Functional Analysis (WS 19/20)

(midterm review problems and more Hilbert spaces)

Review problems

R1. Consider

$$X = \left\{ f \in C^1(\mathbb{R}) : \int_{-\infty}^{+\infty} |f'(x)| \, dx < \infty \right\}$$

where $C^1(\mathbb{R})$ is the space of continuously differentiable functions on \mathbb{R} . Prove that X equipped with a norm

$$||f|| = |f(0)| + \int_{-\infty}^{+\infty} |f'(x)| \, dx$$

is a normed space. Is it a Banach space?

- R2. Let $T: l_1 \to c_0$ be defined with $(Tx)_n = \sum_{k=n}^{\infty} x_k$. Prove that T is a bounded linear operator and compute its norm.
- R3. Let $(f_n)_{n\in\mathbb{N}}$ be a sequence in $L^2(0,1)$ such that for all $g\in L^2(0,1)$ we have

$$\lim_{n \to \infty} \int_0^1 f_n(t)g(t) \, dt = 0.$$

Prove that $\sup_n ||f_n||_2 < \infty$. Is it true that $\lim_{n \to \infty} ||f_n||_2 = 0$?

R4. Let $y = (y_1, y_2, ...) \in l^1$. Prove that there exists a unique sequence $x = (x_1, x_2, ...) \in l^1$ such that for all $i \in \mathbb{N}$ the following equation is satisfied

$$x_i = \sum_{j=i}^{\infty} \frac{x_j}{2^{j+i}} + y_i$$

More Hilbert spaces

- H1. Prove that if G is a closed subspace of Hilbert space $(H, \langle \cdot, \cdot \rangle)$ then $(G^{\perp})^{\perp} = G$.
- H2. Consider subspace G of l^2 consisting of sequences that are nonzero at most on finitely many positions. Compute G^{\perp} and $(G^{\perp})^{\perp}$. Is G closed in l^2 ? Recall Schauder basis of l^2 .
- H3. In this exercise we study space C[0,1] with norm $||f|| = \left(\int_0^1 |f(t)|^2 dt\right)^{\frac{1}{2}}$. Is it a Hilbert space with scalar product $\langle f,g \rangle = \int_0^1 f(t)g(t) dt$?
- H4. In $L^2(0,1)$ consider a subspace V of functions that are constant on $\begin{bmatrix} 1\\4, \frac{3}{4} \end{bmatrix}$. For given $f \in L^2(0,1)$ find explicitly its orthogonal projection on V. Compute subspace V^{\perp} .
- H5. Let $(f_n)_{n\in\mathbb{N}}$ be an orthonormal Schauder basis of $L^2(0,1)$. For given $t\in[0,1]$ compute:

$$\sum_{n=1}^{\infty} \left| \int_0^t x^3 f_n(x) \, dx \right|^2.$$

H6. (midterm May 2016) In $L^2(-1,1)$ find distance of $f(x) = \frac{1}{x^2+1}$ from the subspace:

$$X = \left\{ f \in L^2(-1,1) : \int_{-1}^1 f(x) \, dx = \int_{-1}^1 x f(x) \, dx = 0 \right\}.$$