Functional Analysis (WS 19/20), Problem Set 11
 (Fourier series, Fourier transform and tempered distributions*)

If $f \in L^{1}(0,1)$, we define Fourier series of f with its partial sums

$$
S_{N} f(x)=\sum_{k=-N}^{N} \hat{f}(k) e^{2 \pi i k x}, \quad \hat{f}(k)=\int_{0}^{1} f(x) e^{-2 \pi i k x} d x
$$

It is a convention to extend periodically f to the whole \mathbb{R}.
For $f \in L^{1}\left(\mathbb{R}^{n}\right)$ we define Fourier transform of f with

$$
\hat{f}(\xi)=\int_{\mathbb{R}^{n}} f(x) e^{-2 \pi i \xi \cdot x}
$$

A tempered distribution is a continuous linear functional on the Schwartz space $\mathcal{S}\left(\mathbb{R}^{n}\right)$. The space of all tempered distributions is denoted with $\mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right)$. If $T \in \mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right)$, we define Fourier transform of T as $\hat{T} \in \mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right)$ such that

$$
\hat{T}(f)=T(\hat{f}) \quad \text { for all } f \in \mathcal{S}\left(\mathbb{R}^{n}\right)
$$

This definition makes sense as it is well-known that the Fourier transform is isomorphism from $\mathcal{S}\left(\mathbb{R}^{n}\right)$ to $\mathcal{S}\left(\mathbb{R}^{n}\right)$.

Fourier series

The target of the exercises below is to formulate some conditions on f so that $S_{N} f(x) \rightarrow f(x)$ in appropriate sense.

S1. Suppose you are a student at the Faculty of Physics. Derive Fourier series of f, i.e. find decomposition of f into sin and cos functions.
S2. Prove that $S_{N} f(x)=\int_{0}^{1} f(x-t) D_{N}(t)$ where D_{N} is the Dirichlet kernel defined with

$$
D_{N}(x)=\sum_{k=-N}^{k=N} e^{2 \pi i k x}
$$

S3. Prove the following properties of Dirichlet kernel:
(A) $D_{N}(t)=\frac{\sin (\pi(2 N+1) t)}{\sin (\pi t)}$,
(B) $\int_{0}^{1} D_{N}(t) d t=1$,
(C) for t such that $\delta \leq|t| \leq \frac{1}{2},\left|D_{N}(t)\right| \leq \frac{1}{\sin \pi \delta}$.

S4. (Riemman-Lebesgue Lemma) We have $|\hat{f}(k)| \leq\|f\|_{L^{1}(0,1)}$ and even better, we have $\lim _{k \rightarrow \pm \infty}|\hat{f}(k)|=0$.

S5. (Riemman Localization Principle) Let $f \in L^{1}(0,1)$. If $f=0$ in some neighbourhood of x, then $S_{N} f(x) \rightarrow 0$.

S6. (Dini Theorem) Fix $x \in \mathbb{R}$. Let f be a continuous function that is 1-periodic, i.e. $f(y+1)=$ $f(y)$ for all $y \in \mathbb{R}$. Suppose that f satisfies for some $\delta>0$ the following condition:

$$
\int_{|t|<\delta} \frac{|f(x+t)-f(x)|}{|t|} d t<\infty .
$$

Use properties of the Dirichlet kernel and the proof of Riemann Localization Principle to prove that the Fourier series of f converges at x to $f(x)$.

S7. Continuity of f is not sufficient. There is a continuous function on $[0,1]$ such that $S_{N} f(0)$ diverges to ∞, see Special Problem 10.

S8. Prove that if $f \in L^{2}(0,1)$ then $S_{N} f \rightarrow f$ in $L^{2}(0,1)$.
Fourier transform for $f \in L^{1}, f \in L^{2}, f \in \mathcal{S}$
T1. Fourier transform is linear.
T2. We have $\|\hat{f}\| \leq\|f\|_{1}$ and \hat{f} is continuous.
T3. © (Riemman-Lebesgue Lemma) We have $\hat{f}(\xi) \rightarrow 0$ as $|\xi| \rightarrow \infty$.
T4. ©Convolution becomes multiplication: $\widehat{(f * g)}(\xi)=\hat{f}(\xi) \hat{g}(\xi)$.
T5. ©Translation becomes rotation: $\widehat{\tau_{h} f}(\xi)=\hat{f}(\xi) e^{2 \pi i \xi \cdot h}$ where $\tau_{h} f(x)=f(x+h)$.
T6. ©Differentiation becomes multiplication by a polynomial: $\widehat{f_{x_{j}}}(\xi)=2 \pi i \xi \hat{f}(\xi)$.
T7. ©Let \hat{f} be the Fourier transform of $f \in L^{1}\left(\mathbb{R}^{n}\right)$. Find $\widehat{\delta_{h} f}$ where $\delta_{h} f(x)=f(x / h)$.
T8. © Compute \hat{f} for $f(x)=e^{-\pi|x|^{2}}$.
T9. ©Compute \hat{f} (in one dimension) for $f(x)=e^{-x} \chi_{[0, \infty)}(x)$. This is important!
T10. (Plancherel theorem) If $f, g \in \mathcal{S}\left(\mathbb{R}^{n}\right)$ then

$$
\int_{\mathbb{R}^{n}} f(x) \overline{g(x)} d x=\int_{\mathbb{R}^{n}} \widehat{f(x)} \overline{\overline{g(x)}} d x .
$$

T11. Fourier transform is a continuous isomorphism from $\mathcal{S}\left(\mathbb{R}^{n}\right)$ to $\mathcal{S}\left(\mathbb{R}^{n}\right)$. The inverse is given with

$$
\check{f}(x)=\int_{\mathbb{R}^{n}} f(\xi) e^{2 \pi i \xi \cdot x} d \xi
$$

T12. Fourier transform extends on $L^{2}\left(\mathbb{R}^{n}\right)$ by density argument and is an isometrical isomorphism from $L^{2}\left(\mathbb{R}^{n}\right)$ to $L^{2}\left(\mathbb{R}^{n}\right)$.

T13. ©Compare Fourier transform on $L^{1}\left(\mathbb{R}^{n}\right), L^{2}\left(\mathbb{R}^{n}\right), \mathcal{S}\left(\mathbb{R}^{n}\right)$ in view of definition, image and possibility to invert the transform.

T14. ©Let $f \in C\left(\mathbb{R}^{n}\right) \cap L^{2}\left(\mathbb{R}^{n}\right)$. Solve the $\operatorname{PDE}-\Delta u-u=f$ in \mathbb{R}^{n}.
T15. © (Heisenberg uncertainity principle) Let $\psi \in \mathcal{S}(\mathbb{R})$ with $\|\psi\|_{2}=1$. Prove that

$$
\left[\int_{\mathbb{R}} x^{2}|\psi(x)| d x\right] \cdot\left[\int_{\mathbb{R}} \xi^{2}|\hat{\psi}(\xi)|^{2} d \xi\right] \geq \frac{1}{16 \pi^{2}} .
$$

T16. © Let $g \in L^{1}\left(\mathbb{R}^{n}\right) \cap C^{1}\left(\mathbb{R}^{n}\right)$.
(A) Let $M: L^{2}(\mathbb{R}) \rightarrow L^{2}(\mathbb{R})$ be given with $M f=\hat{g} f$. Prove that M is well-defined, i.e. it has image in $L^{2}(\mathbb{R})$.
(B) Prove that $\sigma(M)=\overline{\{\hat{g}(x): x \in \mathbb{R}\}}=\{\hat{g}(x): x \in \mathbb{R}\}$.
(C) Let $T: L^{2}(\mathbb{R}) \rightarrow L^{2}(\mathbb{R})$ be defined with $T f=f * g$. Prove that T is well-defined.
(D) Find $\sigma(T)$.

T17. (Hausdorff-Young Lemma) Use Riesz-Thorin interpolation theorem to deduce that the Fourier transform extends to a bounded operator from $L^{p}\left(\mathbb{R}^{n}\right)$ to $L^{p^{\prime}}\left(\mathbb{R}^{n}\right)$ where $p \in(1,2)$.

Tempered distributions

TD1. Prove that Fourier transform is a continuous isomorphism between $\mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right)$ and $\mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right)$.
TD2. Prove that if $f \in L^{p}\left(\mathbb{R}^{n}\right)$ for any $p \in[1, \infty]$, then $f \in \mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right)$ under the canonical embedding

$$
L^{p}\left(\mathbb{R}^{n}\right) \ni f \mapsto I_{f}(g)=\int_{\mathbb{R}^{n}} f(x) g(x) d x \in \mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right)
$$

TD3. Let $f \in L^{1}\left(\mathbb{R}^{n}\right)$. In what sense the following two objects coincide:
(A) Fourier transform of f computed directly from the definition for $L^{1}\left(\mathbb{R}^{n}\right)$ functions,
(B) Fourier transform of f computed for f treated as a tempered distribution.

TD4. In view of TD2., one can compute Fourier transform for any L^{p} function rather than just for L^{q} function for $q \in[1,2]$. What is the price for that?

