Functional Analysis (WS 19/20), Big Homework 3

deadline: 5/12/2019 (group 1), TBD (group 2)

Important: Each problem should be solved on a separate piece of paper signed with your name, student id number and group number (1 or 2).

1. (Clarkson's first inequality) Let $2 \leq p<\infty$ and $(\Omega, \mathcal{F}, \mu)$ be a σ-finite measure space. Prove that for all $f, g \in L^{p}(\Omega, \mathcal{F}, \mu)$:

$$
\left\|\frac{f+g}{2}\right\|_{p}^{p}+\left\|\frac{f-g}{2}\right\|_{p}^{p} \leq \frac{\|f\|_{p}^{p}+\|g\|_{p}^{p}}{2}
$$

Conclude that $L^{p}(\Omega, \mathcal{F}, \mu)$ is uniformly convex for $2 \leq p<\infty$ (see Problem P5 in Problem Set 5 for definition and uniform convexity of Hilbert spaces). Hint: Simplify the problem to some inequality for real numbers. Remark: Compare with Problem P5 in Problem Set 5.
2. Prove that the map $T: l^{1} \rightarrow\left(c_{0}\right)^{*}$ given with

$$
(T y)(x)=\sum_{i=1}^{\infty} x_{i} y_{i}
$$

is well-defined, injective, surjective and isometry (i.e. $\|y\|_{l_{1}}=\|T y\|_{\left.\left(c_{0}\right)^{*}\right)}$. Conclude that $\left(c_{0}\right)^{*}=l_{1}$. Hint: Recall Schauder basis for c_{0} : if $x=\left(x_{1}, x_{2}, \ldots\right) \in c_{0}$ then projection of x given with $x^{k}=\left(x_{1}, \ldots, x_{k}, 0,0, \ldots\right)$ converges to x in c_{0}.
3. Let $(E,\|\cdot\|)$ be a Banach space and $A \subset E$ be its subset. Suppose that for every $f \in E^{*}$, the set

$$
f(A)=\{f(x): x \in A\}
$$

is bounded in \mathbb{R}. Prove that A is a bounded set in E (i.e. one can find a ball $B(0, R)$ for some $R>0$ such that $A \subset B(0, R))$.
4. Let X be a vector space (not necessarily normed or Banach) over \mathbb{R}. Let $\varphi, \varphi_{1}, \ldots, \varphi_{k}$ be linear functionals on \mathbb{R} (i.e. linear maps from X to \mathbb{R}). Suppose that

$$
\left(\forall_{i=1, \ldots, k} \varphi_{i}(v)=0\right) \Longrightarrow \varphi(v)=0
$$

Prove that φ is a linear combination of $\varphi_{1}, \ldots, \varphi_{k}$, i.e. there are real numbers $\lambda_{1}, \ldots, \lambda_{k}$ such that $\varphi=\sum_{n=1}^{k} \lambda_{n} \varphi_{n}$. Hint: Consider $F(x)=\left(\varphi_{1}(x), \ldots, \varphi_{k}(x), \varphi(x)\right)$.
5. Let $1<p<\infty$.

- Let $\alpha, \beta \in \mathbb{R}$ and set $f(x)=\left\{\begin{array}{ll}\alpha & x \in[0,1 / 2] \\ \beta & x \in(1 / 2,1]\end{array}\right.$. Then, extend f periodically on \mathbb{R}. Finally, we set $f_{n}(x)=f(n x)$. Decide whether sequence $\left\{f_{n}\right\}_{n \in \mathbb{N}}$ converges weakly in $L^{p}(0,1)$ and if yes, determine the limit.
- Suppose $u \in L^{p}(\mathbb{R})$. We set $g_{n}(x)=u(x+n)$. Decide whether sequence $\left\{g_{n}\right\}_{n \in \mathbb{N}}$ converges weakly in $L^{p}(\mathbb{R})$ and if yes, determine the limit.
- Let $h_{n}(x)=n^{1 / p} e^{-n x}$. Prove that $g_{n} \rightarrow 0$ a.e., sequence $\left\{g_{n}\right\}_{n \in \mathbb{N}}$ is bounded in $L^{p}(0,1)$, g_{n} converges weakly ${ }^{1}$ to 0 in $L^{p}(0,1)$ but does not converge in norm (strongly) in $L^{p}(0,1)$.

[^0]
[^0]: ${ }^{1}$ Update on $29 / 11 / 2019$: converges weakly to 0 in $L^{p}(0,1)$ but does not strongly (in norm).

