then

u(x) = −
∫
∂Ω
g(y)

∂G

∂n
(x, y) +

∫
Ω
G(x, y) f(y)

where G is a Green's function for Ω.

D5. Using Green's function for ball (lecture), one obtains representation formula for solution to{
−∆u = 0 in Br(0),

u = g on ∂Br(0),
namely:

u(x) = −
∫
∂Ω
g(y)

∂G

∂n
(x, y) =

r2 − |x|2

nωn r

∫
∂B(0,r)

g(y)

|x− y|n
.

Prove that u de�ned with this formula is indeed the unique solution to the Laplace equation

with boundary data g.
Remark: One can use Perron's method to deduce existence on arbitrary domains from existence

in the balls. See Gilbarg-Trudinger.

D6. Solvability of Laplace equation in the ball has the following nice consequence. Let u ∈ C(Ω).
Prove that u is harmonic in Ω if and only if for all balls BR(y) compactly contained in Ω

u(y) = -

∫
∂BR(y)

u(x).

Hence, mean value property upgrades regularity of u from C(Ω) to C2(Ω). Hints: (1) Fix ball

BR(y) and use solvability of Laplace equation to choose harmonic function with appropriate

boundary value. (2) Observe that mean value property implies all maximum principle results.

D7. Conclude that the limit of a uniformly convergent sequence of harmonic functions is harmonic.
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Existence for Poisson's equation in the balls and the whole space
Given bounded domain Ω, d ≥ 2 and f : Ω→ Rd we de�ne Newtonian potential of f to be

wf (x) :=

∫
Ω

Φ(x− y) f(y) dy.

The plan is to prove −∆wf = f .

E1. Prove that there is a smooth function ξ : R → R such that 0 ≤ ξ ≤ 1, |ξ′| ≤ C, ξ(t) = 0 for

t ≤ 1 and ξ(t) = 1 for t ≥ 2.

E2. Consider ξε(x) = ξ(|x|2/ε2). Prove that ξε(x) = 0 for |x| ≤ ε, ξε(x) = 1 for |x| ≥
√

2 ε and

|∇ξε(x)| ≤ C for some constant C.

E3. Prove that
∫

Ω Φ(x− y) ξε(x− y) f(y) dy converges uniformly to wf in Ω.

E4. Let f ∈ L∞(Ω). Prove that wf ∈ C1(Rd) and

Diwf (x) :=

∫
Ω
DiΦ(x− y) f(y) dy.

Hint: Use ξε to eliminate singularity in Φ(x− y), namely consider
∫

Ω Φ(x− y) ηε(x− y) f(y).

E5. Let f ∈ L∞(Ω)∩Cα(Ω) for some α ∈ (0, 1]. Consider Ω0 such that Ω ⊂ Ω0 and extend f = 0
in Ω0 \ Ω. Then wf ∈ C2(Ω) and

Di,jwf (x) =

∫
Ω0

Di,jΦ(x− y) (f(x)− f(y)) dy − f(x)

∫
∂Ω0

DiΦ(x− y)nj(y) dS(y)

where nj is the j-th component of n.

Steps:

(A) If f ∈ Cα(Ω), then there is a constant Cf such that for all x, y ∈ Ω,

|f(x)− f(y)| ≤ C |x− y|α.

Use this to prove that the function above (candidate for the second derivative) is well-

de�ned (�nite).

(B) As when computing �rst derivative, use function ξε to remove singularity around x ≈ y
and consider vε(x) =

∫
ΩDiΦ(x− y) ξε(x− y) f(y) dy. Observe that Ω may be replaced

with Ω0 in the de�nition of vε(x).

(C) Compute Djvε and split f(y) = (f(y) − f(x)) + f(x). Use integration by parts in the

second term. What can be said about ηε in the second term?

(D) Prove that Djvε converges uniformly to the candidate for Di,jwf (x). Combine this with
uniform convergence of vε to Diwf (x) and with the fact that C2 is a Banach space to

conclude the proof.

E6. Use formula for Di,jwf to �nally conclude ∆wf = −f in Ω.

E7. Compare this result with the theorem from the lecture (under assumption f ∈ C2
c (Rd)).

E8. Prove that when f ∈ L∞(Ω) ∩ Cα(Ω), there exists the unique C2(Ω) solution of Poisson

equation with boundary data g ∈ C(∂Ω). Compare again with the case Ω = Rd.

E9. Discuss how to consider Ω = Rd in the construction above.
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