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Sobolev spaces: important results
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This list contains exercises which should help to understand (formulation, special cases, proofs, ap-

plications) of important results about Sobolev spaces: smooth approximation, extension theorem,

Sobolev embeddings and Reillich-Kondrachov theorem.

Smooth approximation
Theorem: Let Ω be bounded, ∂Ω be C1 and 1 ≤ p < ∞. Then, for all u ∈ W k,p(Ω) there exists a

sequence {un}n∈N ⊂ C∞(Ω) such that un → u in W k,p(Ω).

A1. Let u ∈W 1,1
loc

(Rn). Prove that if ηε is a usual molli�cation kernel,

∂xi(u ∗ ηε) = (∂xiu) ∗ ηε = (∂xiηε) ∗ u

where (∂xiu) denotes weak derivative of u!

A2. Let u ∈W 1,p(Ω) and suppose that Du = 0 a.e. in Ω. Prove that u is constant.

A3. Let u ∈ W 1,p
0 (Ω). Prove that there exists a sequence {un}n∈N ⊂ C∞c (Ω) such that un → u in

W 1,p(Ω). Compare with the case u ∈W 1,p(Ω).

Extension theorem
Theorem: If 1 ≤ p ≤ ∞, Ω is bounded and ∂Ω is C1. Choose V such that U is compactly supported

in V . Then, there exists a bounded linear operator

E : W 1,p(Ω)→W 1,p(Rn)

such that Eu = u a.e. in Ω and Eu has support in V .

B1. Let u = 1[0,1] ∈W 1,1(0, 1). Extend u to W 1,1(R).

B2. Let u ∈ W 1,p
0 (Ω). Prove that the trivial extension ũ(x) =

{
u(x) if x ∈ Ω,

0 if x ∈ Rn \ Ω
belongs to

W 1,p(Rd) so that in this case we don't need extension theorem.

B3. Discuss extension results for Ck(Ω) cf. Whitney Extension Theorem.

Trace operator
Theorem: If 1 ≤ p <∞, Ω is bounded and ∂Ω is C1 there exists a bounded linear operator

T : W 1,p(Ω)→ Lp(∂Ω)

such that Tu = u|∂Ω for u ∈W 1,p(Ω) ∩ C(Ω). Moreover, u ∈W 1,p
0 (Ω) if and only if Tu = 0.

C1. Prove that 1 /∈W 1,p
0 (Ω) so that the inclusion W 1,p

0 (Ω) ⊂W 1,p(Ω) is strict.

C2. Prove that there is no trace operator on Lp(Ω): prove that there does not exists a bounded

linear operator

T : Lp(Ω)→ Lp(∂Ω)

such that Tu = u|∂Ω whenever u ∈ C(Ω) ∩ Lp(Ω).
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C3. (trace in 1D and 1 < p < ∞) Prove that the functional ϕ : W 1,p(0, 1) → R de�ned with

ϕ(u) = u(0) is continuous. Hint: use continuous version of u.

C4. This problem shows that all integration-by-parts formulas hold true for Sobolev functions if

their boundary value is replaced with its trace. For example, prove that∫
Ω
Dju(x) v(x) +

∫
Ω
u(x)Djv(x) =

∫
∂Ω

(Tu)(x) (Tv)(x)nj(x)

for u ∈ W 1,p(Ω), v ∈ W 1,p′(Ω), where Tu and Tv denotes traces of u and v, 1 < p < ∞ and

p′ is the usual Holder conjugate.

Sobolev embeddings
Theorem (Sobolev): If 1 ≤ p < n, Ω is bounded and ∂Ω is C1 then W 1,p(Ω) is continuously embed-

ded in Lq where q < p∗.
Theorem (Morrey): If p > n, Ω is bounded and ∂Ω is C1 then W 1,p(Ω) is continuously embedded

in C0,γ for some γ ∈ (0, 1).

Reillich-Kondrachov compactness
Theorem (R-K): If 1 ≤ p < n, Ω is bounded and ∂Ω is C1 then W 1,p(Ω) is compactly embedded in

Lq where q < p∗.

E1. Prove R-K theorem for p = 1 and n = 1, i.e. W 1,1(I) is compactly embedded in L1(I). Follow
the steps:

(A) Start with a sequence {un}n∈N bounded inW 1,1(I). Fix a bounded interval J and extend

un to W 1,1(R) such that support of un lies in J .

(B) Consider uεn = un ∗ ηε. Prove that uεn → un in L1(J), uniformly in n.

(C) Prove that if ε > 0 is �xed, the sequence {uεn}n∈N satis�es assumptions of Arzela-Ascoli

Theorem.

(D) Fix δ > 0. Prove that there exists a subsequence {unk
} such that

lim sup
nk,nl→∞

‖unk
− unl

‖L1(J) ≤ δ.

(E) Conclude using diagonal argument and completeness of L1(J).

This is the case not commented in the book of Evans.

E2. Go through the proof in Problem E1 and explain where one needs to use Sobolev embeddings

in the general case.

E3. Prove the following useful version of R-K theorem by considering p < n and p ≥ n: if Ω is a

bounded domain with C1 boundary, W 1,p(Ω) is compactly embedded in Lp(Ω).

E4. Prove that W 1,p
0 (Ω) is compactly embedded in Lp(Ω), no matter whether boundary of Ω is

smooth or not.

E5. Formulate this in terms of compact operators from functional analysis.

E6. Compare R-K theorem with Arzela-Ascoli theorem.
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E7. By a usual contradiction argument prove Poincare inequality with averages:

‖u− (u)Ω‖Lp(Ω) ≤ C(Ω) ‖Du‖Lp(Ω).

E8. Let u ∈ W 1,p(Ω) where Ω is bounded and connected domain. Prove that if u vanishes on

U ⊂ Ω and |U | > 0 then

‖u‖Lp(Ω) ≤ C(Ω, U) ‖Du‖Lp(Ω).

E9. Deduce usual Poincare inequality for u ∈W 1,p
0 (Ω):

‖u‖Lp(Ω) ≤ C(Ω) ‖Du‖Lp(Ω).

E10. Prove explicit form of Poincare inequality for balls: if u ∈W 1,p(B(x, r))

‖u− (u)B(x,r)‖Lp(B(x,r)) ≤ C r ‖Du‖Lp(B(x,r))

and the constant C is independent of r. Hint: Consider v(y) = u(x + r y) and prove that

v ∈W 1,p(B(0, 1)).

E11. Prove that if u ∈ W 1,n(Rn) ∩ L1(Rn) then u belongs to the space of functions of bounded

mean oscillation (BMO), i.e.

|u|BMO := sup
B(x,r)

1

|B(x, r)|

∫
B(x,r)

|u− (u)B(x,r)| <∞

This is Sobolev embedding for p = n.
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