Functional Analysis (WS 19/20), Big Homework 2

deadline: 14/11/2019 (both groups, 13:45, room 3140 - after class)

Important: Each problem should be solved on a separate piece of paper signed with your name, student id number and group number (1 or 2).

1. Let $(E, \|\cdot\|_E)$ be a normed space and $f: [0,1] \to E$ be a continuous map. Prove that

 $||f||_{\infty} = \sup\{||f(x)||_E : x \in [0,1]\}$

defines a norm on the space C([0, 1]; E), i.e. space of continuous E-valued functions.

Moreover, suppose additionally that $(E, \|\cdot\|_E)$ is a Banach space. Prove that C([0, 1]; E) is also a Banach space.

2. Let $(E, \|\cdot\|_E)$ be a Banach space and $A: E \to E$ a bounded linear operator. Suppose that there is a natural number $n \in \mathbb{N}$ and real numbers c_1, \dots, c_n such that

$$I + c_1 A + \dots + c_n A^n = 0$$

where I is the identity operator. Prove that A^{-1} exists and it is a bounded linear operator.

3. Consider

$$X = \{ f \in L^2(-1,1) : f(x) = f(-x) \}$$

as a subspace of $L^2(-1,1)$. Find explicitly X^{\perp} in $L^2(-1,1)$ and compute explicitly projection operator on the space X.

- 4. Let $(E, \|\cdot\|_E)$ be a Banach space and $\varphi: E \to \mathbb{R}$ be a linear functional on E.
 - (a) Prove that if $\varphi \neq 0$, then there is a one dimensional subspace $F \subset E$ such that

$$E = \ker \varphi \oplus F$$

i.e. for all $x \in E$, there are uniquely determined $y \in \ker \varphi$ and $z \in F$ such that x = y + z.

(b) Prove that $\varphi \in E^*$ (i.e. it is bounded) if and only if its kernel is closed in E.

Recall: By a kernel of a linear functional φ we mean the set ker $\varphi = \{x \in E : \varphi(x) = 0\}$.