Functional Analysis (WS 19/20), Problem Set 7

(Radon - Nikodym theorem and space of signed measures)

In what follows, let X be a nonempty set and \mathcal{F} be a σ -algebra of subsets of X.

Signed measures and Hahn-Jordan decomposition theorem Let μ be a real-valued, signed measures on (X, \mathcal{F}) . Then, there exists unique decomposition $\mu = \mu^+ - \mu^-$ where μ^+, μ^- are nonnegative measures and μ^+, μ^- have disjoint supports.

<u>Total variation measure and norm</u> We define a nonnegative measure $|\mu| = \mu^+ + \mu^-$ called total variation measure. We also set $\|\mu\|_{TV} = |\mu|(X)$. The signed measure μ is said to be finite (or bounded) if $\|\mu\|_{TV} < \infty$.

<u>Radon-Nikodym Theorem</u> Let μ be σ -finite signed measure and ν be a σ -finite nonnegative measure. Suppose that ν is absolutely continuous with respect to μ , i.e. $\nu(A) = 0$ implies $|\mu|(A) = 0$ for all $A \in \mathcal{F}$ (we write $\mu \ll \nu$). Then, there exists uniquely determined (up to the null sets of ν) function such that

$$\mu(A) = \int_A f(x) \, d\nu(x).$$

We say that f is the derivative of μ with respect to ν . Abusing notation, we usually write $\frac{d\mu}{d\nu} = f$ or $d\mu = f d\nu$.

Radon-Nikodym Theorem

- R1. \clubsuit (absolute continuity) Let μ, ν be nonnegative measures such that ν is bounded. Prove that $\nu << \mu$ if and only if for any $\epsilon > 0$ there is $\delta > 0$ such that $\nu(A) \le \epsilon$ whenever $\mu(A) \le \delta$.
- R2. Problem R1 may fail if ν is not finite: on (0,1) consider ν given with $d\nu = \frac{1}{x}dx$ and $d\mu = dx$ where dx is the Lebesgue measure. Alternatively, take ν to be the counting measure on \mathbb{N} and $\mu(E) = \sum_{n \in E} 2^{-n} \delta_n$.
- R3. The σ -finiteness assumption in Radon-Nikodym theorem is essential. Consider X = [0, 1]. Let m be Lebesgue measure and μ be a counting measure on [0, 1]. Prove that $m \ll \mu$ but there is no function f such that $dm = f d\mu$.
- R4. Let (X, \mathcal{F}, μ) be a σ -finite measure space and let $\mathcal{G} \subset \mathcal{F}$ be a sub- σ -algebra of \mathcal{F} . Let $f \in L^1(\mu)$ and ν be a restriction of μ to \mathcal{G} . Prove that there exists $g \in L^1(\nu)$ (in particular: g is \mathcal{G} -measurable) such that

$$\int_E f \, d\mu = \int_E g \, d\nu \qquad \forall_{E \in \mathcal{G}}.$$

Moreover, g is uniquely determined up to the null sets of ν .

R5. (conditional expectation) Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space and X be a real-valued random variable such that $\mathbb{E}|X| < \infty$. Let $\mathcal{G} \subset \mathcal{F}$ be a sub- σ -algebra of \mathcal{F} . Prove that there exists a \mathcal{G} -measurable random variable Y such that

$$\mathbb{E} X \mathbb{1}_A = \mathbb{E} Y \mathbb{1}_A \qquad \forall_{A \in \mathcal{G}}.$$

We usually write $Y = \mathbb{E}(X|\mathcal{G})$ and call Y a conditional expectation of X with respect to \mathcal{G} .

Spaces of measures

- M1. Let $f \in L^1(\mu)$ and $\nu(A) = \int_A f d\mu$ where μ is a nonnegative measure. Find Hahn-Jordan decomposition of ν . Prove that $|\nu| = \int_A |f| d\mu$ and $\|\nu\|_{TV} = \|f\|_{L^1(\mu)}$.
- M2. \clubsuit Prove that the set of real-valued signed and finite measures $\mathcal{M}(X)$ equipped with $\|\cdot\|_{TV}$ as a norm is a normed space.
- M3. Prove that the set of real-valued signed and finite measures $\mathcal{M}(X)$ equipped with $\|\cdot\|_{TV}$ as a norm is a Banach space. *Hint*: A delightful application of Radon-Nikodym to the measure $\sum_{i=1}^{\infty} \frac{1}{2^n} |\mu_n|$.
- M4. Let X be an uncountable set. Prove that the set of real-valued signed and finite measures $\mathcal{M}(X)$ equipped with $\|\cdot\|_{TV}$ as a norm is not separable.
- M5. \clubsuit (continuity pathology) Compute $\|\delta_a \delta_b\|_{TV}$. Deduce that if $x_n \to x$ and $x_n \neq x$ then it does not hold that $\delta_{x_n} \to \delta_x$ in the total variation norm. *Remark:* This shows that the total variation norm does not keep information about pointwise behaviour of measures.
- M6. (1-Wasserstein distance) On the set of probability measures on $(X, \mathcal{F}) = (\mathbb{R}^d, \mathcal{B}(\mathbb{R}^d))$ with finite first moment (i.e. $\int_X |x| d\mu(x) < \infty$) we define

$$W_1(\mu,\nu) = \sup \int_X f(x) d(\mu(x) - \nu(x)),$$

where the supremum is taken over all Lipschitz functions with Lipschitz constant at most 1.

- Verify that W_1 is indeed a metric on the space of probability measures.
- Prove that it cannot be extended to the set of finite and nonnegative measures $\mathcal{M}^+(X)$.
- Prove that if $x_n \to x$ then $W_1(\delta_{x_n}, \delta_x) \to 0$. Hence, continuity pathology does not occur here.
- M7. (flat metric) Check that the following modification of Wasserstein distance:

$$p_F(\mu,\nu) = \sup \int_X f(x) d(\mu(x) - \nu(x)),$$

where the supremum is taken over all Lipschitz and bounded functions with Lipschitz constant and supremum norm at most 1, is well defined on the space of nonnegative finite measures.