Functional Analysis (WS 19/20), Problem Set 4

(Open Mapping Theorem and Closed Graph Theorem)

Open Mapping Theorem Let $\left(X,\|\cdot\|_{X}\right)$ and $\left(Y,\|\cdot\|_{Y}\right)$ be Banach spaces and $T: X \rightarrow Y$ be a bounded linear operator that is surjective. Then, T is open i.e. there is a constant $c>0$ such that

$$
B_{Y}(0, c) \subset T\left(B_{X}(0,1)\right) .
$$

Inverse Mapping Theorem Let $\left(X,\|\cdot\|_{X}\right)$ and $\left(Y,\|\cdot\|_{Y}\right)$ be Banach spaces and $T: X \rightarrow Y$ be a bounded linear operator that is bijective. Then, T^{-1} is also bounded.

Closed Graph Theorem Let $\left(X,\|\cdot\|_{X}\right)$ and $\left(Y,\|\cdot\|_{Y}\right)$ be Banach spaces and $T: X \rightarrow Y$ a linear operator. Then, T is bounded if and only if its graph

$$
G(T)=\{(x, T x): x \in X\}
$$

is closed in the product space $X \times Y$.

Open Mapping Theorem

O1. Let $X=\left(l_{1},\|\cdot\|_{1}\right)$ and $Y=\left(l_{1},\|\cdot\|_{\infty}\right)$. Prove that identity operator $T: X \rightarrow Y$ defined with $T x=x$ is a bounded linear map that is not open. Why OMT does not hold in this case?

O2. (Inverse Mapping Theorem) Let $\left(X,\|\cdot\|_{X}\right)$ and $\left(Y,\|\cdot\|_{Y}\right)$ be Banach spaces and $T: X \rightarrow Y$ be a bounded linear operator that is bijective. Then, T^{-1} is also bounded.

O3. Let X be a vector space. Let $\|\cdot\|_{1}$ and $\|\cdot\|_{2}$ be two norms on X and suppose that X is a Banach space with respect to both of them. Finally, suppose that $\|x\|_{1} \leq C\|x\|_{2}$ for some constant C. Then, there is a constant c such that

$$
\|x\|_{2} \leq c\|x\|_{1}
$$

and hence, both norms are equivalent on X.
O4. Prove that $C[0,1]$ equipped with $L^{p}(0,1)$ norm is not a Banach space for $1 \leq p<\infty$. Remark: Compare this problem with exercises like "set l^{1} with l^{∞} norm is not a Banach space".

O5. Let $\left(X,\|\cdot\|_{X}\right)$ be a normed space. Suppose that $A, B \subset X$. Prove that $\bar{A}+\bar{B} \subset \overline{A+B}$ where " + " stands for the Minkowski sum of sets.

Closed Graph Theorem

C1. (Closed Graph Theorem) Use Problem O3. to deduce Closed Graph Theorem. Hint: For $x \in X$, consider two norms: (a) $\|x\|_{X}$ and (b) $\|x\|_{X}+\|T x\|_{Y}$.

C2. (Uniform Boundedness Principle again) Let $\left(X,\|\cdot\|_{X}\right),\left(Y,\|\cdot\|_{Y}\right)$ be normed spaces. Suppose that $T_{n}: X \rightarrow Y$ are bounded linear operators such that $T_{n} \rightarrow T$ pointwisely (i.e. for every $x \in X, T_{n} x \rightarrow T x$ in Y). Prove that if $x_{n} \rightarrow x$ in X, then $T_{n} x_{n} \rightarrow T x$ in Y. Note: This is Problem U2 from Problem Set 3 again.

C3. Show that, up to an equivalence of norms, the supremum norm is the only norm on $C[0,1]$ which makes $C[0,1]$ complete and which also implies the pointwise convergence.

C4. Show that, up to an equivalence of norms, the $\|\cdot\|_{p}$ norm is the only norm on $L^{p}(0,1)$ which makes $L^{p}(0,1)$ complete and which also implies pointwise converges a.e. of some subsequence.

C5. Let $\left(X,\|\cdot\|_{X}\right)$ be a Banach space. Consider a linear operator $T: X \rightarrow X^{*}$ such that for all $x \in X$:

$$
(T x)(x) \geq 0
$$

Prove that T is a bounded operator. Clarification: For any $x \in X, T x \in X^{*}$ so $(T x)(x)$ is just a real number i.e. functional $T x$ evaluated at x. Hint: If one has to show that $\varphi_{1}, \varphi_{2} \in X^{*}$ satisfy $\varphi_{1}=\varphi_{2}$, it is convenient to fix arbitrary $x \in X$ and prove $\varphi_{1}(x)=\varphi_{2}(x)$.

C6. Let $\left(X,\|\cdot\|_{X}\right)$ be a Banach space. Consider a linear operator $T: X \rightarrow X^{*}$ such that for all $x, y \in X$:

$$
(T x)(y)=(T y)(x)
$$

(see clarification in Problem C5. if necessary). Prove that T is a bounded operator. Hint: Let $x_{n} \rightarrow x$ and consider $\left(T x_{n}\right)(x)$.

Introduction to invertibility - norm condition ${ }^{1}$

I1. (necessary condition for series convergence) Let $\left(X,\|\cdot\|_{X}\right)$ be a normed space. Suppose that $\sum_{k=0}^{\infty} x_{k}$ converges in $\left(X,\|\cdot\|_{X}\right)$. Prove that $x_{k} \rightarrow 0$.
I2. Let $\left(X,\|\cdot\|_{X}\right)$ be a normed space and $T \in \mathcal{L}(X, X)$. Prove that if $\sum_{k=1}^{\infty} T^{k}$ converges in $\mathcal{L}(X, X)$ then $(I-T)^{-1}$ exists and

$$
(I-T)^{-1}=\sum_{k=1}^{\infty} T^{k}
$$

Moreover, if $\left(X,\|\cdot\|_{X}\right)$ is a Banach space, it is sufficient that $\sum_{k=1}^{\infty}\|T\|^{k}<\infty$, i.e. $\|T\|<1$.
I3. Let $k \in C([0,1] \times[0,1])$ with $\|k\|_{\infty}<1$ and $y \in C([0,1])$. Prove that there is a unique continuous solution $x \in C([0,1])$ to the integral equation

$$
x(t)-\int_{0}^{1} k(s, t) x(s) d s=y(t)
$$

I4. Let $\left(X,\|\cdot\|_{X}\right)$ be a Banach space. Prove that the set of invertible operators is open in $\mathcal{L}(X, X)$ equipped with operator norm. Hint: Consider ball in $\mathcal{L}(X, X)$ centered at T. If S is in that ball, write $S=T+W=T\left(I+T^{-1} W\right)$ for some "small" W. Note: Any bounded linear operator that is invertible can be perturbed (in a sufficiently small way) and the resulting perturbation is still invertible.

[^0]
[^0]: ${ }^{1}$ This is content of Problem Set 2. It is copied here for your convenience.

