Comments to the homework for $17 / 10 / 2019$

Problem S4: c_{0} is a Banach space
That was an exercise for choosing parameters like in standard $\epsilon-\delta$ arguments. For those of you still struggling with this type of proofs, I strongly recommend reading Kuba Woźnicki's homework and solution to Problem S3 (c is a Banach space) - both are available on our website. It may be also a good idea to try to solve these problems again some time later.

When one uses $\epsilon-\delta$ arguments, one has to choose some parameters (for instance, for all ϵ we choose some δ). We have to be extremely careful about possible dependence of these parameters (in this example, δ depends on ϵ and so, whenever one changes ϵ, δ will be also different). Some people stress it by writing $\delta(\epsilon)$. You can see that in Kuba's homework too.

Another issues some of you have faced is dealing with notation concerning sequences of sequences. It is a good practise to explain your notation at the beginning, say, $\left\{x^{k}\right\}$ is a sequence in c_{0} and $x^{k}=\left(x_{1}^{k}, x_{2}^{k}, \ldots\right)$ so that the meaning of upper and lower indices is clear.

Below I have typed a detailed proof. To be clear - I didn't expect this type of precision but I believe (after reading your solutions) that it may be helpful for some of you to see all details.

First observation is that we know that c is a Banach space with $\|\cdot\|_{\infty}$ and $c_{0} \subset c$. So in order to check that c_{0} (with norm $\|\cdot\|_{\infty}$) is a Banach space, it is sufficient to verify it is closed in c with respect to $\|\cdot\|_{\infty}$ norm (Problem L4 in PS1). So let $\left\{x^{k}\right\} \subset c_{0}$ be a sequence converging to some $x \in c$ and we have to verify that $x \in c_{0}$, i.e. that $\lim _{n \rightarrow \infty} x_{n}=0$.

Property $x^{k} \rightarrow x$ with respect to the norm $\|\cdot\|_{\infty}$ means that $\sup _{n}\left|x_{n}^{k}-x_{n}\right| \rightarrow 0$ as $k \rightarrow \infty$. In particular,

$$
\forall_{\epsilon>0} \exists_{K(\epsilon) \in \mathbb{N}} \forall_{k \geq K(\epsilon)} \forall_{n \in \mathbb{N}} \quad\left|x_{n}^{k}-x_{n}\right| \leq \epsilon .
$$

Aiming at proving $\lim _{n \rightarrow \infty} x_{n}=0$, we estimate x_{n}. To this end, fix $\epsilon>0$. Then, for all $n \in \mathbb{N}$ and all $k \geq K(\epsilon)$

$$
\left|x_{n}\right| \leq\left|x_{n}^{k}-x_{n}\right|+\left|x_{n}^{k}\right| \leq \epsilon+\left|x_{n}^{k}\right| .
$$

Again, as above inequality hold for all $n \in \mathbb{N}^{1}$ we can estimate $\lim \sup _{n \rightarrow \infty}\left|x_{n}\right|$:

$$
\limsup _{n \rightarrow \infty}\left|x_{n}\right| \leq \epsilon+\limsup _{n \rightarrow \infty}\left|x_{n}^{k}\right|=\epsilon
$$

as $\lim \sup _{n \rightarrow \infty}\left|x_{n}^{k}\right|=0$ since $x^{k} \in c_{0}$ for all $k \in \mathbb{N}$ (in particular: for $k \geq K(\epsilon)$ so we can use it). Since ϵ is arbitrary (it was independently chosen at the beginning), we conclude lim $\sup _{n \rightarrow \infty}\left|x_{n}\right|=0$ so $\lim _{n \rightarrow \infty} x_{n}=0$ as desired.

[^0]We have seen similar problems (for instance L5 or C4 from PS1). Most of you had good intuition that l^{1} with l^{∞} norm is not a Banach space as the norm is not "well fitted" to the definition of the set 2 but not every justification was correct.

The simplest argument goes as follows. Suppose it is a Banach space. Then, every Cauchy sequence with respect to $\|\cdot\|_{\infty}$ norm is convergent in the set l^{1}. Note that convergent sequences are always Cauchy. Therefore every sequence convergent with respect to $\|\cdot\|_{\infty}$ norm is convergent in the set l^{1}. This means that if $\left\|x^{k}-x\right\|_{\infty} \rightarrow 0$ as $k \rightarrow \infty$, then $x \in l^{1}$.

One can consider sequence $x^{k}=\left(1, \frac{1}{2}, \frac{1}{3}, \ldots, \frac{1}{k}, 0,0, \ldots\right)$. This sequence converges in l^{∞} to $x=$ $\left(1, \frac{1}{2}, \frac{1}{3}, \ldots, \frac{1}{k}, \frac{1}{k+1}, \ldots\right)$ as

$$
\left\|x-x^{k}\right\|_{\infty} \leq \sup _{n \geq k+1} \frac{1}{n} \leq \frac{1}{k+1} \rightarrow 0 \text { as } k \rightarrow \infty
$$

(alternatively: one can deduce this directly from Problem S5 from PS1 as Schauder projections

Some of the sequences from your solutions were incorrect. Let me show an example. Consider sequence $x^{k}=\left(1-\frac{1}{k},\left(1-\frac{1}{k}\right)^{2},\left(1-\frac{1}{k}\right)^{3}, \ldots\right)$. It converges pointwisely (in each term separately) to $x=(1,1,1, \ldots)$ but not in l^{∞}. Indeed,

$$
\lim _{k \rightarrow \infty} \sup _{n \in \mathbb{N}}\left|1-\left(1-\frac{1}{k}\right)^{n}\right| \geq \lim _{k \rightarrow \infty}\left|1-\left(1-\frac{1}{k}\right)^{k}\right|=1-\frac{1}{e}>0
$$

Another issue was that some of the sequences were hard-to-analyze (at least for me) and you did not provide any details ${ }^{3}$. For instance, $x^{k}=\left(x_{n}\right)^{k}=n^{-1-\frac{1}{k+1}}$. We want to prove that x^{k} converges to the harmonic sequence i.e.

$$
\lim _{k \rightarrow \infty} \sup _{n \in \mathbb{N}}\left|n^{-1}-n^{-1-\frac{1}{k+1}}\right|=0
$$

One can consider function $f_{k}(x)=x^{-1}\left(1-x^{-\frac{1}{k+1}}\right)$ and study its derivative to see that for nonnegative arguments, $f_{k}^{\prime}(x) \geq 0$ if and only if

$$
\left(1+\frac{1}{k+1}\right)^{k+1} \geq x
$$

Therefore, if $x \leq e \leq 3,\left|f_{k}(n)\right| \leq 3$ and this holds for all $k \in \mathbb{N}$. Therefore

$$
\sup _{n \in \mathbb{N}}\left|n^{-1}-n^{-1-\frac{1}{k+1}}\right| \leq \max \left(f_{k}(1), f_{k}(2), f_{k}(3)\right) \rightarrow 0 \text { as } k \rightarrow \infty .
$$

[^1]
[^0]: ${ }^{1}$ It would be sufficient to know this for large n.

[^1]: ${ }^{2}$ In the nearest future, this intuition will be rigorously stated in terms of Inverse Mapping Theorem.
 ${ }^{3}$ If there is some simple proof I would be happy to see that.

