Functional Analysis (WS 19/20), Problem Set 1

(normed spaces, Banach spaces, L^p spaces)

L^p spaces

We write L^p for $L^p(X, \mathcal{F}, \mu)$ where \mathcal{F} is a σ -algebra and μ is a σ -finite measure on (X, \mathcal{F}) . We write $\|\cdot\|_p$ for L^p norm.

L1. (generalized Hölder inequality) Let $f_i \in L^{p_i}$ for i = 1, ..., n where $\sum_{i=1}^n \frac{1}{p_i} = \frac{1}{p}$. Prove that $f_1 f_2 ... f_n \in L^p$. More precisely, prove the bound

$$||f_1f_2...f_n||_p \le ||f_1||_{p_1}||f_2||_{p_2}...||f_n||_{p_n}.$$

Hint: one can simplify to the case p=1, then proceed by induction.

L2. (generalized Minkowski inequality) Let (X, \mathcal{F}, μ) and (Y, \mathcal{G}, ν) be two measure spaces. Let $F: X \times Y \to \mathbb{R}$ be a measurable and nonnegative map. Prove that

$$\left| \int_{Y} \left| \int_{X} F(x,y) d\mu(x) \right|^{p} d\nu(y) \right|^{\frac{1}{p}} \leq \int_{X} \left| \int_{Y} |F(x,y)|^{p} d\nu(y) \right|^{\frac{1}{p}} d\mu(x).$$

Deduce from this standard Minkowski inequality.

- L3. Suppose $\mu(X) < \infty$. Check that $L^p \subset L^q$ whenever $p \geq q$. Prove that assumption $\mu(X) < \infty$ is necessary.
- L4. Let $(X, \|\cdot\|_X)$ be a Banach space and $Y \subset X$ a subset of X. Prove that $(Y, \|\cdot\|_X)$ is a Banach space if and only if Y is closed in X.
- L5. Consider set $L^2(0,1)$ equipped with $\|\cdot\|_1$ norm. Is it a normed space? Is it a Banach space? More generally, replace $L^2(0,1)$ with $L^p(0,1)$ where 1 .
- L6. (Littlewood's inequality) Let $f \in L^p \cap L^q$ for some $1 \le p, q \le \infty$. Prove that $f \in L^r$ for any $r \in [p,q]$. Hint: let $\alpha \in [0,1]$ and write $\frac{1}{r} = \frac{\alpha}{p} + \frac{1-\alpha}{q}$. Then prove $||f||_r \le ||f||_p^\alpha ||f||_q^{1-\alpha}$.
- L7. Let $f \in L^p$. Prove that for any p_0 and p_1 such that $1 \le p_0 < p$ and $p < p_1 < \infty$ there are $f_0 \in L^{p_0}$ and $f_1 \in L^{p_1}$ such that $f = f_0 + f_1$. Thus, f can be always decomposed for "better" and "worse" part. *Hint*: truncate f on your favourite level.
- L8. Prove that a normed space $(X, \|\cdot\|)$ is a Banach space if and only if every absolutely convergent series (i.e. $\sum_{k=1}^{\infty} \|x_k\| < \infty$) is convergent in X (i.e. sequence of partial sums is convergent in X).
- L9. Use Exercise L8. to deduce that $(L^p, \|\cdot\|_p)$ (for $1 \le p < \infty$) is a Banach space once again.

Spaces of continuous and differentiable functions

- C1. Prove that space $C_0(\mathbb{R}^d)$ of continuous functions "vanishing at infinity" (i.e. $f(x) \to 0$ whenever $|x| \to \infty$) equipped with the supremum norm is a Banach space.
- C2. Prove that space $C^1([0,1])$ of functions continuously differentiable on [0,1], equipped with the norm $||f||_{C^1} = ||f||_{\infty} + ||f'||_{\infty}$ is a Banach space.

1

- C3. Let \mathcal{P} be the space of all polynomials on [0,1] equipped with supremum norm. Prove that \mathcal{P} is a normed space but it is not a Banach space. Is \mathcal{P} closed in C([0,1])? *Hint*: Use Problem L8. Remark: This Problem can be generalized in Problem A3.
- C4. Are maps (a) $||f||_A := \sup_{x \in [0,1]} |f(x)|$ and (b) $||f||_B := \sup_{x \in [0,1]} |f'(x)|$ norms on $C^1([0,1])$? Do they form Banach spaces?
- C5. Are maps

$$||f||_C := f(0) + \sup_{x \in [0,1]} |f'(x)|$$

and

$$||f||_D := \left(\int_0^1 (f(x))^2 dx\right)^{\frac{1}{2}} + \left(\int_0^1 (f'(x))^2 dx\right)^{\frac{1}{2}}$$

norms on $C^1([0,1])$? Do they form Banach spaces?

Spaces of sequences

S1. For $1 \le p < \infty$ we define l^p as the space of complex-valued (or real-valued if one has troubles with complex numbers) sequences summable with p-th power and equipped with the norm

$$\|(x_k)_{k=1}^{\infty}\|_p = \left(\sum_{k=1}^{\infty} |x_k|^p\right)^{1/p}$$

For $p=\infty$, we define l^{∞} as complex-valued bounded sequences with the norm

$$\left\| (x_k)_{k=1}^{\infty} \right\|_p = \sup_{k \in \mathbb{N}} |x_k|.$$

Justify briefly that l^p is a Banach space.

S2. (Schauder basis for l^p) Consider l^p where $1 \le p < \infty$ and unit vectors $e_i = (0, 0, ..., 0, 1, 0, ...)$ where 1 is on the *i*-th coordinate. Prove that for any $x = (x_1, x_2, ...) \in l_p$, $\sum_{i=1}^n x_i e_i \to x$ converges in l_p , i.e. that

$$\left\| \sum_{i=1}^{n} x_i e_i - x \right\|_p \to 0.$$

We say that system $\{e_i\}_{i\in\mathbb{N}}$ is a Schauder basis of l_p . How the situation changes for $p=\infty$?

- S3. Consider space of real-valued sequences $(x_0, x_1, x_2, ...)$ such that $\lim_{k\to\infty} x_k$ exists and equip it with a supremum norm, i.e. $\|(x_k)_{k=1}^{\infty}\|_{\infty} = \sup_k |x_k|$. Prove that this is a Banach space (it is usually denoted with c).
- S4. Similarly, consider subspace of c of sequences $(x_0, x_1, x_2, ...)$ converging to 0 equipped with supremum norm (it is usually denoted with c_0). Prove that it is a Banach space.
- S5. (Schauder basis for c_0) Consider problem S2. with space c. More precisely, given unit vectors $e_i = (0, 0, ..., 0, 1, 0, ...)$ where 1 is on the i-th coordinate, prove that for any $x = (x_1, x_2, ...) \in c_0$, $\sum_{i=1}^n x_i e_i \to x$ converges in c_0 , i.e. that

$$\left\| \sum_{i=1}^{n} x_i e_i - x \right\|_{\infty} \to 0.$$

Note once again, that according to Exercise S2., this is not the case for l^{∞} but c_0 is a closed subset of l^{∞} .

- S6. Consider subset of c of sequences converging to 1. Can this subset be a normed space (no matter how the norm is defined)?
- S7. Consider set l^1 with l^{∞} norm. Is it a normed space? Is it a Banach space?
- S8. Consider set \mathcal{A} of sequences $(x_n)_{n=1}^{\infty}$ such that $x_{2k} = \frac{1}{2}x_{2(k-1)}$ for all $k \in \mathbb{N}$. For which Banach spaces $(X, \|\cdot\|_X)$ among $(c_0, \|\cdot\|_{\infty})$ and $(l_p, \|\cdot\|_p)$ where $1 \leq p \leq \infty$, set \mathcal{A} is a closed subspace of $(X, \|\cdot\|_X)$ and therefore, it forms Banach space with norm $\|\cdot\|_X$?

Additional important problems

A1. (Minkowski functional) Let E be a normed space and $C \subset E$ be an open and convex subset with $0 \in C$. For every $x \in E$ we define:

$$\rho(x) = \inf \left\{ \alpha > 0 : \frac{x}{\alpha} \in C \right\}.$$

Prove the following properties of ρ which is called Minkowski functional of C:

- (a) $\rho(\lambda x) = \lambda \rho(x)$ for any $\lambda > 0$ and $x \in E$,
- (b) $\rho(x+y) \le \rho(x) + \rho(y)$ for any $x, y \in E$,
- (c) there is a constant M so that $0 \le \rho(x) \le M||x||$ for all $x \in E$,
- (d) $C = \{x \in E : \rho(x) < 1\}.$
- A2. (Orlicz spaces) Let $m:[0,\infty)\to[0,\infty)$ be a convex function with m(0)=0. Prove that Orlicz space:

$$L^m(X) = \left\{ f: X \to \mathbb{R} \text{ measurable and } \int_X m\left(\frac{|f(x)|}{\lambda}\right) dx < \infty \text{ for some } \lambda > 0 \right\}$$

equipped with the so-called Luxemburg norm

$$||f||_{L^m} = \inf \left\{ \lambda > 0 : \int_X m\left(\frac{|f(x)|}{\lambda}\right) dx \le 1 \right\}$$

is a normed space. Check that for $m(t) = t^p$, Orlicz spaces coincide with the classical L^p spaces.

A3. (Banach spaces have uncountable basis) More generally than in Exercise C3., prove that infinite dimensional Banach space has uncountable **Hamel** basis. Compare with C3. *Hint:* aiming at contradiction, suppose there is a countable basis and apply Baire Cathegory Theorem.