
Functional Analysis (WS 19/20)

(Special Problems)

Rules: Each problem has assigned deadline for submission of the solution. If the problem remains
unsolved, the deadline is extended and some hints are provided. Each problem is worth 2 points in
the tutorial classi�cation (added independently of regular homeworks, active class participation).
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1 Projection functionals onto Hamel basis elements are usually not
continuous.

Announced: 4/11/2019, Deadline: 21/11/2019.

Let (E, ‖ · ‖) be an in�nite-dimensional normed space. Recall the following facts:

• if (E, ‖ · ‖) is a Banach space then using Baire Category Theorem we proved that Hamel basis
of E is not countable (Problem B1, Problem Set 3),

• projections onto vectors from Hamel basis are not continuous in general � we considered space
of polynomials with L1 norm and projection of (x− 1)n onto vector 1 (Problem A2, Problem
Set 2).

In what follows, we will see that not so many such functionals can be actually continuous. Let
(E, ‖ · ‖) be a Banach space and {eα}α∈A be its Hamel basis. Choose countable subset {fi}i∈N ⊂
{eα}α∈A and consider projection functionals Pi : E → R onto fi such that

Pi(x) = a whenever Hamel decomposition of x is x = afi + ...

Prove that at most �nitely many of Pi can be continuous.

2 Lax�Milgram Lemma for nonsymmetric bilinear forms.

Announced: 9/11/2019, Deadline: 5/12/2019.

Let (H, ‖ · ‖) be a Hilbert space. Suppose that a : H ×H → R is a bilinear continuous form that
is coercive, i.e. there is a constant C > 0 such that a(u, u) ≥ C‖u‖2H . Moreover, let l ∈ H∗. Prove
that there exists uniquely determined u ∈ H such that

a(u, v) = l(v)

holds for all v ∈ H.

Note: We have already seen this result in case of symmetric bilinear forms (Problem R3, Problem
Set 5). Hint: De�ne A : H → H∗ and try to use Riesz Representation Theorem.

3 Explicit construction of Brownian motion (counts as 2 special
problems).

Announced: 9/11/2019, Deadline: 5/12/2019.

The following problem is supposed to present some applications of Hilbert spaces theory in Proba-
bility. Much of the current research e�ort is put on the topics around Brownian motion, i.e. family
of random variables {Bt}t∈[0,1] indexed with time t ∈ [0, 1]. More precisely, let (Ω,F ,P) be a
probability space. We say that the family of random variables {Bt}t∈[0,1] is a Brownian motion on
(Ω,F ,P) if

1. B0 = 0 almost surely,
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2. Bt−Bs is distributed normally with N (0, t−s) for t > s (we say it has stationary increments),

3. Bt has independent increments, i.e. for all 0 ≤ t1 ≤ t2 ≤ ... ≤ tn ≤ 1 we have that random
variables Btn −Btn−1 , Btn−1 −Btn−2 , ..., Bt1 are independent,

4. Bt has almost surely continuous paths, i.e. for a.e. ω ∈ Ω, the map [0, 1] 3 t 7→ Bt(ω) is
continuous.

One can read a lot about motivations for considering such process in countless Internet materi-
als. Standard construction of Brownian motion is based on the Kolmogorov Existence Theorem
which is extremely technical and measure-theoretical so it does not say too much about nature
of the constructed process. In what follows, we present explicit construction of Brownian motion
due to Ciesielski. This requires basic notions of Probability Theory like characteristic functions,
convergence a.e., convergence in probability, etc.

1. Let {φn}n∈N be an orthonormal basis of L2(0, 1). We set ψn(t) =
∫ t
0 φn(s) ds. Let {ξn}n∈N be

i.i.d. random variable with N (0, 1) distribution on some probability space (Ω,F ,P). Prove
that the series

Bt =
∞∑
n=1

ξnψn(t)

converges in L2(Ω,F ,P). This is our candidate for Brownian motion. Remark: Using Levy
Theorem (series of independent random variables converges almost surely if and only if it
converges in probability), one can deduce that Bt converges also almost surely.

2. Check that Bt has independent and stationary increments. Hint: To check independence of
increments, it may be helpful to study characteristic functions.

3. We need to prove continuity of paths. To this end, we use Haar functions. We set φ0 = 1.
Moreover, for all n ∈ N and 1 ≤ k ≤ 2n we de�ne

φn,k(t) =


+2n/2 if k−12n ≤ t ≤

k−(1/2)
2n ,

−2n/2 if k−(1/2)2n < t ≤ k
2n ,

0 otherwise.

Check that the system {φn,k}n∈N,1≤k≤2n ∪ {φ0} is an orthonormal basis of L2(0, 1).

4. Prove that the series in point (1) with Haar functions used as an orthonormal basis of L2(0, 1)
converges uniformly on [0, 1] almost surely. Hence, the limit is almost surely continuous. Hint:
Use Borel-Cantelli Lemma and estimate Gaussian tails.

4 Special cases of Riesz Lemma.

Announced: 19/11/2019, Deadline: 19/12/2019.

We have seen the following result in the tutorials. Let (X, ‖ · ‖) be a normed space and M ⊂ X a
closed linear subspace that is strictly contained. For each α ∈ (0, 1) there is xα such that ‖xα‖ = 1
and dist(xα,M) ≥ α. Here, we will see that for re�exive Banach spaces, case α = 1 is also true.
Moreover, we prove that otherwise the result with α = 1 conclusion may fail. This is accompanied
with few results that are of independent interest.
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1. Let (X, ‖ · ‖) be a re�exive Banach space (i.e. X∗∗ = X up to the canonical isometric
isomorphism1). Prove that the norm of bounded linear functionals from X∗ is attained, i.e.
for any ϕ ∈ X∗ there is some x ∈ X with ‖x‖ = 1 such that ϕ(x) = ‖ϕ‖.

2. Let (X, ‖ · ‖) be a re�exive Banach space. Prove that Riesz Lemma holds for α = 1.

3. Consider X = {f ∈ C[0, 1] : f(0) = 0} with the supremum norm and let ϕ(f) =
∫ 1
0 f(s) ds ∈

X∗. Let M = ker ϕ. For given u ∈ X, compute dist(u,M). Remark: It is quite remarkable
that the result of this computation can be easily generalized to other functionals.

4. Prove that Riesz Lemma does not hold in X with the supremum norm.

5 Only linear functions are weakly continuous.

Announced: 19/11/2019, Deadline: 19/12/2019.

In nonlinear analysis, it is important to be able to extract converging (in some, usually, weak sense)
subsequences from a bounded ones by means of some Banach�Alaoglu type theorems. However,
in applications, one usually deals with functions evaluated on this sequences. For instance, when
looking for the minimum of a continuous function f : [0, 1]→ R, we extract converging subsequence
xnk
⊂ [0, 1] but then, we are actually interested in the properties of f(xnk

).

In the following, we prove that if a : R → R is weakly continuous, then a is an a�ne functions.
Hence, in general weak continuity cannot be expected from nonlinear functions.

1. Let u : R→ R be a bounded, 1-periodic function. Let un(x) = u(nx). Prove that

un ⇀m =

∫ 1

0
u(x) dx in L2(A)

for every open, bounded set A ⊂ R.

2. Let a : R→ R be a continuous function such that

a(fn) ⇀ a(f) in L2(0, 1) whenever fn ⇀ f in L2(0, 1).

Prove that a is a�ne, i.e. there are α and β such that a(z) = αz + β.

6 Banach-Alaoglu Theorem for re�exive and separable spaces (with
applications).

Announced: 19/11/2019, Deadline: 19/12/2019.

In the following, we will see that although nonlinearities do not preserve weak limits (as was discussed
in Problem 5), weak convergence can be still used to study minimization problems for the nonlinear
functions de�ned on in�nite dimensional Banach spaces.

1In the original version of the problem it was stated that X∗∗ = X up to an isometric isomorphism. This is not
true. Due to James (1951), there are Banach spaces X isometrically isomorphic to X∗∗ but not re�exive � see James'
space on Wikipedia. Re�exivity is based on an isometric isomorphism that is precisely a point evaluation. To be
clear, we say that X is re�exive if there exists isometric isomorphism J : X → X∗∗ such that for all x ∈ X and
ϕ ∈ X∗ we have (Jx)(ϕ) = ϕ(x). That was pointed out by Kuba Wo¹nicki.
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1. We start with generalization of Banach - Alaoglu Theorem. Let (E, ‖ · ‖) be a re�exive
and separable Banach space. Prove that if {xn}n∈N is a bounded sequence in E, there is a
subsequence of {xn}n∈N converging weakly in E.

2. Let F : E → R be a convex function. We say that F is strongly lower semicontinuous if

F (x) ≤ lim inf
n→∞

F (xn) whenever xn → x.

Similarly, we say that F is weakly lower semicontinuous if

F (x) ≤ lim inf
n→∞

F (xn) whenever xn ⇀ x.

Use Riesz Lemma (Problem W7 in Problem Set 6) to deduce that if F is strongly lower
semicontinuous and convex, then F is weakly lower semicontinuous.

3. Let (E, ‖ · ‖) be a re�exive and separable Banach space. Let A ⊂ E be a nonempty, closed,
bounded and convex subset of E. Let ϕ : A→ R be a convex and strongly lower semicontin-
uous function. Prove that ϕ attains its minimum on A, i.e. there is some x0 ∈ A such that
ϕ(x0) = infx∈Aϕ(x).

4. Prove that if the subset A ⊂ E in part (3) is not bounded, then the assertion is still valid
under additional hypothesis on ϕ. Namely,

lim
x∈A,‖x‖→∞

ϕ(x) =∞.

Remark 1. The techniques developed in this Problem form foundations for recent research in the
theory of optimal transport (see Optimal Transport for Applied Mathematicians by F. Santambro-
gio) and theoretical materials science (see, for instance, Calculus of variations by F. Rindler).

Remark 2. Banach-Alaoglu Theorem holds in much more general situations and is usually formulated
for the so-called weak∗-convergence (this type of convergence coincides with the weak one in re�exive
spaces).

7 Spectrum of a bounded operator is nonempty.

Announced: 20/12/2019, Deadline: 16/01/2020.

Let A : H → H be a bounded linear operator on the complex Hilbert space.

(a) Prove that σ(A) is nonempty.
Hint: Try to combine Liouville Theorem on C with the inverse (A − λI)−1. Please, do not
generalize the whole theory of analytic functions to the H-valued case.

(b) Show that the assertion does not hold for real Hilbert spaces, i.e. �nd operator A : H → H
on real Hilbert space H such that σ(A) is empty.
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8 Fredholm alternative.

Announced: 20/12/2019, Deadline: 16/01/2020.

A fundamental result in the theory of compact operators is Fredholm alternative. Let A : X → X
where A is a compact linear operator andX is a Banach space. Then, for λ 6= 0, Fredhold alternative
asserts that precisely one of the following holds:

(A) There is a nontrivial x ∈ X such that Ax = λx.

(B) The operator A− λI has a bounded inverse.

This is some generalization of what one is usually taught at the Linear Algebra course: if A ∈ Rn×n
then Ax = b has the unique solution if and only if Ax = 0 is satis�ed by x = 0 only.

Warning: Do not apply spectral characterization of compact operators in parts (b), (c) and (d)!

Advice: It may be quite confusing to speak about eigenvalueas and spectrum for Banach space
X as this stu� was introduced in the framework of Hilbert spaces. However, all de�nitions can be
easily generalized to the case of Banach space.

(a) Find examples showing that both assumptions (A is compact, λ 6= 0) are necessary.

(b) Prove that if λ is not an eigenvalue of A, there is a constant c > 0 such that for all x ∈ X:

‖(A− λI)x‖ ≥ c‖x‖.

(c) Prove that if λ is not an eigenvalue of A, then the image of A− λI is closed in X.

(d) Use Riesz Lemma to prove Fredholm alternative.

9 Marcinkiewicz Interpolation Theorem.

Announced: 1/01/2020, Deadline: 23/01/2020.

In the tutorials we have used Riesz�Thorin Interpolation Theorem to draw some conclusions about
boundedness of convolution and Fourier transform. Another result in this spirit is Marcinkiewicz
Interpolation Theorem which, brie�y speaking, asserts that if T : Lp → Lp and T : Lq → Lq then
T : Lr → Lr for all p < r < q. However, the result of Marcinkiewicz is valid in much more general
setting and we will use this opportunity to introduce weak Lp spaces.

Let (Ω,F , µ) be a σ-�nite measure space. We write that f ∈ Lp,∞ if the norm

‖f‖p,∞ = sup
λ>0

λµ(|f(x)| > λ)
1
p <∞

for p ∈ [1,∞) and ‖f‖p,∞ = ‖f‖∞. The space Lp,∞ is sometimes called weak Lp space but we
remark that it does not have anything to do with weak convergence in Lp. As some preliminary
exercises, establish the following:

(A) If f ∈ Lp, then f ∈ Lp,∞.
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(B) There is a function f ∈ Lp,∞ such that f /∈ Lp (case X = R is su�cient).

(C) If f ∈ Lp and 1 ≤ p0 < p < p1 ≤ ∞ one can �nd f0 ∈ Lp0 and f1 ∈ Lp1 such that f = f0 + f1.

(D) If ϕ : [0,∞)→ R is an increasing and di�erentiable function with ϕ(0) = 0 then∫
X
ϕ(|f |(x)) dµ(x) =

∫ ∞
0

ϕ′(t)µ(|f | > t) dt.

In particular, consider ϕ(t) = tp.

Now, we state the Marcinkiewicz Interpolation Theorem.

Theorem. Let T be an operator from Lp + Lq to a complex-valued measurable functions where
1 ≤ p, q ≤ ∞. Assume that T is sublinear i.e. there is a constant c > 0 such that

|T (f + g)| ≤ c|Tf |+ c|Tg|, |T (λf)| = |λ| |Tf | for all λ ∈ C.

Moreover, assume that T is a bounded operator as a map from Lp to Lp,∞ and from Lq to Lq,∞.
Then, T is a bounded operator from Lr to Lr for all r ∈ (p, q).

(E) Use (A), (C) and (D) to prove Marcinkiewicz Interpolation Theorem.

Remark: One of the numerous applications of this result is Lp boundedness of maximal operator
for 1 < p <∞. More precisely, for f ∈ L1

loc(Rd) one can de�ne

Mf(x) = sup
B

1

|B|

∫
B
|f(x)| dx

where the supremum is taken over all balls containing x. It is trivial that M : L∞ → L∞ and
it is also not so di�cult to see that M : L1 → L1,∞ and so Marcinkiewicz Theorem implies that
M : Lp → Lp for 1 < p < ∞. The important point here is that it not true that M : L1 → L1.
Maximal operators are useful in demonstrating pointwise properties of Lp functions like Lebesgue
Di�erentiation Theorem.

10 Fourier series does not converge for every continuous function.

Announced: 1/01/2020, Deadline: 23/01/2020.

Let SNf(x) =
∑N

k=−N f̂(k)e2π i kx be the partial sum of the Fourier series of function f de�ned on
[0, 1) and extended periodically to R. Recall that:

f̂(k) =

∫ 1

0
f(t)e−2π i kt dt.

In the tutorials, we have seen that if f is continuous and satis�es Dini's condition:

there is δ > 0 such that

∫
|t|<δ

|f(t+ x)− f(x)|
|t|

dt <∞

then SNf(x)→ f(x) as N →∞. Here, we will see that continuity of f is not su�cient for pointwise
convergence of SNf(x) to f(x).

(A) Let DN (x) =
∑N

k=−N e
2π i kx be the Dirichlet kernel. Prove that when N is large, ‖DN‖1

behaves like logN . Hence, as N →∞, ‖DN‖1 →∞.

(B) Prove that there is a continuous 1-periodic continuous function f ∈ C(R) such that |SNf(0)|
diverges to ∞.
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