Functional Analysis (WS 19/20), Problem Set 5

(Introduction to Hilbert Spaces)

Basic properties of Hilbert spaces

P1. Verify that $L^2(0,1)$ with the inner product $\langle f,g\rangle = \int_0^1 f(x) g(x) dx$ is a Hilbert space.

P2. Verify that the space

$$X = \left\{ f \text{ measurable and } \int_0^1 |f(t)|^2 e^t dt < \infty \right\}$$

is a Hilbert space with the inner product $\langle f,g\rangle = \int_0^1 f(x) g(x) e^t dx$. Check that it is a subset of $L^2(0,1)$.

P3. More generally, let $w \in L^1(0,1)$ be a nonnegative function. Verify that the space

$$X = \left\{ f \text{ measurable and } \int_0^1 |f(t)|^2 w(t) dt < \infty \right\}$$

is a Hilbert space with the inner product $\langle f, g \rangle = \int_0^1 f(x) g(x) w(t) dx$. Is it a subset of $L^2(0,1)$?

- P4. Verify that $\langle f,g\rangle = \int_0^1 f(x) g(x) dx$ defines an inner product on C[0,1]. Is $(C[0,1], \langle \cdot, \cdot \rangle)$ a Hilbert space?
- P5. We say that a Banach space $(X, \|\cdot\|)$ is <u>uniformly convex</u> if for any $\epsilon > 0$, there is $\delta > 0$ such that for any $x, y \in E$:

if
$$||x|| = ||y|| = 1$$
 and $||x - y|| \ge \epsilon$ then $\left\|\frac{x + y}{2}\right\| \le 1 - \delta$.

Prove that any Hilbert space is uniformly convex.¹

P6. (**Pythagorean Theorem**) Let $(H, \langle \cdot, \cdot \rangle)$ be a Hilbert space and $x, y \in H$. Prove that

$$||x + y||^{2} = ||x||^{2} + 2\langle x, y \rangle + ||y||^{2}.$$

P7. (Bessel's inequality) Let $\{e_i\}_{i\in\mathbb{N}}$ be an orthonormal sequence in Hilbert space $(H, \langle \cdot, \cdot \rangle)$. Prove that for any $x \in H$

$$\sum_{i=1}^{\infty} |\langle x, e_i \rangle|^2 \le ||x||^2.$$

P8. For $1 \le p \le \infty$ consider space $L^p(0,1)$. Prove that norm $\|\cdot\|_p$ satisfies parallelogram identity:

$$2 \|x\|_p^2 + 2 \|y\|_p^2 = \|x + y\|_p^2 + \|x - y\|_p^2$$

if and only if p = 2. *Hint*: Consider functions with disjoint supports.

¹A deep result due to Milman and Pettis asserts than any uniformly convex Banach space E is reflexive, i.e. $E^{**} = E$ up to an isometric isomorphism. This somehow connects geometric and analytical properties of Banach spaces. Note that this is still weaker than Riesz Representation Theorem asserting that for any Hilber space H we have $H = H^*$.

Orthogonal complements and projections

O1. Let $K \subset H$ be non-empty, convex and closed subset of Hilbert space $(H, \langle \cdot, \cdot \rangle_H)$. We know that for every $f \in H$, there exists a unique $P_K(f) \in K$ such that

$$\inf_{x \in K} \|f - x\| = \|f - P_K(f)\|$$

and $P_K(f)$ is usually called a projection of f on K. Prove that $P_K(f)$ can be equivalently characterized as

$$P_K(f) \in K$$
 and $\langle v - P_K(f), f - P_K(f) \rangle \leq 0$ for all $v \in K$.

O2. For a subset $K \subset H$ we define its orthogonal complement

$$K^{\perp} = \{ x \in H : \langle x, v \rangle = 0 \text{ for all } v \in K \}.$$

Prove that K^{\perp} is a closed linear subspace of H.

- O3. Prove that the projection $P_K(f)$ is 1-Lipschitz.
- O4. Let $M \subset H$ be a linear closed subspace of Hilbert space $(H, \langle \cdot, \cdot \rangle_H)$. Prove that projection $P_M : H \to M$ defines a bounded linear operator. Moreover, for any $f \in H$, $P_M(f)$ can be equivalently characterized as

$$P_M(f) \in M$$
 and $\langle v, f - P_M(f) \rangle = 0$ for all $v \in M$.

Note that $f - P_M(f) \in M^{\perp}$.

- O5. Let $(H, \langle \cdot, \cdot \rangle)$ be a Hilbert space and $M \subset H$ a closed subspace. Prove that $H = M \oplus M^{\perp}$, i.e. for any $x \in H$ we can write x = u + v where $u \in M$ and $v \in M^{\perp}$ are uniquely determined. Moreover, there is a bounded linear map $P: H \to H$ with range M such that P(x) = u.
- O6. Consider

$$X = \{ f \in L^2(0,1) : f(x) = 0 \text{ for all } x \in [0,1/2] \}$$

as a subspace of $L^2(0,1)$. Find X^{\perp} and compute projection operator on X.

O7. Consider

$$X = \{ f \in L^2(-1,1) : f(x) = f(-x) \}$$

as a subspace of $L^2(-1,1)$. Find X^{\perp} and compute projection operator on X.

- O8. Find a polynomial w(t) of degree at most 2 such that $\int_0^1 |w(t) t^4|^2 dt$ is the smallest.
- O9. Find a polynomial w(t) of degree at most 1 such that $\int_0^1 |w(t) \sqrt{t}|^2 dt$ is the smallest.

Riesz Representation Theorem

- R1. Prove that there exists a function $f \in L^2(0,1)$ such that $\int_0^1 t^2 f(t) dt = \int_0^1 e^t f(t) dt$. Is this function uniquely determined?
- R2. Let $(H, \langle \cdot, \cdot \rangle_H)$ be a Hilbert space. Suppose that $a : H \times H \to \mathbb{R}$ is a symmetric bilinear continuous form that is coercive, i.e. there is a constant β such that $a(u, u) \ge \beta ||u||^2$. Prove that $(H, a(\cdot, \cdot))$ is a Hilbert space with the same topology as $(H, \langle \cdot, \cdot \rangle_H)$ (i.e. norms are equivalent).

Hint: It may be helpful to recall the proof of the Cauchy-Schwartz inequality.

R3. (Lax-Milgram Lemma, simplified version) Let $(H, \langle \cdot, \cdot \rangle_H)$ be a Hilbert space. Suppose that $a : H \times H \to \mathbb{R}$ is a symmetric bilinear continuous form that is coercive, i.e. there is a constant β such that $a(u, u) \ge \beta ||u||^2$. Let $l \in H^*$. Prove that there is a unique $u \in H$ such that

$$a(u, v) = l(v)$$
 for all $v \in H$.

R4. Prove that there is a uniquely determined function $u \in L^2(0,1)$ such that for all $v \in L^2(0,1)$

$$\int_{0}^{1} u(t)v(t)e^{t}dt = \int_{0}^{1} \sin(t)v(t)dt.$$

Complement of c_0 in l^{∞} does not exist

In the following set of exercises, we prove so-called Phillips Lemma asserting that c_0 cannot be complemented as a closed subset of l^{∞} . We follow the approach from mathematical StackExchange post "Complement of c_0 in l^{∞} "² by **t.b.**.

- C1. Let S be a countable infinite set. Prove that there is an uncountable almost disjoint family of infinite subsets of S, i.e. there is a family $\{A_i\}_{i\in I}$ of subsets of S such that $|I| = |\mathbb{R}|$, $|A_i| = |\mathbb{N}|$ and $A_i \cap A_j$ is finite whenever $i \neq j$. Hint: Think of $S = \mathbb{Q} \cap [0, 1]$ and $I = [0, 1] \setminus S$.
- C2. Let $P: l^{\infty} \to l^{\infty}$ be a bounded linear operator such that P(x) = 0 for all $x \in c_0$. Prove that there exists an infinite set of \mathbb{N} such that P(x) = 0 for all x supported on A.
- C3. Prove that c_0 is not complemented in l^{∞} .

²https://math.stackexchange.com/questions/132520/complement-of-c-0-in-ell-infty

Orthogonal bases in Hilbert spaces

B1. Let $(H, \langle \cdot, \cdot \rangle_H)$ be an infinite dimensional Hilbert space. Prove that H has an orthonormal basis (in the sense of Schauder) if and only if H is separable. Moreover, if $\{e_i\}_{i \in I}$ is an orthonormal basis of H, we have

$$x = \sum_{i=1}^{\infty} \langle x, e_i \rangle e_i$$

and this series converges in H.

- B2. Let $(H, \langle \cdot, \cdot \rangle_H)$ be an infinite dimensional separable Hilbert space. Prove that H is isometrically isomorphic to l^2 with its standard inner product $\langle \cdot, \cdot \rangle_{l^2}$, i.e. there is an isomorphism $T: H \to l^2$ such that $\langle Tu, Tv \rangle_{l^2} = \langle u, v \rangle_H$. Hint: Use Problem B1.
- B3. (**Parseval's identity**) Let $\{e_i\}_{i \in I}$ be an orthonormal basis of Hilbert space $(H, \langle \cdot, \cdot \rangle_H)$. Prove that

$$\sum_{i=1}^{\infty} |\langle x, e_i \rangle|^2 = ||x||^2$$

B4. There are Hilbert spaces that are not separable. Consider space of functions $f : \mathbb{R} \to \mathbb{R}$ such that $f(x) \neq 0$ only for countably many $x \in \mathbb{R}$ equipped with the scalar product

$$\langle f,g\rangle = \sum_{x\in\mathbb{R}} f(x) g(x).$$

Prove that it is a Hilbert space but it is not separable (find uncountable set of elements x_i such that $||x_i - x_j|| \ge 1$).

B5. Prove that sequence of polynomials

$$P_n(t) = \frac{1}{2^n n!} \frac{d^n}{dt^n} (t^2 - 1)^n$$

defines orthogonal basis of $L^2(-1, 1)$ (definitely, we won't do that exercise in class).