
Functional Analysis (WS 19/20), Problem Set 6

(Dual spaces, Hahn-Banach separation theorems and weak convergence)

Hahn-Banach Theorem (analytic form) Let (X, ‖ · ‖) be a normed space and M ⊂ X be a linear

subspace. Let p : X → R be such that

p(x+ y) ≤ p(x) + p(y), p(tx) = tp(x)

for all x, y ∈ X and t ≥ 0. Finally, suppose that g : M → R is a linear functional and g(x) ≤ p(x)
for all x ∈ M . Then, there exists a linear functional f : X → R such that f(x) = g(x) on M and

f(x) ≤ p(x) for all x ∈ X.

See also Problem H1 for a simpler version of this result.

Hahn-Banach Theorem (geometric form) Let (X, ‖ · ‖) be a normed space. Let A,B ⊂ X be no-

nempty, convex and disjoint sets.

1. If A is open, there exists ϕ ∈ X∗ and λ such that

ϕ(x) < λ ≤ ϕ(y)

for all x ∈ A and y ∈ B. We say that hyperplane {x ∈ X : ϕ(x) = λ} separates A and B.

2. If A is closed and B is compact, there exists ϕ ∈ X∗ and λ1, λ2 such that

ϕ(x) < λ1 < λ2 < ϕ(y)

for all x ∈ A and y ∈ B. Let λ = λ1+λ2
2 . We say that hyperplane {x ∈ X : ϕ(x) = λ}

separates strictly A and B.

Dual spaces characterization

D1. ♣ Let H be a Hilbert space. Recall from the lecture that H = H∗ in the sense of isometric

isomorphism. Write explicitly this isomorphism.

D2. ♣ Let (Ω,F , µ) be a σ-�nite measure space. Recall from the lecture that for 1 ≤ p < ∞,

(Lp)∗ = Lq in the sense of isometric isomorphism (here 1/p+ 1/q = 1). Write explicitly this

isomorphism.

D3. Prove that the map T : l1 → (c0)
∗ given with

(Ty)(x) =

∞∑
i=1

xiyi

is well-de�ned, injective, surjective and isometry (i.e. ‖y‖l1 = ‖Ty‖(c0)∗). Conclude that

(c0)
∗ = l1.

Hahn-Banach Theorem and its applications

H1. ♣ Let (X, ‖ · ‖) be a normed space and M ⊂ X be a linear subspace. Let g ∈ M∗. Prove

that there is a bounded linear functional f ∈ X∗ such that g(x) = f(x) for x ∈ M and

‖f‖X∗ = ‖g‖M∗ .
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H2. Let I : c0 → c0 be the identity operator on c0. Prove that P cannot be extended to l∞.1

H3. Let (X, ‖ · ‖) be a normed space and x0 ∈ X. Prove that there is ϕ ∈ X∗ such that

ϕ(x0) = ‖x0‖2 and ‖ϕ‖ = ‖x0‖.

H4. ♣ Let (X, ‖ · ‖) be a normed space. Prove that

‖x‖ = sup
f∈X∗:‖f‖≤1

f(x)

and the supremum above is attained. Moreover, if X∗ is separable, prove that the supremum

above can be taken over countable family of linear functionals f ∈ X∗ such that ‖f‖ ≤ 1.

H5. ♣ Let (X, ‖ · ‖) be a normed space. Prove that if ϕ(x1) = ϕ(x2) for all ϕ ∈ X∗ then x1 = x2.

H6. Let (Ω,F ,P) be a probability space and X : (Ω,F ,P)→ (E, ‖ · ‖) be a random variable.

Suppose thatE∗ is separable. Prove that ‖X‖ is a random variable again (i.e. it is measurable).

H7. Let (E, ‖ · ‖) be a Banach space and A ⊂ E be its subset. Suppose that for every f ∈ E∗, the
set

f(A) = {f(x) : x ∈ A}

is bounded in R. Prove that A is a bounded set in E (i.e. one can �nd a ball B(0, R) for some

R > 0 such that A ⊂ B(0, R)).

H8. Consider Lp(Ω,F , µ) with 1 ≤ p <∞ and 1/p+ 1/q = 1. Prove that

‖f‖p = sup
g∈Lq :‖g‖q≤1

∫
X
f(x)g(x)dµ(x),

H9. Prove that l1 ⊂ (l∞)∗ but (l∞)∗ 6= l1. Hint: Consider c ⊂ l∞.

H10. ♣ Let E be a normed space and F ⊂ E be a linear subspace such that F 6= E. Prove that

there is ϕ ∈ E∗ such that ϕ 6= 0, ‖ϕ‖ = 1 and ϕ(x) = 0 for all x ∈ F .

H11. Let E be a normed space and F ⊂ E be a linear subspace such that for all ϕ ∈ E∗

∀x∈F ϕ(x) = 0 =⇒ ϕ = 0.

Prove that F is dense in E.

H12. Let X be a vector space (not necessarily normed or Banach) over R. Let ϕ, ϕ1, ..., ϕk be

linear functionals on R (i.e. linear maps from X to R). Suppose that

(∀i=1,...,k ϕi(v) = 0) =⇒ ϕ(v) = 0.

Prove that ϕ is a linear combination of ϕ1, ..., ϕk, i.e. there are real numbers λ1, ..., λk such

that ϕ =
∑k

n=1 λnϕn. Hint: Study F (x) = (ϕ1(x), ..., ϕk(x), ϕ(x)).

H13. ♣ (Riesz Lemma) Let (X, ‖ · ‖) be a normed space and M ⊂ X a closed (strictly contained)

subspace. Prove that for any α ∈ (0, 1) there is x ∈ X such that ‖x‖ = 1 and dist(x,M) ≥ α.
1Kakutani Theorem (1940) asserts that every operator on the closed subspace M in a Banach space (X, ‖ · ‖) can

be extended if and only if X is a unitary space (its norm satis�es paralellogram identity).
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H14. Prove that if X is �nite dimensional, one can obtain Riesz Lemma for α = 1. Prove that this
is not possible, in general, for in�nite dimensional X (study X = l∞).

H15. ♣ (compactness of the ball) Use Riesz Lemma to prove that if (X, ‖ · ‖) is in�nite dimen-

sional space, ball BX = {x ∈ X : ‖x‖ ≤ 1} is not compact.

H16. In the following Problem we will see that in in�nite dimensional setting, something has to

be assumed about two convex sets so that they can be separated (in �nite dimensional case,

convexity of both sets is su�cient). Let E = l1 with its usual norm and consider two subsets:

X =
{
x ∈ l1 : x2n = 0 for all n ≥ 1

}
Y =

{
y ∈ l1 : y2n =

1

2n
y2n−1 for all n ≥ 1

}
.

(a) Check that X and Y are closed linear spaces in l1. Verify that X + Y = E.

(b) Consider sequence c de�ned with c2n−1 = 0 and c2n = 1
2n . Check that c /∈ X + Y .

(c) Set Z = X − c and check that Y ∩ Z = ∅. Can one separate Y and Z?

Introduction to weak convergence
Let (E, ‖ · ‖) be a Banach space. We say that sequence (xn)n≥1 ⊂ E converges weakly to x ∈ E if

for every ϕ ∈ E∗ we have ϕ(xn)→ ϕ(x). We write xn ⇀ x.

W1. ♣ Write explicitly, using representation theorems, what does it mean to converge weakly in

Lp (for 1 ≤ p <∞) and H where H is a Hilbert space.

W2. ♣ Prove that weak limits are unique: if xn ⇀ x and xn ⇀ y then x = y.

W3. ♣ Prove that sequences converging weakly are bounded, i.e. if xn ⇀ x then there is a constant

C such that ‖xn‖ ≤ C where C does not depend on n ∈ N. Moreover, prove the bound

‖x‖ ≤ lim inf
n→∞

‖xn‖.

W4. ♣ Prove that if xn → x then xn ⇀ x.

W5. Prove that sin(nx) ⇀ 0 but sin2(nx) ⇀ 1
2 in Lp(0, 2π) for 1 < p < ∞. Hence, nonlinearities

do not preserve weak limits. Remark: Unfortunately, one can show much more: if F is a

function such that F (xn) ⇀ F (x) for all xn ⇀ x, then F is an a�ne function.

W6. Prove that if xn ⇀ x and fn → f in E∗ then fn(xn)→ f(x) as n→∞.

W7. (Riesz Mazur Lemma) Let C ⊂ E be a convex set. Prove that C is closed for convergence

in norm if and only if C is closed for weak convergence. Hint: Hahn-Banach.

C is closed for convergence in norm if for any {xn}n≥1 such that xn → x it follows that x ∈ C.
This is exactly the same as statement that C is closed in E.
C is closed for weak convergence if for any {xn}n≥1 such that xn ⇀ x it follows that x ∈ C.

W8. Let f : [0, 1]→ R be a continuous function. Prove that f attains its minimum in some point

x ∈ [0, 1]. Moreover, prove that lowersemicontinuity of f is su�cient.
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W9. ♣ (Banach-Alaoglu-Bourbaki Theorem, special case) Let (H, 〈·, ·〉) be a separable Hil-

bert space. Let {xn}n∈N be a bounded sequence in H. Prove that {xn}n∈N has a subsequence

converging weakly to some x ∈ H. 2

W10. Let (H, 〈·, ·〉) be a separable Hilbert space. Prove that there is a sequence {xn}n∈N such that

‖xn‖ = 1 and xn ⇀ 0.3

2This result is probably the most important one in Functional Analysis and holds for more general spaces.
3In fact, if E is a uniformly convex Banach space (note that Hilbert spaces are always uniformly convex) one can

easily prove (using that a closed ball is also weakly closed) that xn → x if and only if xn ⇀ x and lim supn→∞ ‖xn‖ ≤
‖x‖.
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