Functional Analysis (WS 19/20), Problem Set 8

(spectrum and adjoints on Hilbert spaces)¹

In what follows, let H be a **complex** Hilbert space.

Let $T: H \to H$ be a bounded linear operator. We write $T^*: H \to H$ for **adjoint** of T defined with

$$\langle Tx, y \rangle = \langle x, T^*y \rangle.$$

This operator exists and is uniquely determined by Riesz Representation Theorem.

Spectrum of T is the set $\sigma(T) = \{\lambda \in \mathbb{C} : T - \lambda I \text{ does not have a bounded inverse}\}$. **Resolvent** of T is the set $\rho(T) = \mathbb{C} \setminus \sigma(T)$.

Basic facts on adjoint operators

- R1. \clubsuit Adjoint T^* exists and is uniquely determined.
- R2. Adjoint T^* is a bounded linear operator and $||T^*|| = ||T||$. Moreover, $||T^*T|| = ||T||^2$.
- R3. \clubsuit Taking adjoints is an involution: $(T^*)^* = T$.
- R4. Adjoints commute with the sum: $(T_1 + T_2)^* = T_1^* + T_2^*$.
- R6. \clubsuit Let T be a bounded invertible operator. Then, $(T^*)^{-1} = (T^{-1})^*$.
- R7. \clubsuit Let T_1, T_2 be bounded operators. Then, $(T_1 T_2)^* = T_2^* T_1^*$.
- R8. \clubsuit We have relationship between kernel and image of T and T^{*}:

$$\ker T^* = (\operatorname{im} T)^{\perp}, \qquad (\ker T^*)^{\perp} = \overline{\operatorname{im} T}$$

It will be helpful to prove that if $M \subset H$ is a linear subspace, then $\overline{M} = (M^{\perp})^{\perp}$. Btw, this covers all previous results like if N is a finite dimensional linear subspace then $N = (N^{\perp})^{\perp}$ (because N is closed).

Computation of adjoints

M1. \bigcirc Let $A : \mathbb{R}^n \to \mathbb{R}^n$ be a complex matrix. Find A^* .

- M2. \clubsuit ©Let $H = l^2(\mathbb{Z})$. For $x = (..., x_{-2}, x_{-1}, x_0, x_1, x_2, ...) \in H$ we define the right shift operator with $(Rx)_k = x_{k-1}$. Find ||R||, R^{-1} and R^* . Similarly, one can consider the left shift operator L.
- M3. \bigcirc Let $K : L^2(0,1) \to L^2(0,1)$ be defined with $Kf(x) = \int_0^x f(y)$. Prove that K is a bounded linear operator and compute K^* .

¹A useful reference for this topic is Chapter 9 of the book *Applied Analysis* by John Hunter and Bruno Nachtergaele available online at https://www.math.ucdavis.edu/ hunter/book/pdfbook.html. It may be helpful to read Wikipedia articles: "Hermitian adjoint", "Spectrum (functional analysis)" and "Decomposition of spectrum (functional analysis)".

- M4. \clubsuit \odot Let $M \subset H$ be a closed subspace and P_M be an orthogonal projection on M. Find $(P_M)^*$.
- M5. ©Let $A: H \to H$ be a bounded operator. Recall that e^A exists as a series $\sum_{k=0}^{\infty} \frac{A^k}{k!}$ converging in the operator norm. Compute $(e^A)^*$.
- M6. \bigcirc Let $T: L^2(0,1) \to L^2(0,1)$ be defined with

$$Tf(x) = \int_0^1 k(x, y) f(y) dy$$

for some bounded and measurable function k(x, y). Find the adjoint of T. Remark: This operator is called Hilbert-Schmidt operator.

M7. \bigcirc Let $T: L^2(\mathbb{R}) \to L^2(\mathbb{R})$ be defined with $Tf(x) = \operatorname{sgn}(x)f(x+1)$. Prove that T is well - defined and find T^* .

Spectrum of an operator on Hilbert space

- S1. \clubsuit Let A be a bounded operator. Prove that $\sigma(A)$ can be decomposed into three disjoint parts:
 - (a) point spectrum: $\lambda \in \mathbb{C}$ such that $A \lambda I$ is not injective,
 - (b) continuous spectrum: $\lambda \in \mathbb{C}$ such that $A \lambda I$ is injective but not surjective and image of $A \lambda I$ is dense in H,
 - (c) residual spectrum: $\lambda \in \mathbb{C}$ such that $A \lambda I$ is injective but not surjective and image of $A \lambda I$ is not dense in H
 - If $\lambda \in \mathbb{C}$ belongs to the point spectrum, we say that λ is an eigenvalue of A.
- S2. Prove that $\sigma(A) \subset B(0, ||A||) \subset \mathbb{C}$.
- S3. \clubsuit Prove that $\rho(A)$ is an open subset of \mathbb{C} . Conclude that $\sigma(A)$ is a compact subset of \mathbb{C} . Compare with Problem S11.
- S4. \bigstar Prove that $\sigma(A)$ cannot be empty. *Hint*: Liouville theorem applied to the function $\mathbb{C} \ni \lambda \mapsto (A \lambda I)^{-1}$. Is it the same for bounded operators on real Hilbert spaces?²
- S5. Let p be a polynomial. Prove that if $\sigma(p(A)) = \{p(\lambda) : \lambda \in \sigma(A)\}.$
- S6. \bigcirc Let $A : \mathbb{R}^n \to \mathbb{R}^n$ be a complex matrix. Prove that A has a purely point spectrum.
- S7. $\textcircled{OLet} M : L^2(0,1) \to L^2(0,1)$ be defined with (Mf)(x) = xf(x). Find point, continuous and residual parts of the spectrum of M. Remark: The result is that M has purely continuous spectrum.
- S8. ©Let $A: l^2 \to l^2$ be defined with $Ax = (0, x_1, \frac{x_2}{2}, \frac{x_3}{3}, ...)$. Find point, continuous and residual parts of the spectrum of A. Remark: The result is that A has purely residual spectrum.
- S9. Let A be a bounded operator. We say that $\lambda \in \mathbb{C}$ belongs to an *approximate spectrum* of A if there exists a sequence $\{x_n\}_{n\in\mathbb{N}}$ such that $||x_n|| = 1$ and $(A \lambda I)x_n \to 0$. Prove that if λ is in approximate spectrum of A, then $\lambda \in \sigma(A)$. Moreover, prove that approximate spectrum contains point and continuous parts of spectrum.

²It seems that on complex Hilbert spaces everything is more complex...

- S10. Find an example of operator A on Hilbert space H such that its residual and approximate parts of spectrum are not empty and:
 - (a) its residual spectrum is not disjoint with approximate spectrum,
 - (b) its residual spectrum is disjoint with approximate spectrum.

In case this is impossible, prove that there is no such operator.

- S11. Let $K \subset \mathbb{C}$ be a nonempty and compact subset. Prove that there is an operator T on $L^2(0,1)$, such that $\sigma(T) = K$. Remark: $L^2(0,1)$ can be replaced here with any separable Hilbert space.
- S12. ©Let G be a multiplication operator on $L^2(\mathbb{R})$ defined with (Gf)(x) = g(x)f(x) for some bounded and continuous function g. Prove that

$$\sigma(G) = \overline{\{g(x) : x \in \mathbb{R}\}}$$

where upper line denotes the closure of the set. Can operator G have eigenvalues?

- S13. ©Consider the right shift operator R on $l^2(\mathbb{Z})$. Prove that:
 - (a) The point spectrum of R is empty.
 - (b) The image of $R \lambda I$ is $l^2(\mathbb{Z})$ for $\lambda \in \mathbb{C}$ such that $|\lambda| \neq 1$.
 - (c) The spectrum of S is purely continuous and contains only the unit circle $\{\lambda \in \mathbb{C} : |\lambda| = 1\}$.
- S14. ©Consider the right and left shifts operators on $l^2(\mathbb{N})$ (we usually denote this space with l^2) defined with

$$Rx = (0, x_1, x_2, ...),$$
 $Lx = (x_2, x_3, x_4, ...).$

Find point, continuous and residual parts of spectrum of R and L. Remark: It is rather clear that the result is different for R and L.

S15. Let A be a bounded operator on Hilbert space H. Suppose there is a sequence $\{x_n\} \subset H$ and $\{\epsilon_n\} \subset \mathbb{R}$ such that $\epsilon_n \to 0$ and

$$||Ax_n|| \le \epsilon_n ||x_n||.$$

Prove that A does not have a bounded inverse. In particular, it does not have an inverse as bounded linear isomorphisms have bounded inverses.

S16. Let M be a multiplication operator from Problem S7. Find the spectrum of the operator

$$M^2 + M - 2$$

Additional problems from the lecture

- A1. Let $M \subset H$ be a linear subspace such that $M^{\perp} = \{0\}$. Prove that M is dense in H.
- A2. Show that assertion of Problem A1. is not valid if M is assumed to be just a subset of H.