Solution to the 1st Special Problem

Assume contrary, i.e. there exists a countable infinite family $\left\{f_{i}\right\}$ consisting of elements from Hamel basis of E, s.t. the projection functionals P_{i} are continuous. As P_{i} are nontrivial, then $\left\|P_{i}\right\| \neq 0$, so we may define

$$
Q_{i}:=\frac{i}{\left\|P_{i}\right\|} \cdot P_{i}
$$

The functionals Q_{i} are continuous with $\left\|Q_{i}\right\|=i .\left(^{*}\right)$

Note that for each $x \in E$ we have $\sup _{i \in \mathbb{N}}\left|Q_{i}(x)\right|<\infty$, as $Q_{i}(x)$ is nonzero only for a finite number of i 's (because x expressed as a sum of elements from Hamel basis has only finitely many nonzero components). As E is a Banach space, then by Uniform Boundedness Principle follows that $\sup _{i \in \mathbb{N}}\left\|Q_{i}\right\|<\infty$, which is a contradiction with $(*)$.

Solution to the 2nd Special Problem

For a fixed $u \in H$ by Riesz theorem the functional $a(u, \cdot): H \rightarrow \mathbb{R}$ is of the form $\left\langle u^{\prime}, \cdot\right\rangle$ for uniquely determined u^{\prime}. Therefore, we may define $L: H \rightarrow H$ as $L(u):=u^{\prime}$.

Note that L is linear, bounded, injective and surjective:

- If $\beta \in \mathbb{R}$, then for a fixed $u \in H$ and any $x \in H$ holds

$$
\langle L(\beta u), x\rangle=a(\beta u, x)=\beta a(u, x)=\beta\langle L(u), x\rangle=\langle\beta L(u), x\rangle,
$$

so $L(\beta u)=\beta L(u)$. Moreover, if $u, v \in H$, then for any $x \in H$

$$
\langle L(u+v), x\rangle=a(u+v, x)=a(u, x)+a(v, x)=\langle L(u), x\rangle+\langle L(v), x\rangle=\langle L(u)+L(v), x\rangle
$$

so $L(u+v)=L(u)+L(v)$, so L is indeed linear. (Summing up: linearity of L follows from a being linear in first variable).

- Since a is continuous, then there is $D>0$ s.t. for any $u, v \in H$ holds $a(u, v) \leqslant D \cdot\|u\| \cdot\|v\|$. Therefore

$$
\|L(u)\|^{2}=\langle L(u), L(u)\rangle=a(u, L(u)) \leqslant D \cdot\|u\| \cdot\|L(u)\| \Longrightarrow\|L(u)\| \leqslant D\|u\|
$$

so L is bounded. (Here we used just the continuity of a).

- If L wasn't injective, then for some $u \neq 0$ we would have $L(u)=0$. Then

$$
0<C \cdot\|u\|^{2} \leqslant a(u, u)=\langle L(u), u\rangle=\langle 0, u\rangle=0
$$

a contadiction. (Here we used the coercivity of a).

- Firstly, let's prove that $\operatorname{Im} L$ is closed. Let $v, u_{i} \in H$ be such that $L\left(u_{i}\right) \xrightarrow{i \rightarrow \infty} v$. Note that for any $u \in H$ holds

$$
C \cdot\|u\|^{2} \leqslant a(u, u)=\langle L(u), u\rangle \leqslant\|L(u)\| \cdot\|u\| \Longrightarrow\|u\| \leqslant \frac{1}{C} \cdot\|L(u)\|
$$

so if $L\left(u_{i}\right)$ has a limit, then u_{i} has a limit as well (denote it by u), but since L is continuous, then $v=L(u)$ is a limit of $L\left(u_{i}\right)$. Therefore $v \in \operatorname{Im} L$, as desired.
If L was not surjective, then $\operatorname{Im} L$ is a proper closed subspace of H. This means that there exists a nonzero $m \in H$, s.t. $m \in(\operatorname{Im} L)^{\perp}$. Then $0<C \cdot\|m\|^{2}=a(m, m)=\langle L(m), m\rangle=0$, as $m \perp L(m)$. This is a contradiction, so L is indeed surjective.

Let $l \in H^{*}$. By Riesz representation theorem there is a unique $v_{l} \in H$, such that

$$
\left\langle v_{l}, \cdot\right\rangle=l(\cdot) .
$$

Then, by our reasoning, there is a unique $u_{l} \in H$ (namely $u_{l}=L^{-1}(v)$), such that $\left\langle v_{l}, \cdot\right\rangle=a\left(u_{l}, \cdot\right)$. Altogether, we conclude that there is a unique $u:=u_{l}$ such that $a(u, \cdot)=l(\cdot)$, as desired.

Solution to the 4Th Special Problem

1. Let $\varphi \in X^{*}$. By problem H4 from PS6 we know there exists $f \in X^{* *}$ such that

$$
\|f\|=1 \quad \text { and } \quad\|\varphi\|=f(\varphi)
$$

Let $i: X \rightarrow X^{* *}$ be the canonical isometry between X and $X^{* *}$. Let $x_{0}=i^{-1}(f) \in X$. It is clear that $\left\|x_{0}\right\|=1$ and

$$
f(\varphi)=i\left(x_{0}\right)(\varphi) \stackrel{\text { def. of } i}{=} \varphi\left(x_{0}\right)
$$

so indeed $\|\varphi\|=\varphi\left(x_{0}\right)$, as we wanted.
2. Let M be a closed (strictly contained) subspace of X. By H10 from PS6 we get that there is $\varphi \in X^{*}$ such that $\varphi \neq 0,\|\varphi\|=1$ and $\varphi(x)=0$ for all $x \in M$. By point 1 . we conclude there is $x_{0} \in X$ satisfying

$$
\left\|x_{0}\right\|=1 \quad \text { and } \quad \varphi\left(x_{0}\right)=\|\varphi\|=1
$$

Let $m \in M$. Then

$$
1=\varphi\left(x_{0}\right)=\varphi\left(x_{0}\right)-\varphi(m) \leqslant\|\varphi\| \cdot\left\|x_{0}-m\right\|=\left\|x_{0}-m\right\|,
$$

so $\left\|x_{0}-m\right\| \geqslant 1$ for all $m \in M$, which implies $\operatorname{dist}\left(x_{0}, M\right)=1$.
3. Let $u \in X$. We claim that $\operatorname{dist}(u, M)=\left|\int_{0}^{1} u\right|$. Let $c=\int_{0}^{1} u$ and $m \in M$. We see that

$$
\|u-m\|=\int_{0}^{1} \| u-m| | \mathrm{d} t \geqslant \int_{0}^{1}|(u-m)(t)| \mathrm{d} t \geqslant\left|\int_{0}^{1}(u-m)(t) \mathrm{d} t\right|=\left|\int_{0}^{1} u(t) \mathrm{d} t\right|=|c|
$$

so $\operatorname{dist}(u, M) \geqslant|c|$. Now, let $f_{n}:[0,1] \rightarrow \mathbb{R}$ for $n=1,2, \ldots$ be defined as follows

$$
f_{n}(x)= \begin{cases}c x \cdot \frac{2 n^{2}}{2 n-1}, & \text { if } x \in\left[0, \frac{1}{n}\right], \\ c \cdot \frac{2 n}{2 n-1}, & \text { otherwise }\end{cases}
$$

Note that $\int_{0}^{1} f_{n}=c$, so $u-f_{n} \in M$. Then

$$
\left\|u-\left(u-f_{n}\right)\right\|=\left\|f_{n}\right\|=|c| \cdot \frac{2 n}{2 n-1} \xrightarrow{n \rightarrow \infty}|c|,
$$

implying $\operatorname{dist}(u, M) \leqslant|c|$, so indeed $\operatorname{dist}(u, M)=|c|$.
4. The set M is a closed (strictly contained) linear subspace of X. Let $u \in X$ satisfy $\|u\|=1$. Since u is continuous and $u(0)=0$, then

$$
\exists \epsilon>0 \forall x \in(0, \epsilon) \quad|u(x)|<\frac{1}{2}
$$

This together with $\|u\|=1$ yields $\left|\int_{0}^{1} u\right|<1$, which by point 3 . gives $\operatorname{dist}(u, M)<1$. In other words, Riesz Lemma does not hold in X with the supremum norm.

