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Solution to the 1st Special Problem

Assume contrary, i.e. there exists a countable infinite family {fi} consisting of elements from Hamel basis of E,
s.t. the projection functionals Pi are continuous. As Pi are nontrivial, then ||Pi|| 6= 0, so we may define

Qi :=
i

||Pi||
· Pi.

The functionals Qi are continuous with ||Qi|| = i. (*)

Note that for each x ∈ E we have supi∈N |Qi(x)| <∞, as Qi(x) is nonzero only for a finite number of i’s (because
x expressed as a sum of elements from Hamel basis has only finitely many nonzero components). As E is a
Banach space, then by Uniform Boundedness Principle follows that supi∈N ||Qi|| <∞, which is a contradiction
with (*).
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Solution to the 2nd Special Problem

For a fixed u ∈ H by Riesz theorem the functional a(u, ·) : H → R is of the form 〈u′, ·〉 for uniquely determined u′.
Therefore, we may define L : H → H as L(u) := u′.

Note that L is linear, bounded, injective and surjective:

• If β ∈ R, then for a fixed u ∈ H and any x ∈ H holds

〈L(βu), x〉 = a(βu, x) = βa(u, x) = β〈L(u), x〉 = 〈βL(u), x〉,

so L(βu) = βL(u). Moreover, if u, v ∈ H, then for any x ∈ H

〈L(u+ v), x〉 = a(u+ v, x) = a(u, x) + a(v, x) = 〈L(u), x〉+ 〈L(v), x〉 = 〈L(u) + L(v), x〉,

so L(u+ v) = L(u) + L(v), so L is indeed linear. (Summing up: linearity of L follows from a being linear
in first variable).

• Since a is continuous, then there is D > 0 s.t. for any u, v ∈ H holds a(u, v) ¬ D · ||u|| · ||v||. Therefore

||L(u)||2 = 〈L(u), L(u)〉 = a(u, L(u)) ¬ D · ||u|| · ||L(u)|| =⇒ ||L(u)|| ¬ D||u||,

so L is bounded. (Here we used just the continuity of a).

• If L wasn’t injective, then for some u 6= 0 we would have L(u) = 0. Then

0 < C · ||u||2 ¬ a(u, u) = 〈L(u), u〉 = 〈0, u〉 = 0,

a contadiction. (Here we used the coercivity of a).

• Firstly, let’s prove that ImL is closed. Let v, ui ∈ H be such that L(ui)
i→∞−−−→ v. Note that for any u ∈ H

holds
C · ||u||2 ¬ a(u, u) = 〈L(u), u〉 ¬ ||L(u)|| · ||u|| =⇒ ||u|| ¬ 1

C
· ||L(u)||,

so if L(ui) has a limit, then ui has a limit as well (denote it by u), but since L is continuous, then v = L(u)
is a limit of L(ui). Therefore v ∈ ImL, as desired.

If L was not surjective, then ImL is a proper closed subspace of H. This means that there exists a nonzero
m ∈ H, s.t. m ∈ (ImL)⊥. Then 0 < C · ||m||2 = a(m,m) = 〈L(m),m〉 = 0, as m ⊥ L(m). This is a
contradiction, so L is indeed surjective.

Let l ∈ H∗. By Riesz representation theorem there is a unique vl ∈ H, such that

〈vl, ·〉 = l(·).

Then, by our reasoning, there is a unique ul ∈ H (namely ul = L−1(v)), such that 〈vl, ·〉 = a(ul, ·). Altogether,
we conclude that there is a unique u := ul such that a(u, ·) = l(·), as desired.
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Solution to the 4th Special Problem

1. Let ϕ ∈ X∗. By problem H4 from PS6 we know there exists f ∈ X∗∗ such that

||f || = 1 and ||ϕ|| = f(ϕ).

Let i : X → X∗∗ be the canonical isometry between X and X∗∗. Let x0 = i−1(f) ∈ X. It is clear that
||x0|| = 1 and

f(ϕ) = i(x0)(ϕ) def. of i= ϕ(x0),

so indeed ||ϕ|| = ϕ(x0), as we wanted.

2. Let M be a closed (strictly contained) subspace of X. By H10 from PS6 we get that there is ϕ ∈ X∗ such
that ϕ 6= 0, ||ϕ|| = 1 and ϕ(x) = 0 for all x ∈M . By point 1. we conclude there is x0 ∈ X satisfying

||x0|| = 1 and ϕ(x0) = ||ϕ|| = 1.

Let m ∈M . Then
1 = ϕ(x0) = ϕ(x0)− ϕ(m) ¬ ||ϕ|| · ||x0 −m|| = ||x0 −m||,

so ||x0 −m||  1 for all m ∈M , which implies dist(x0,M) = 1.

3. Let u ∈ X. We claim that dist(u,M) = |
∫ 1
0 u|. Let c =

∫ 1
0 u and m ∈M . We see that

||u−m|| =
∫ 1
0
||u−m||dt 

∫ 1
0
|(u−m)(t)|dt 

∣∣∣∣∫ 1
0

(u−m)(t)dt
∣∣∣∣ =

∣∣∣∣∫ 1
0
u(t)dt

∣∣∣∣ = |c|,

so dist(u,M)  |c|. Now, let fn : [0, 1]→ R for n = 1, 2, . . . be defined as follows

fn(x) =

{
cx · 2n

2

2n−1 , if x ∈ [0, 1n ],
c · 2n2n−1 , otherwise.

Note that
∫ 1
0 fn = c, so u− fn ∈M . Then

||u− (u− fn)|| = ||fn|| = |c| ·
2n

2n− 1
n→∞−−−−→ |c|,

implying dist(u,M) ¬ |c|, so indeed dist(u,M) = |c|.

4. The set M is a closed (strictly contained) linear subspace of X. Let u ∈ X satisfy ||u|| = 1. Since u is
continuous and u(0) = 0, then

∃ε > 0 ∀x ∈ (0, ε) |u(x)| < 1
2
.

This together with ||u|| = 1 yields |
∫ 1
0 u| < 1, which by point 3. gives dist(u,M) < 1. In other words,

Riesz Lemma does not hold in X with the supremum norm.
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