Functional Analysis (WS 19/20), Big Homework 4

deadline: 19/12/2019 (group 1), TBD (group 2)

Important: Each problem should be solved on a separate piece of paper signed with your name, student id number and group number (1 or 2).

- 1. In the following we will construct conditional expectation using Radon-Nikodym theorem:
 - (a) Let (X, \mathcal{F}, μ) be a σ -finite measure space where μ is nonnegative and let $\mathcal{G} \subset \mathcal{F}$ be a sub- σ -algebra of \mathcal{F} . Let $f \in L^1(\mu)$ and ν be a restriction of μ to \mathcal{G} . Prove that there exists $g \in L^1(\nu)$ (in particular: g is \mathcal{G} -measurable) such that

$$\int_E f \, d\mu = \int_E g \, d\nu \qquad \forall_{E \in \mathcal{G}},$$

Moreover, justify that g is uniquely determined up to the null sets of ν .¹

(b) Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space and X be a real-valued random variable such that $\mathbb{E}|X| < \infty$. Let $\mathcal{G} \subset \mathcal{F}$ be a sub- σ -algebra of \mathcal{F} . Prove that there exists a \mathcal{G} -measurable random variable Y such that

$$\mathbb{E}X\mathbb{1}_A = \mathbb{E}Y\mathbb{1}_A \qquad \forall_{A\in\mathcal{G}}.$$

We usually write $Y = \mathbb{E}(X|\mathcal{G})$ and call Y a conditional expectation of X with respect to \mathcal{G} .

- 2. Let *E* be a normed space and $f: E \to \mathbb{R}$ be a convex and lower semicontinuous function on *E*, i.e. for any sequence $\{x_n\} \subset E: x_n \to x$ in *E* implies $f(x) \leq \liminf_{n \to \infty} f(x_n)$.
 - (a) Prove that the epigraph of f, i.e. $epi(f) = \{(x, \lambda) \in E \times \mathbb{R} : \lambda \ge f(x)\}$, is a convex and closed set in $E \times \mathbb{R}$.
 - (b) Prove that there is a family of affine functions

$$\mathcal{A} \subset \{\varphi(x) + b : \varphi \in E^*, b \in \mathbb{R}\}$$

such that $f(x) = \sup_{\phi \in \mathcal{A}} \phi(x)$. Remark: This is a generalization of standard fact that a convex function is a supremum of the family of affine supporting functions. *Hint*: Hahn-Banach.

- (c) Conclude that there are constants $a, b \in \mathbb{R}$ such that $f(x) \ge a + b ||x||$.
- 3. Let $T: L^2(\mathbb{R}) \to L^2(\mathbb{R})$ be defined with $Tf(x) = \operatorname{sgn}(x)f(x+1)$ on the complex Hilbert space $L^2(\mathbb{R})$. Prove that T is a well - defined bounded linear operator and compute T^* .
- 4. Consider the right and left shifts operators on the complex Hilbert space $l^2(\mathbb{N})$ (we usually denote this space with l^2) defined with

$$Rx = (0, x_1, x_2, ...),$$
 $Lx = (x_2, x_3, x_4, ...).$

Find point, continuous and residual parts of spectrum of R and L^2 .

¹This is often used in the following setting: one works with integral $\int_E f d\mu$ but it is useful to replace it with an integral $\int_E g d\mu$ where g is measurable with respect to some smaller σ -algebra that is usually generated by some given sets. This is, for instance, a technical point in the proof of celebrated Dunford-Pettis Theorem asserting that bounded sequences in L^1 are weakly compact if and only if they are uniformly integrable. Unlike L^p with $1 , it is not true that bounded sequence in <math>L^1$ has a converging subsequence in a weak sense - it is easy to construct an example. See Theorem 1.38 in L. Ambrosio, N. Fusco, D. Pallara Functions of Bounded Variation and Free Discontinuity Problems.

²*Hint:* One can make this problem easier by finding some adjoint relationship between L and R, see Problem R8 in PS8.