
Comments to the homework for 17/10/2019

Problem S4: c0 is a Banach space

That was an exercise for choosing parameters like in standard ε − δ arguments. For those of you

still struggling with this type of proofs, I strongly recommend reading Kuba Wo¹nicki's homework

and solution to Problem S3 (c is a Banach space) - both are available on our website. It may be

also a good idea to try to solve these problems again some time later.

When one uses ε−δ arguments, one has to choose some parameters (for instance, for all ε we choose
some δ). We have to be extremely careful about possible dependence of these parameters (in this

example, δ depends on ε and so, whenever one changes ε, δ will be also di�erent). Some people

stress it by writing δ(ε). You can see that in Kuba's homework too.

Another issues some of you have faced is dealing with notation concerning sequences of sequences.

It is a good practise to explain your notation at the beginning, say, {xk} is a sequence in c0 and

xk = (xk1, x
k
2, ...) so that the meaning of upper and lower indices is clear.

Below I have typed a detailed proof. To be clear - I didn't expect this type of precision but I believe

(after reading your solutions) that it may be helpful for some of you to see all details.

First observation is that we know that c is a Banach space with ‖ · ‖∞ and c0 ⊂ c. So in order to

check that c0 (with norm ‖ · ‖∞) is a Banach space, it is su�cient to verify it is closed in c with
respect to ‖ · ‖∞ norm (Problem L4 in PS1). So let {xk} ⊂ c0 be a sequence converging to some

x ∈ c and we have to verify that x ∈ c0, i.e. that limn→∞ xn = 0.

Property xk → x with respect to the norm ‖ · ‖∞ means that supn |xkn − xn| → 0 as k → ∞. In

particular,

∀ε>0∃K(ε)∈N∀k≥K(ε)∀n∈N |xkn − xn| ≤ ε.

Aiming at proving limn→∞ xn = 0, we estimate xn. To this end, �x ε > 0. Then, for all n ∈ N and

all k ≥ K(ε)
|xn| ≤ |xkn − xn|+ |xkn| ≤ ε+ |xkn|.

Again, as above inequality hold for all n ∈ N1 we can estimate lim supn→∞ |xn|:

lim sup
n→∞

|xn| ≤ ε+ lim sup
n→∞

|xkn| = ε

as lim supn→∞ |xkn| = 0 since xk ∈ c0 for all k ∈ N (in particular: for k ≥ K(ε) so we can use it).

Since ε is arbitrary (it was independently chosen at the beginning), we conclude lim supn→∞ |xn| = 0
so limn→∞ xn = 0 as desired.

1It would be su�cient to know this for large n.
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Problem S7: set l1 with l∞ norm is not a Banach space

We have seen similar problems (for instance L5 or C4 from PS1). Most of you had good intuition

that l1 with l∞ norm is not a Banach space as the norm is not �well �tted� to the de�nition of the

set2 but not every justi�cation was correct.

The simplest argument goes as follows. Suppose it is a Banach space. Then, every Cauchy se-

quence with respect to ‖ · ‖∞ norm is convergent in the set l1. Note that convergent sequences are
always Cauchy. Therefore every sequence convergent with respect to ‖ · ‖∞ norm is convergent

in the set l1. This means that if ‖xk − x‖∞ → 0 as k →∞, then x ∈ l1.

One can consider sequence xk =
(
1, 12 ,

1
3 , ...,

1
k , 0, 0, ...

)
. This sequence converges in l∞ to x =(

1, 12 ,
1
3 , ...,

1
k ,

1
k+1 , ...

)
as

‖x− xk‖∞ ≤ sup
n≥k+1

1

n
≤ 1

k + 1
→ 0 as k →∞

(alternatively: one can deduce this directly from Problem S5 from PS1 as Schauder projections

approximate sequences from c0 in norm). Unfortunately, x /∈ l1 and the proof is concluded.

Some of the sequences from your solutions were incorrect. Let me show an example. Consider

sequence xk =
(
1− 1

k ,
(
1− 1

k

)2
,
(
1− 1

k

)3
, ...

)
. It converges pointwisely (in each term separately)

to x = (1, 1, 1, ...) but not in l∞. Indeed,

lim
k→∞

sup
n∈N

∣∣∣∣1− (
1− 1

k

)n∣∣∣∣ ≥ lim
k→∞

∣∣∣∣∣1−
(
1− 1

k

)k∣∣∣∣∣ = 1− 1

e
> 0.

Another issue was that some of the sequences were hard-to-analyze (at least for me) and you did

not provide any details3. For instance, xk = (xn)
k = n−1−

1
k+1 . We want to prove that xk converges

to the harmonic sequence i.e.

lim
k→∞

sup
n∈N

∣∣∣n−1 − n−1− 1
k+1

∣∣∣ = 0.

One can consider function fk(x) = x−1
(
1− x−

1
k+1

)
and study its derivative to see that for nonne-

gative arguments, f ′k(x) ≥ 0 if and only if(
1 +

1

k + 1

)k+1

≥ x.

Therefore, if x ≤ e ≤ 3, |fk(n)| ≤ 3 and this holds for all k ∈ N. Therefore

sup
n∈N

∣∣∣n−1 − n−1− 1
k+1

∣∣∣ ≤ max(fk(1), fk(2), fk(3))→ 0 as k →∞.

2In the nearest future, this intuition will be rigorously stated in terms of Inverse Mapping Theorem.
3If there is some simple proof I would be happy to see that.
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