Functional Analysis (WS 19/20), Big Homework 1

deadline: 31/10/2019 (group no. 1), 5/11/2019 (group no. 2)
Important: Each problem should be solved on a separate piece of paper signed with your name, student id number and group number (1 or 2).

1. Consider set $C^{1}[0,1]$ of continuously differentiable functions on $[0,1]$. We define

$$
\|f\|_{C}:=|f(0)|^{1}+\sup _{x \in[0,1]}\left|f^{\prime}(x)\right|
$$

and

$$
\|f\|_{D}:=\left(\int_{0}^{1}(f(x))^{2} d x\right)^{\frac{1}{2}}+\left(\int_{0}^{1}\left(f^{\prime}(x)\right)^{2} d x\right)^{\frac{1}{2}}
$$

Are $\left(C^{1}[0,1],\|f\|_{C}\right)$ and $\left(C^{1}[0,1],\|f\|_{D}\right)$ normed spaces? Are they Banach spaces?
2. Let $1 \leq p \leq \infty$ and $T: l^{p} \rightarrow l^{p}$ be defined with

$$
T\left(\left(a_{n}\right)_{n \geq 1}\right)=\left(a_{n+1}-a_{n}\right)_{n \geq 1} .
$$

Check that T is well - defined (i.e. $T\left(\left(a_{n}\right)_{n \geq 1}\right) \in l^{p}$ whenever $\left(a_{n}\right)_{n \geq 1} \in l^{p}$), prove that it is a bounded linear operator and compute its norm.
3. Let $\left(X,\|\cdot\|_{X}\right)$ be a normed space and $\left(Y,\|\cdot\|_{Y}\right)$ be a Banach space. Suppose that D is a dense linear subspace of X and $T:\left(D,\|\cdot\|_{X}\right) \rightarrow\left(Y,\|\cdot\|_{Y}\right)$ is a bounded linear operator. Prove that T has a unique bounded ${ }^{2}$ extension to X which preserves the norm. Hint: If $x \in X \backslash D$, there is a sequence $\left(x_{n}\right)_{n \in \mathbb{N}} \subset D$ such that $\left\|x_{n}-x\right\|_{X} \rightarrow 0$ as $n \rightarrow \infty$.

By an extension of T to X which preserves the norm, we mean an operator $\tilde{T}: X \rightarrow Y$ such that $\tilde{T}=T$ on $D \subset X$ and $\|T\|_{\mathcal{L}(D, Y)}=\|\tilde{T}\|_{\mathcal{L}(X, Y)}{ }^{3}$
4. Let $\left(x_{n}\right)_{n \geq 1}$ be a sequence of real numbers such that whenever $\left(y_{n}\right)_{n \geq 1}$ is a real sequence converging to 0 we have that $\sum_{n \geq 1} x_{n} y_{n}$ is convergent. Prove that $\sum_{n \geq 1}\left|x_{n}\right|$ is convergent. Hint: for $y \in c_{0}$, consider $T_{n} \in\left(c_{0}\right)^{*}$ defined with $T_{n}(y)=\sum_{k=1}^{n} x_{k} y_{k}$.

[^0]
[^0]: ${ }^{1}$ Update on 23.10.2019: $f(0)$ replaced with $|f(0)|$.
 ${ }^{2}$ Update on 26.10.2019: I added information that extension is bounded (but it actually follows from condition $\|T\|_{\mathcal{L}(D, Y)}=\|\tilde{T}\|_{\mathcal{L}(X, Y)}$.
 ${ }^{3}$ Update on 19.10.2019: I added clarification what we mean by extension of operator.

