Introduction to PDEs (SS 20/21), Problem Set B1

Introduction to distributions and differentiation

Compiled on 21/04/2021 at 6:41pm
Let T be a linear functional on $C_{c}^{\infty}(\Omega)$. We say that T is a distribution if for compact $V \subset \Omega$ there exists constants C, l such that

$$
|T(\varphi)| \leq C(V)\|\varphi\|_{C^{l}(V)},(\operatorname{supp} \varphi \subset V) .
$$

We write $\varphi \in \mathcal{D}^{\prime}(\Omega)$.
The minimal l that does not depend on V is called a degree of the distribution T.
A1. Let $u \in L_{l o c}^{1}(\Omega)$. Prove that u defines a distribution $T_{u}(\varphi)=\int_{\Omega} u(x) \varphi(x) \mathrm{d} x$ and find its degree. Prove that the embedding of $L_{\text {loc }}^{1}(\Omega)$ into $\mathcal{D}^{\prime}(\Omega)$ is injective.

A2. Let μ be a finite measure on Ω. Prove that μ defines a distribution $T_{\mu}(\varphi)=\int_{\Omega} \varphi(x) \mathrm{d} \mu(x)$ and find its degree. Prove that the embedding of $\mathcal{M}(\Omega)$ into $\mathcal{D}^{\prime}(\Omega)$ is injective.

A3. Let $k \in \mathbb{N}$ and $x_{0} \in \Omega$. Prove that $T_{k}(\varphi)=\varphi^{(k)}\left(x_{0}\right)$ is a distribution and find its degree.
A4. Prove that the formula $T(\varphi)=\sum_{k=1}^{\infty} \varphi^{(k)}(1 / k)$ defines a distribution on $\Omega=(0, \infty)$. Find its degree.

Given $T \in \mathcal{D}^{\prime}(\Omega)$ we define its derivative $D^{\alpha} T \in \mathcal{D}^{\prime}(\Omega)$ with

$$
D^{\alpha} T(\varphi)=(-1)^{|\alpha|} T\left(D^{\alpha} \varphi\right) .
$$

B1. Prove that $D^{\alpha} T$ is a distribution.
B2. Prove that if $u \in C_{c}^{\infty}(\Omega)$ and $T_{u}(\varphi)=\int_{\Omega} u(x) \varphi(x) \mathrm{d} x$ then $D^{\alpha} T_{u}(\varphi)=T_{D^{\alpha} u}(\varphi)$ (that is: distributional derivative coincides with the classical one!).

B3. Compute distributional derivative of the function $|x|$ on $(-1,1)$.
B4. Compute distributional derivative of the function $\mathbb{1}_{x>0}$ on $(-1,1)$.
B5. Let Φ be a fundamental solution to Laplace equation. Prove that $-\Delta \Phi=\delta_{0}$ in the sense of distributions. Hint: recall the formula proved in the lecture for all $u \in C^{2}(\Omega)$:

$$
u(x)=-\int_{\partial \Omega} u(y) \frac{\partial \Phi}{\partial \mathbf{n}}(y-x) \mathrm{d} S(y)+\int_{\partial \Omega} \Phi(y-x) \frac{\partial u}{\partial \mathbf{n}}(y) \mathrm{d} S(y)-\int_{\Omega} \Phi(y-x) \Delta u(y) \mathrm{d} y .
$$

B6. Prove that distributional derivatives satisfy Schwarz lemma (their order can be interchanged).
A Sobolev space $W^{k, p}(\Omega)$ is the space of all functions $u \in L^{p}(\Omega)$ such that for $|\alpha| \leq k$ the distributional derivative $D^{\alpha} u \in L^{p}(\Omega)$. It turns out to be a Banach space with an obvious norm.

C1. Write explicitly integral identity satisfied by derivatives of Sobolev functions.
C2. For which $1 \leq p \leq \infty,|x| \in W^{1, p}(-1,1)$?
C3. For which $1 \leq p \leq \infty, \mathbb{1}_{x>0} \in W^{1, p}(-1,1)$?

