Functional Analysis (WS 19/20), Problem Set 9

(spectral theory of compact self-adjoint operators)

In what follows, let H be a **complex** Hilbert space and E, F be **complex** Banach spaces.

Let $T: H \to H$ be a bounded linear operator. We say that T is self-adjoint if $T = T^*$. Let $T: E \to F$ be a linear operator. We say that T is compact if $\overline{T(B_1(0))}$ is compact in F.

Self-adjoint operators

- S1. \clubsuit Prove that if $T: H \to H$ is self-adjoint then $\sigma(T)$ is real and nonnegative¹.
- S2. \clubsuit Prove that if $T : H \to H$ is self-adjoint then its eigenvectors corresponding to different eigenvalues are orthogonal.
- S3. Let $M \subset H$ be a closed subspace. Recall what is the adjoint of the orthogonal projection on M denoted with P_M ? What is $\sigma(P_M)$ and what are components of this spectrum (point, continuous, residual)?
- S4. Let $M : L^2(0,1) \to L^2(0,1)$ be a multiplication operator defined with Mf(x) = xf(x) cf. Problem S7 (PS 8). Prove that M is self-adjoint. Recall what is the spectrum of M.
- S5. More generally, let g be a bounded, continuous function and consider multiplication operator $G: L^2(\mathbb{R}) \to L^2(\mathbb{R})$ defined with Gf(x) = g(x)f(x), cf. Problem S12 (PS 8). Recall what is the spectrum of G. Find sufficient and necessary condition on g so that G is a self-adjoint operator.

Compact operators

- C1. \clubsuit Prove that if $T: X \to X$ is compact then T is bounded.
- C2. \clubsuit Prove that the following are equivalent
 - (A) $A \subset X$ is bounded then $\overline{T(A)}$ is compact,
 - (B) T(B(0,1)) is compact,
 - (C) if $\{x_n\}_{n\in\mathbb{N}}$ is a bounded sequence, there is a convergent subsequence in $\{Tx_n\}_{n\in\mathbb{N}}$.
- C3. \clubsuit Let H be a separable Hilbert space. Prove that $T: H \to H$ is compact if and only if there is a sequence of finite rank operators $T_n: H \to H$ such that $T_n \to T$ in the operator norm.
- C4. Let $g \in C[0,1]$ and $T: C[0,1] \to C[0,1]$ be defined with the formula $Tf(x) = \int_0^x f(t)g(t)dt$. Prove that T is a compact operator.
- C5. For which Banach spaces X, the identity operator on X is compact?

$$Tf(x) = \int_{\Omega} K(x, y) f(y) \, dy.$$

¹This is a particularly stupid mistake. Even multiplication operator G from the Problem S5. with a sign-changing real-valued function g can serve as a counterexample

It was discussed in the lecture that if K is continuous then T is a compact operator. Apply Banach-Alaoglu-Bourbaki Theorem in the separable Hilbert space $L^2(\Omega)$ to deduce that if $K \in L^2(\Omega \times \Omega)$ then T is still a compact operator.

- C7. \clubsuit Prove that if $T: H \to H$ is compact and H is infinite dimensional then $0 \in \sigma(T)$.
- - (a) image of (I T) is closed,
 - (b) every $\lambda \in \sigma(T)$ such that $\lambda \neq 0$ belongs to the point spectrum of T (*Hint:* Aiming at contradiction, consider subsets $(I \lambda T)^n H$ and apply Riesz Lemma),
 - (c) there is m such that $\ker(T \lambda I)^m = \ker(T \lambda I)^{m+1}$ and this subspace is finite dimensional,
 - (d) the only accumulation point of $\sigma(T)$ can be 0,
 - (e) $\sigma(T)$ is at most countable.

 $A \ simple \ proof \ is \ given \ in \ the \ Wikipedia \ article: \ https://en.wikipedia.org/wiki/Spectral \ theory \ of \ compact \ operators.$

- C9. Find $\sigma(T)$ where $T: L^2(0,1) \to L^2(0,1)$ is given with the formula $Tf(x) = \int_0^x f(y) dy$.
- C10. Find all bounded and continuous functions g such that the multiplication operator G from Problem S5 is compact.
- C11. Consider the problem

$$x''(t) = f(t)$$
 for $t \in (0, 1)$, $x(1) = x'(0) = 0$.

- (a) Prove that for any $f \in L^2(0,1)$, there is a unique $x \in L^2(0,1)$ solving the problem above.
- (b) We write x = Kf. Prove that $K: L^2(0,1) \to L^2(0,1)$ is a well-defined integral operator.
- (c) Prove that K is a compact operator.

Spectral theorem for self-adjoint compact operators

Theorem: Let H be a separable Hilbert space and $A: H \to H$ be a compact self-adjoint operator. Then, there is a countable orthogonal basis of H (in the sense of Schauder) consisting of eigenvectors of A. Moreover, the corresponding eigenvalues $\{\lambda_k\}_{k\in\mathbb{N}} \subset \mathbb{R}$ are real. If dim $H = \infty$, $\lambda_k \to 0$ as $k \to \infty$.

Note that in view of Problems S1. and C8., only the spanning property is not clear.

- ST1. (roots of operators) Let $A : H \to H$ be self-adjoint and compact linear operator on a separable Hilbert space H. Let $n \in \mathbb{N}$. Prove that there exists a a bounded linear operator $B : H \to H$ such that $B^n = A$.
- ST2. (approximate inverse) Let $A : H \to H$ be a self-adjoint and compact linear operator on a separable Hilbert space H. Suppose that ker $A = \{0\}$. Prove that there exists a sequence of operators $\{A_n\}_{n \in \mathbb{N}}$ such that $A_n Ax \to x$ as $n \to \infty$.
- ST3. Consider Radamacher system: $r_0 = 1$ and $r_n = \operatorname{sgn}(\sin(2^n \pi t))$. Prove that this is an orthogonal system but it is not an orthogonal basis of $L^2(0,1)$.