Functional Analysis (WS 19/20), Problem Set 2

(operators and their norms)

Note: some facts (especially the general ones) should be discussed in the lecture and if that is the case, they can be skipped.

For the linear map $T: X \rightarrow Y$ where $\left(X,\|\cdot\|_{X}\right)$ and $\left(Y,\|\cdot\|_{Y}\right)$ are normed spaces, we define norm of the operator T as

$$
\|T\|=\sup _{x:\|x\|_{X} \leq 1}\|T x\|_{Y} .
$$

If $\|T\|<\infty$ we say T is a bounded linear operator. We write $\mathcal{L}(X, Y)$ for the set of all bounded linear operators between X and Y. We write X^{*} for the dual space of X i.e. space of bounded and linear operators $X: E \rightarrow \mathbb{R}$.

Some facts that should be discussed in the lecture

F1. Check that

$$
\sup _{x:\|x\|_{X} \leq 1}\|T x\|_{Y}=\sup _{x:\|x\|_{X}=1}\|T x\|_{Y}=\sup _{x \neq 0} \frac{\|T x\|_{Y}}{\|x\|_{X}}
$$

so that there are three equivalent definition of the operator norm.
F2. Let $\left(X,\|\cdot\|_{X}\right)$ and $\left(Y,\|\cdot\|_{Y}\right)$ be normed spaces. Let $T: X \rightarrow Y$ be a linear map. Check that the following conditions are equivalent:
(a) T is a bounded linear operator,
(b) T is continuous at 0 ,
(c) T is continuous,
(d) T is Lipschitz continuous.

F3. Let $\left(X,\|\cdot\|_{X}\right)$ and $\left(Y,\|\cdot\|_{Y}\right)$ be normed spaces. Justify briefly that $\mathcal{L}(X, Y)$ equipped with operator norm is a normed space.

F4. Let $\left(X,\|\cdot\|_{X}\right)$ be a normed space and $\left(Y,\|\cdot\|_{Y}\right)$ be a Banach space. Prove that $\mathcal{L}(X, Y)$ equipped with operator norm is a Banach space. Note: it is sufficient that $\left(Y,\|\cdot\|_{Y}\right)$ is a Banach space.

Some additional facts about operators

A1. (dual spaces are always Banach) Let $\left(X,\|\cdot\|_{X}\right)$ be a normed space. Justify briefly that the dual space X^{*} of bounded linear functionals on X is a Banach space.

A2. (unbounded functionals) Let $\left(X,\|\cdot\|_{X}\right)$ be infinite dimensional Banach space. Prove that there is a linear functional that is not bounded. Hint: consider Hamel basis of X and define the functional on its elements. Remark: It can get even worse: "projection" functionals can be discontinuous. To see this consider space of polynomials with L^{1} norm and study projection of $(x-1)^{n}$ on 1 which is an element of Hamel basis.

A3. (kernel of bounded functionals) Let $\left(X,\|\cdot\|_{X}\right)$ be a Banach space and let φ be a linear functional on X. Prove that $\varphi \in X^{*}$ if and only if its kernel is closed. Prove also that the kernel of a bounded linear functional $\varphi \in X^{*}$ has codimension 1 .

A4. (extension from dense subset) Let $\left(X,\|\cdot\|_{X}\right)$ be a normed space and $\left(Y,\|\cdot\|_{Y}\right)$ be a Banach space. Suppose that D is a dense linear subspace of X and $T: D \rightarrow Y$ is a bounded linear operator. Prove that T has a unique extension to X which preserves the norm.

A5. (bound on composition) Let $\left(X,\|\cdot\|_{X}\right),\left(Y,\|\cdot\|_{Y}\right)$ and $\left(Z,\|\cdot\|_{Z}\right)$ be normed spaces. Let $T: X \rightarrow Y$ and $S: Y \rightarrow Z$ be bounded linear operators. Check that $\|S \circ T\| \leq\|S\|\|T\|$.

A6. (exponential of the operator) Let $\left(X,\|\cdot\|_{X}\right)$ be a normed space and $\left(Y,\|\cdot\|_{Y}\right)$ be a Banach space. Let $T: X \rightarrow Y$ be a bounded operator. Check that the series $\sum_{k=0}^{\infty} \frac{T^{k}}{k!}$ converges in $\mathcal{L}(X, Y)$. This is usually definition of e^{T}. Note that this generalizes e^{A} for $A \in \mathbb{R}^{n \times n}$.

Introduction to invertibility - norm condition

I1. (necessary condition for series convergence) Let $\left(X,\|\cdot\|_{X}\right)$ be a normed space. Suppose that $\sum_{k=0}^{\infty} x_{k}$ converges in $\left(X,\|\cdot\|_{X}\right)$. Prove that $x_{k} \rightarrow 0$.

I2. Let $\left(X,\|\cdot\|_{X}\right)$ be a normed space and $T \in \mathcal{L}(X, X)$. Prove that if $\sum_{k=1}^{\infty} T^{k}$ converges in $\mathcal{L}(X, X)$ then $(I-T)^{-1}$ exists and

$$
(I-T)^{-1}=\sum_{k=1}^{\infty} T^{k} .
$$

Moreover, if $\left(X,\|\cdot\|_{X}\right)$ is a Banach space, it is sufficient that $\sum_{k=1}^{\infty}\|T\|^{k}<\infty$, i.e. $\|T\|<1$.
I3. Let $k \in C([0,1] \times[0,1])$ with $\|k\|_{\infty}<1$ and $y \in C([0,1])$. Prove that there is a unique continuous solution $x \in C([0,1])$ to the integral equation

$$
x(t)-\int_{0}^{1} k(s, t) x(s) d s=y(t) .
$$

I4. Let $\left(X,\|\cdot\|_{X}\right)$ be a Banach space. Prove that the set of invertible operators is open in $\mathcal{L}(X, X)$ equipped with operator norm. Hint: Consider ball in $\mathcal{L}(X, X)$ centered at T. If S is in that ball, write $S=T+W=T\left(I+T^{-1} W\right)$ for some "small" W. Note: Any bounded linear operator that is invertible can be perturbed (in a sufficiently small way) and the resulting perturbation is still invertible.

Standard problems - computation of the operator norms

It can be considered as a tradition of the Faculty that on the mid-term exam there is a question of the type "compute norm of the operator". Therefore, below I have compiled some list of problems to practice.

N1. Let $E=\{u \in C([0,1]): u(0)=0\}$. Justify briefly that E with a supremum norm is a Banach space. Consider a linear functional $\varphi: E \rightarrow \mathbb{R}$ defined with $\varphi(u)=\int_{0}^{1} u(t) d t$. Compute norm $\|\varphi\|$ of this functional (i.e. $\left.\sup _{u:\|u\|_{\infty} \leq 1}|\varphi(u)|\right)$ and prove that $\varphi \in E^{*}$. Is there $u \in E$ such that $\|u\|_{\infty} \leq 1$ and $\varphi(u)=\|\varphi\|$?
N2. Consider a linear functional $\varphi: C[0,1] \rightarrow \mathbb{R}$ defined with $\varphi(u)=\int_{0}^{\frac{1}{2}} u(t) d t-\int_{\frac{1}{2}}^{1} u(t) d t$. Compute norm $\|\varphi\|$ of this functional (i.e. $\left.\sup _{u:\|u\|_{\infty} \leq 1}|\varphi(u)|\right)$ and prove that $\varphi \in(C[0,1])^{*}$. Is there $u \in C[0,1]$ such that $\|u\|_{\infty} \leq 1$ and $\varphi(u)=\|\varphi\|$?

N3. Consider functional $\varphi: c_{0} \rightarrow \mathbb{R}$ defined with $\varphi(u)=\sum_{i=1}^{\infty} \frac{1}{2^{n}} u_{n}$ where $u=\left(u_{1}, u_{2}, u_{3}, \ldots\right)$. Compute norm $\|\varphi\|$ of this functional (i.e. $\left.\sup _{u:\|u\|_{\infty} \leq 1}|\varphi(u)|\right)$ and prove that $\varphi \in\left(c_{0}\right)^{*}$. Is there $u \in c_{0}$ such that $\|u\|_{\infty} \leq 1$ and $\varphi(u)=\|\varphi\|$?

N4. Check if the following formulas define bounded linear functionals on given spaces (and if yes, compute their norm):
(a) $\varphi(a)=\lim _{k \rightarrow \infty} a_{k}$ on c (space of convergent sequences),
(b) $\varphi(f)=\int_{-1}^{-1} x f(x) d x$ on $C[-1,1]$.

N5. Consider operator $T: l_{1} \rightarrow c_{0}$ defined with

$$
(T y)_{k}=\frac{1}{2} \sum_{j=1}^{k}\left(\frac{1}{k}\right)^{j} y_{j}
$$

where $y=\left(y_{1}, y_{2}, \ldots\right)$ and $(T y)_{k}$ is k-th element of sequence $T y$. Check that T is well-defined (i.e. $T y \in c_{0}$ whenever $y \in l_{1}$), prove that it is a bounded linear operator and compute its norm.
N6. Consider operator $T: c_{0} \rightarrow l^{\infty}$ given by $T x=\left(\sum_{j \geq 1} a_{i, j} x_{j}\right)_{i=1}^{\infty}$ where numbers $a_{i, j}$ are such that $\sup _{i \geq 1} \sum_{j \geq 1}\left|a_{i, j}\right|<\infty$. Prove that $\|T\|=\sup _{i \geq 1} \sum_{j \geq 1}\left|a_{i, j}\right|$.

N7. (averaging operators) Let $1 \leq p \leq \infty$ and $T: L^{p}\left(\mathbb{R}^{d}\right) \rightarrow L^{p}\left(\mathbb{R}^{d}\right)$ be defined with

$$
T(f)(y)=\frac{1}{\lambda_{n}(B(y, 1))} \int_{B(y, 1)} f(x) d x
$$

where $B(y, 1)$ denotes a unit ball with center $y \in \mathbb{R}^{d}$. Check that T is well - defined (i.e. it is L^{p}-valued), prove that it is a bounded linear operator and compute its norm.

N8. (discrete derivative) Let $1 \leq p \leq \infty$ and $T: l^{p} \rightarrow l^{p}$ be defined with

$$
T\left(\left(a_{n}\right)_{n \geq 1}\right)=\left(a_{n+1}-a_{n}\right)_{n \geq 1}
$$

Check that T is well - defined (i.e. it is l^{p}-valued), prove that it is a bounded linear operator and compute its norm.

N9. Let $1 \leq p<\infty$ and consider operator $T: l^{p} \rightarrow l^{p}$ defined with
(a) $T\left(\left(a_{n}\right)_{n \geq 1}\right)=\left(\frac{a_{n}}{n+1}\right)_{n \geq 1}$,
(b) $T\left(\left(a_{n}\right)_{n \geq 1}\right)=\left(a_{2 n}+a_{n}\right)_{n \geq 1}$.

Decide whether T is a well-defined bounded operator and if yes, compute its norm.

