Introduction to PDEs (SS 20/21), Problem Set C2

Theory for elliptic equations in Hilbert spaces

Compiled on 08/06/2021 at 12:40 Noon

Lax-Milgram Lemma Let H be a Hilbert space. Let $a: H \times H \to \mathbb{R}$ be a continuous bilinear which is coercive, i.e.

 $a(u, u) \ge c ||u||^2$ for some constant c.

Then, for each $l \in H^*$ there is exactly one $u \in H$ such that a(u, v) = l(v) for all $v \in H$.

We proved this in Functional Analysis class under additional assumption that a(u, v) = a(v, u). Then a defines a scalar product on H and the conclusion follows from Riesz Representation Theorem.

1. We first use Lax-Milgram lemma to establish theory for Poisson equation $-\Delta u = f$ in Ω and u = 0 on $\partial \Omega$. We say that $u \in H_0^1$ is a weak solution if for all $\varphi \in H_0^1(\Omega)$ we have

$$\int_{\Omega} \nabla u \cdot \nabla \varphi = \int_{\Omega} f \varphi.$$

- (A) Prove that if $u \in C^2(\Omega) \cap C(\overline{\Omega})$ is a classical solution then u is a weak solution.
- (B) Prove that $H^1(\Omega)$ and $H^1_0(\Omega)$ are Hilbert spaces.
- (C) Prove that $a(u,\phi) := \int_{\Omega} \nabla u \cdot \nabla \varphi$ is a continuous bilinear coercive form on $H = H_0^1(\Omega)$.
- (D) Prove that $\varphi \mapsto \int_{\Omega} f \varphi$ is a continuous functional on $H = H_0^1(\Omega)$.
- (E) Use Lax-Milgram lemma to establish existence and uniquess for Poisson equation.
- (F) Btw, prove that it is sufficient to consider test functions $\varphi \in C_c^{\infty}(\Omega)$ in the definition of weak solution.
- 2. Let $\lambda \in \mathbb{R}$, $f \in L^2(\Omega)$ and consider equation

$$-\Delta u + \lambda u = f \text{ in } \Omega, \qquad u = 0 \text{ on } \partial \Omega.$$
(1)

- (A) Define weak solutions in $H_0^1(\Omega)$
- (B) For which λ one can use Lax-Milgram to obtain well-posedness of this problem in $H_0^1(\Omega)$?
- (C*) One can prove that in fact the unique solution to (1) belongs to $H^2(\Omega) \cap H^1_0(\Omega)$. Consider unbounded operator $A = \Delta$ with $D(A) = H^2(\Omega) \cap H^1_0(\Omega)$. Prove that $(0, \infty)$ belongs to the resolvet of A. Moreover, if $R_{\lambda} : L^2(\Omega) \to L^2(\Omega)$ is resolvent operator we have an estimate

$$||R_{\lambda}|| \le \frac{C}{\lambda} \qquad (\lambda > 0),$$

the constant C is independent of λ . This shows that A satisfies assumptions of Hille-Yosida theorem.

3. Let $f \in L^2(\Omega)$. We say that $u \in H^2_0(\Omega)$ is a weak solution to the biharmonic equation

$$\Delta^2 u = f \text{ in } \Omega, \qquad u = \frac{\partial u}{\partial \mathbf{n}} = 0 \text{ on } \partial \Omega$$

provided for all $\varphi \in H^2_0(\Omega)$ we have

$$\int_{\Omega} \Delta u \, \Delta \varphi = \int_{\Omega} f \, \varphi.$$

- (A) Suppose that $u \in C^4(\Omega) \cap C^1(\overline{\Omega})$ is a classical solution to the biharmonic equation. Prove that it is also a weak solution. *Hint:* If $u \in H^2_0(\Omega)$ then $u_{x_i} \in H^1_0(\Omega)$.
- (B) Prove that there exists the unique weak solution of biharmonic equation.
- 4. One can also consider problems with Neumann boundary condition, i.e.

$$-\Delta u = f$$
 in Ω and $\frac{\partial u}{\partial \mathbf{n}} = 0$ on $\partial \Omega$.

We say that $u \in H^1(\Omega)$ is a weak solution to this problem if for all $\varphi \in H^1(\Omega)$

$$\int_{\Omega} \nabla u \cdot \nabla \varphi = \int_{\Omega} f \, \varphi$$

- (A) Prove that if $u \in C^2(\Omega) \cap C^1(\overline{\Omega})$ is a strong solution then it is also a weak solution.
- (B) Prove that if there exists a solution u, we have $\int_{\Omega} f = 0$.
- (C) Consider $\mathcal{H} = \{ u \in H^1(\Omega) : \int_{\Omega} u = 0 \}$ and prove it is a closed subspace of $H^1(\Omega)$. Prove that there exists the unique weak solution in \mathcal{H} .
- (D) Explain why without restricting to \mathcal{H} one cannot expect uniqueness.

Hint: Recall Poincare inequality with averages.

5. Prove stability of solutions to Poisson equations in $H_0^1(\Omega)$, i.e. if u_1, u_2 are weak solutions to

$$-\Delta u_i = f_i$$
 in Ω and $u = 0$ on $\partial \Omega$

then

$$||u_1 - u_2||_{H^1} \le C(\Omega) ||f_1 - f_2||_2.$$

Hint: Recall ε -Cauchy-Schwartz inequality.

- 6. In what follows, $H^{-1}(\Omega) = (H^1_0(\Omega))^*$. Prove that:
 - (A) we have a continuous embedding $L^2 \subset H^{-1}(\Omega)$,
 - (B) in fact, a stronger result holds true: $L^q(\Omega) \subset H^{-1}(\Omega)$ with q_{\dots} ,
 - (C) prove that if $f \in L^2(\Omega)$ then $\partial_{x_i} f$ (in the sense of distributions!) belongs to $H^{-1}(\Omega)$,
 - (D) conclusion of Lax-Milgram lemma applied to Poisson equation is still valid if $f \in L^2(\Omega)$ is replaced with $f \in H^{-1}$.