Functional Analysis (WS 19/20), Big Homework 3

deadline: 5/12/2019 (group 1), TBD (group 2)

Important: Each problem should be solved on a separate piece of paper signed with your name, student id number and group number (1 or 2).

1. (Clarkson's first inequality) Let $2 \le p < \infty$ and $(\Omega, \mathcal{F}, \mu)$ be a σ -finite measure space. Prove that for all $f, g \in L^p(\Omega, \mathcal{F}, \mu)$:

$$\left\|\frac{f+g}{2}\right\|_{p}^{p}+\left\|\frac{f-g}{2}\right\|_{p}^{p} \le \frac{\|f\|_{p}^{p}+\|g\|_{p}^{p}}{2}.$$

Conclude that $L^p(\Omega, \mathcal{F}, \mu)$ is uniformly convex for $2 \leq p < \infty$ (see Problem P5 in Problem Set 5 for definition and uniform convexity of Hilbert spaces). *Hint:* Simplify the problem to some inequality for real numbers. *Remark:* Compare with Problem P5 in Problem Set 5.

2. Prove that the map $T: l^1 \to (c_0)^*$ given with

$$(Ty)(x) = \sum_{i=1}^{\infty} x_i y_i$$

is well-defined, injective, surjective and isometry (i.e. $\|y\|_{l_1} = \|Ty\|_{(c_0)^*}$). Conclude that $(c_0)^* = l_1$. *Hint*: Recall Schauder basis for c_0 : if $x = (x_1, x_2, ...) \in c_0$ then projection of x given with $x^k = (x_1, ..., x_k, 0, 0, ...)$ converges to x in c_0 .

3. Let $(E, \|\cdot\|)$ be a Banach space and $A \subset E$ be its subset. Suppose that for every $f \in E^*$, the set

$$f(A) = \{f(x) : x \in A\}$$

is bounded in \mathbb{R} . Prove that A is a bounded set in E (i.e. one can find a ball B(0, R) for some R > 0 such that $A \subset B(0, R)$).

4. Let X be a vector space (not necessarily normed or Banach) over \mathbb{R} . Let φ , φ_1 , ..., φ_k be linear functionals on \mathbb{R} (i.e. linear maps from X to \mathbb{R}). Suppose that

$$(\forall_{i=1,\dots,k} \varphi_i(v) = 0) \implies \varphi(v) = 0.$$

Prove that φ is a linear combination of $\varphi_1, ..., \varphi_k$, i.e. there are real numbers $\lambda_1, ..., \lambda_k$ such that $\varphi = \sum_{n=1}^k \lambda_n \varphi_n$. *Hint:* Consider $F(x) = (\varphi_1(x), ..., \varphi_k(x), \varphi(x))$.

- 5. Let 1 .
 - Let $\alpha, \beta \in \mathbb{R}$ and set $f(x) = \begin{cases} \alpha & x \in [0, 1/2] \\ \beta & x \in (1/2, 1] \end{cases}$. Then, extend f periodically on \mathbb{R} . Finally, we set $f_n(x) = f(nx)$. Decide whether sequence $\{f_n\}_{n \in \mathbb{N}}$ converges weakly in $L^p(0, 1)$ and if yes, determine the limit.
 - Suppose $u \in L^p(\mathbb{R})$. We set $g_n(x) = u(x+n)$. Decide whether sequence $\{g_n\}_{n \in \mathbb{N}}$ converges weakly in $L^p(\mathbb{R})$ and if yes, determine the limit.
 - Let $h_n(x) = n^{1/p} e^{-nx}$. Prove that $g_n \to 0$ a.e., sequence $\{g_n\}_{n \in \mathbb{N}}$ is bounded in $L^p(0, 1)$, g_n converges weakly¹ to 0 in $L^p(0, 1)$ but does not converge in norm (strongly) in $L^p(0, 1)$.

¹Update on 29/11/2019: converges weakly to 0 in $L^{p}(0, 1)$ but does not strongly (in norm).