Functional Analysis (WS 19/20), Problem Set 10

(convolutions and Schwartz spaces)

For $f, g \in L^1(\mathbb{R}^d)$ we define convolution f * g:

$$f * g(x) = \int_{\mathbb{R}^d} f(y)g(x-y) \, dy = \int_{\mathbb{R}^d} f(x-y)g(y) \, dy.$$

Clearly f * g = g * f. Convolutions are also studied for functions defined on subsets $\Omega \subset \mathbb{R}^d$ assuming one takes care about appropriate domain of definition for f and g.

Schwartz space $\mathcal{S}(\mathbb{R}^d)$ consists of infinitely differentiable functions such that the family of seminorms

$$p_{\alpha,\beta}(f) = \sup_{x \in \mathbb{R}^d} |x^{\alpha} D^{\beta} f(x)| < \infty$$

where $\alpha, \beta \in \mathbb{N}^d$. We usually say that Schwartz space consists of functions vanishing faster than any polynomial.

We say that $f_n \to f$ in $\mathcal{S}(\mathbb{R}^d)$ if $p_{\alpha,\beta}(f_n - f) \to 0$ as $n \to \infty$ for all $\alpha, \beta \in \mathbb{N}^d$.

Convolutions

- C1. Let $f \in L^1(\mathbb{R}^n)$ and g be Lipschitz function. Prove that f * g is again Lipschitz.
- C2. Let $g \in C_0^k(\mathbb{R}^n)$ and $f \in L^1(\mathbb{R}^n)$. Prove that f * g is $C^k(\mathbb{R}^n)$. Find the formulas for the derivatives of f * g.
- C3. (Young's inequality) Use Riesz-Thorin Theorem to prove Young's convolutional inequality: if $f \in L^p(\mathbb{R}^d)$, $g \in L^q(\mathbb{R}^d)$ then $f * g \in L^r(\mathbb{R}^d)$ where $\frac{1}{p} + \frac{1}{q} = 1 + \frac{1}{r}, 1 \leq p, q, r \leq \infty$. Moreover,

$$||f * g||_r \le ||f||_p ||g||_q$$

<u>Riesz-Thorin Complex Interpolation Theorem</u>: Let $1 \leq p_0, p_1, q_0, q_1 \leq \infty$. Let T be a bounded operator from L^{p_0} to L^{q_0} as well as from L^{p_1} to L^{q_1} . Then, T is also a bounded operator from $L^{p_{\theta}}$ to $L^{q_{\theta}}$ where

$$\frac{1}{p_{\theta}} = \frac{1-\theta}{p_0} + \frac{\theta}{p_1}, \qquad \qquad \frac{1}{q_{\theta}} = \frac{1-\theta}{q_0} + \frac{\theta}{q_1}, \qquad \qquad \theta \in [0,1].$$

- C4. Prove Young's convolutional inequality directly from the Hölder inequality.
- C5. (cutoff) We fix a smooth radial function $\eta \in C^{\infty}$ supported on the ball $B_1(0)$ such that $\int_{\mathbb{R}^n} \eta(x) dx = 1$. Existence of such function can be assumed. We also consider scalings of η : $\eta_{\epsilon} = \epsilon^{-d} \eta(x/\epsilon)$. Note that η_{ϵ} is supported on $B_{\epsilon}(0)$ and $\int_{\mathbb{R}^n} \eta_{\epsilon}(x) dx = 1$. Prove that there is a smooth function f such that f = 1 on $B_1(0)$, f = 0 on $\mathbb{R}^n \setminus B_2(0)$ and $f \in [0, 1]$.
- C6. Are smooth functions dense in $L^{\infty}(0,1)$?

¹Function η is usually called a **mollifier**. Mollifiers are used to prove various results on density of smooth functions in L^p , $1 \le p < \infty$ as it was discussed in lectures of Analysis II. For instance, one can get that C_0^{∞} is dense in L^p . For some review, see Theorem 4.1 in L.C.Evans, M.Gariepy, *Measure theory and fine properties of functions*.

Schwartz space

- S1. Equip $\mathcal{S}(\mathbb{R}^d)$ with a metric that agrees with the definition of convergence in $\mathcal{S}(\mathbb{R}^d)$.
- S2. $C_0^{\infty}(\mathbb{R}^d) \subset \mathcal{S}(\mathbb{R}^d).$
- S3. For a > 0, $e^{-a||x||^2} \in \mathcal{S}(\mathbb{R}^d)$.
- S4. If $f \in \mathcal{S}(\mathbb{R}^d)$ then $f \in L^p(\mathbb{R}^d)$ for all $1 \le p \le \infty$.
- S5. Let $g \in \mathcal{S}(\mathbb{R}^d)$. The map $T : \mathcal{S}(\mathbb{R}^d) \to \mathcal{S}(\mathbb{R}^d)$ defined with T(f) = gf is continuous.
- S6. Let p be a polynomial. The map $T: \mathcal{S}(\mathbb{R}^d) \to \mathcal{S}(\mathbb{R}^d)$ defined with T(f) = pf is continuous.
- S7. Differentiation operator is continuous on $\mathcal{S}(\mathbb{R}^d)$.

Problems from the lecture

P1. Let H be a Hilbert space and $T: H \to H$ such that ||Tx|| = ||x||. Prove that $\langle Tx, Ty \rangle = \langle x, y \rangle$.