Introduction to PDEs (SS 20/21), Problem Set C1

Introduction to weak formulations

Compiled on 19/05/2021 at 6:46pm

This is a list of topics for discussion rather than list of problems but I believe it is somehow necessary in the first course on PDEs.

- 1. Consider the following three formulations of Poisson equation:
 - (A) $u \in C^2(\Omega), -\Delta u = f$ in Ω and u = 0 on $\partial \Omega$,
 - (B) $u \in C^1(\Omega), \int_{\Omega} \nabla u \cdot \nabla \varphi = \int_{\Omega} \varphi f$ for all $\varphi \in C_c^{\infty}(\Omega)$ and u = 0 on $\partial \Omega$,
 - (C) $u \in C(\Omega), \int_{\Omega} u \, \Delta \varphi = -\int_{\Omega} \varphi \, f \text{ for all } \varphi \in C_c^{\infty}(\Omega) \text{ and } u = 0 \text{ on } \partial \Omega$

Prove that if u solves (A) then it solves (B) and if u solves (B) then it solves (C).

- 2. Speaking about formulations (A) (C), for which of them you expect existence is easier to prove? Similarly, for which of them you expect uniqueness is easier to prove?
- 3. Consider formulations of Poisson equations in Sobolev spaces:
 - (A*) $u \in H^2(\Omega) \cap H^1_0(\Omega), -\Delta u = f$ a.e., (B*) $u \in H^1_0(\Omega), \int_{\Omega} \nabla u \cdot \nabla \varphi = \int_{\Omega} f \varphi$ for all $\varphi \in C^{\infty}_c(\Omega)$.

Prove that if u solves (A) then u solves (A^{*}). Similarly, if u solves (B) then u solves (B^{*}).

4. Prove that (B^*) is equivalent with

(B**)
$$u \in H_0^1(\Omega), \ \int_\Omega \nabla u \cdot \nabla \varphi = \int_\Omega f \varphi \text{ for all } \varphi \in H_0^1(\Omega).$$

This will be very useful for formulating PDEs in Hilbert spaces.

- 5. Sometimes higher regularity may upgrade weak formulation to the stronger one. For instance, suppose that u solves (B^{*}) and $u \in H^2(\Omega) \cap H^1_0(\Omega)$. Prove that u solves (A^{*}).
- 6. Let $b, c \in L^{\infty}(\Omega)$. For the following PDE

 $-\Delta u + c(x) u + b(x) \cdot \nabla u = 0 \text{ in } \Omega, \qquad u = 0 \text{ in } \partial\Omega,$

find weak formulation that makes sense for $u \in H_0^1(\Omega)$.

Conclusion: A good weak formulation:

- (A) agrees with a strong (classical) formulation,
- (B) has a solution (existence) and it is easy to prove so,
- (C) has the unique solution (uniqueness) and it is easy to prove so.

As we will see, for elliptic equations formulation (B^*) has all these features.