Introduction to PDEs (SS 20/21), Problem Set B3

Sobolev spaces: important results

Compiled on 21/05/2021 at 3:49pm

This list contains exercises which should help to understand (formulation, special cases, proofs, applications) of important results about Sobolev spaces: smooth approximation, extension theorem, Sobolev embeddings and Reillich-Kondrachov theorem.

Smooth approximation

<u>Theorem</u>: Let Ω be bounded, $\partial \Omega$ be C^1 and $1 \leq p < \infty$. Then, for all $u \in W^{k,p}(\Omega)$ there exists a sequence $\{u_n\}_{n \in \mathbb{N}} \subset C^{\infty}(\overline{\Omega})$ such that $u_n \to u$ in $W^{k,p}(\Omega)$.

A1. Let $u \in W^{1,1}_{\text{loc}}(\mathbb{R}^n)$. Prove that if η_{ε} is a usual mollification kernel,

$$\partial_{x_i}(u * \eta_{\varepsilon}) = (\partial_{x_i}u) * \eta_{\varepsilon} = (\partial_{x_i}\eta_{\varepsilon}) * u$$

where $(\partial_{x_i} u)$ denotes weak derivative of u!

- A2. Let $u \in W^{1,p}(\Omega)$ and suppose that Du = 0 a.e. in Ω . Prove that u is constant.
- A3. Let $u \in W_0^{1,p}(\Omega)$. Prove that there exists a sequence $\{u_n\}_{n \in \mathbb{N}} \subset C_c^{\infty}(\Omega)$ such that $u_n \to u$ in $W^{1,p}(\Omega)$. Compare with the case $u \in W^{1,p}(\Omega)$.

Extension theorem

<u>Theorem:</u> If $1 \le p \le \infty$, Ω is bounded and $\partial \Omega$ is C^1 . Choose V such that U is compactly supported in V. Then, there exists a bounded linear operator

$$E: W^{1,p}(\Omega) \to W^{1,p}(\mathbb{R}^n)$$

such that Eu = u a.e. in Ω and Eu has support in V.

- B1. Let $u = \mathbb{1}_{[0,1]} \in W^{1,1}(0,1)$. Extend u to $W^{1,1}(\mathbb{R})$.
- B2. Let $u \in W_0^{1,p}(\Omega)$. Prove that the trivial extension $\widetilde{u}(x) = \begin{cases} u(x) & \text{if } x \in \Omega, \\ 0 & \text{if } x \in \mathbb{R}^n \setminus \Omega \end{cases}$ belongs to $W^{1,p}(\mathbb{R}^d)$ so that in this case we don't need extension theorem.
- B3. Discuss extension results for $C^k(\overline{\Omega})$ cf. Whitney Extension Theorem.

Trace operator

<u>Theorem</u>: If $1 \le p < \infty$, Ω is bounded and $\partial \Omega$ is C^1 there exists a bounded linear operator

$$T: W^{1,p}(\Omega) \to L^p(\partial\Omega)$$

such that $Tu = u|_{\partial\Omega}$ for $u \in W^{1,p}(\Omega) \cap C(\overline{\Omega})$. Moreover, $u \in W_0^{1,p}(\Omega)$ if and only if Tu = 0.

- C1. Prove that $1 \notin W_0^{1,p}(\Omega)$ so that the inclusion $W_0^{1,p}(\Omega) \subset W^{1,p}(\Omega)$ is strict.
- C2. Prove that there is no trace operator on $L^p(\Omega)$: prove that there does not exists a bounded linear operator

$$T: L^p(\Omega) \to L^p(\partial \Omega)$$

such that $Tu = u|_{\partial\Omega}$ whenever $u \in C(\overline{\Omega}) \cap L^p(\Omega)$.

- C3. (trace in 1D and $1) Prove that the functional <math>\varphi : W^{1,p}(0,1) \to \mathbb{R}$ defined with $\varphi(u) = u(0)$ is continuous. *Hint:* use continuous version of u.
- C4. This problem shows that all integration-by-parts formulas hold true for Sobolev functions if their boundary value is replaced with its trace. For example, prove that

$$\int_{\Omega} D_j u(x) v(x) + \int_{\Omega} u(x) D_j v(x) = \int_{\partial \Omega} (Tu)(x) (Tv)(x) n_j(x)$$

for $u \in W^{1,p}(\Omega)$, $v \in W^{1,p'}(\Omega)$, where Tu and Tv denotes traces of u and v, 1 and <math>p' is the usual Holder conjugate.

Sobolev embeddings

Theorem (Sobolev): If $1 \leq p < n$, Ω is bounded and $\partial\Omega$ is C^1 then $W^{1,p}(\Omega)$ is continuously embedded $\overline{\text{ded in } L^q \text{ where } q < p^*}$. Theorem (Morrey): If p > n, Ω is bounded and $\partial\Omega$ is C^1 then $W^{1,p}(\Omega)$ is continuously embedded in $C^{0,\gamma}$ for some $\gamma \in (0, 1)$.

Reillich-Kondrachov compactness

Theorem (R-K): If $1 \le p < n$, Ω is bounded and $\partial \Omega$ is C^1 then $W^{1,p}(\Omega)$ is compactly embedded in L^q where $q < p^*$.

- E1. Prove R-K theorem for p = 1 and n = 1, i.e. $W^{1,1}(I)$ is compactly embedded in $L^1(I)$. Follow the steps:
 - (A) Start with a sequence $\{u_n\}_{n\in\mathbb{N}}$ bounded in $W^{1,1}(I)$. Fix a bounded interval J and extend u_n to $W^{1,1}(\mathbb{R})$ such that support of u_n lies in J.
 - (B) Consider $u_n^{\varepsilon} = u_n * \eta_{\varepsilon}$. Prove that $u_n^{\varepsilon} \to u_n$ in $L^1(J)$, uniformly in n.
 - (C) Prove that if $\varepsilon > 0$ is fixed, the sequence $\{u_n^{\varepsilon}\}_{n \in \mathbb{N}}$ satisfies assumptions of Arzela-Ascoli Theorem.
 - (D) Fix $\delta > 0$. Prove that there exists a subsequence $\{u_{n_k}\}$ such that

$$\limsup_{n_k, n_l \to \infty} \|u_{n_k} - u_{n_l}\|_{L^1(J)} \le \delta.$$

(E) Conclude using diagonal argument and completeness of $L^1(J)$.

This is the case not commented in the book of Evans.

- E2. Go through the proof in Problem E1 and explain where one needs to use Sobolev embeddings in the general case.
- E3. Prove the following useful version of R-K theorem by considering p < n and $p \ge n$: if Ω is a bounded domain with C^1 boundary, $W^{1,p}(\Omega)$ is compactly embedded in $L^p(\Omega)$.
- E4. Prove that $W_0^{1,p}(\Omega)$ is compactly embedded in $L^p(\Omega)$, no matter whether boundary of Ω is smooth or not.
- E5. Formulate this in terms of compact operators from functional analysis.
- E6. Compare R-K theorem with Arzela-Ascoli theorem.

E7. By a usual contradiction argument prove Poincare inequality with averages:

$$\|u - (u)_{\Omega}\|_{L^{p}(\Omega)} \leq C(\Omega) \|Du\|_{L^{p}(\Omega)}.$$

E8. Let $u \in W^{1,p}(\Omega)$ where Ω is bounded and connected domain. Prove that if u vanishes on $U \subset \Omega$ and |U| > 0 then

$$\|u\|_{L^p(\Omega)} \le C(\Omega, U) \|Du\|_{L^p(\Omega)}.$$

E9. Deduce usual Poincare inequality for $u \in W_0^{1,p}(\Omega)$:

$$\|u\|_{L^p(\Omega)} \le C(\Omega) \|Du\|_{L^p(\Omega)}.$$

E10. Prove explicit form of Poincare inequality for balls: if $u \in W^{1,p}(B(x,r))$

$$||u - (u)_{B(x,r)}||_{L^{p}(B(x,r))} \le C r ||Du||_{L^{p}(B(x,r))}$$

and the constant C is independent of r. *Hint*: Consider v(y) = u(x + ry) and prove that $v \in W^{1,p}(B(0,1))$.

E11. Prove that if $u \in W^{1,n}(\mathbb{R}^n) \cap L^1(\mathbb{R}^n)$ then u belongs to the space of functions of bounded mean oscillation (BMO), i.e.

$$|u|_{BMO} := \sup_{B(x,r)} \frac{1}{|B(x,r)|} \int_{B(x,r)} |u - (u)_{B(x,r)}| < \infty$$

This is Sobolev embedding for p = n.