
Functional Analysis (WS 20/21)

(Special Problems)

Compiled on 14/01/2021 at 5:11pm

Rules: Each problem has assigned deadline for submission of the solution. If the problem remains
unsolved, the deadline is extended and some hints are provided. Each problem is worth 4 points in
the tutorial classi�cation (added independently of regular homeworks, active class participation).
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1 Invitation to Sobolev spaces.

Announced: 16/10/2020, Deadline: 13/11/2020.

One of the most fundamental topic in analysis is the notion of Sobolev spaces and weak derivatives.
Let f ∈ Lp(0, 1) where 1 ≤ p ≤ ∞. We say that f is weakly di�erentiable if there is a function
g ∈ Lp(0, 1) such that ∫ 1

0
f(x)φ′(x) dx = −

∫ 1

0
g(x)φ(x) dx

for all φ ∈ C∞c (0, 1) (i.e. smooth functions φ : [0, 1]→ R with a compact support in (0, 1)). If this
is the case, we write f ′ = g and we say that g is the weak (Sobolev) derivative of f . The space of
all weakly di�erentiable functions in this sense is denoted withW 1,p(0, 1) and is called Sobolev space.

In what follows, we gonna check that weak derivatives make sense (they coincide with strong deriva-
tives whenever the latter exist) and they don't see what happens on small sets (i.e. sets of measure
zero). Finally, functional analytic properties of Sobolev spaces will be established.

(A) Prove that weak derivatives are uniquely de�ned, up to a set of measure zero.

(B) Suppose that f ∈ C1[0, 1]. Prove that classical and weak derivatives of f coincide.

(C) Give an example of function f ∈ Lp(0, 1) such that f /∈ C1(0, 1) but f ∈W 1,p(0, 1).

(D) Prove that if f ∈W 1,p(0, 1) and f ′ = 0 a.e. in (0, 1) then f is constant a.e., i.e. there is C ∈ R
such that f(x) = C for a.e. x ∈ (0, 1). (Hint: convolution with approximate identity.)

(E) Prove that W 1,p(0, 1) is a Banach space equipped with the norm

‖f‖1,p := ‖f‖p + ‖f ′‖p.

Sobolev spaces allow to di�erentiate functions which are slightly less regular than C1. All results
for classical derivatives (chain rule, product rule, integration by parts) have their analogue for weak
derivatives. But it is somehow easier to be in W 1,p(0, 1) rather than in C[0, 1] and this is the reason
people in analysis and PDEs prefer to work with Sobolev spaces.
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2 Real interpolation in Lp spaces.

Announced: 16/10/2020, Deadline: 27/11/2020.

The following (simpli�ed) interpolation result is crucial in harmonic analysis. Brie�y speaking it
allows to deduce that when T : Lp → Lp and T : Lq → Lq then T : Lr → Lr for r ∈ (p, q)
(so we interpolate between p and q). The result is a major step in the proof of boundedness of
Hardy-Littlewood maximal function (which implies Lebesgue Di�erentiation Theorem) and study
of Hilbert transform.

Let (X,F , µ) be a σ-�nite measure space. We (as always) write Lp for Lp(X,F , µ). Suppose that T
is a (nonlinear) operator de�ned on measurable functions into measurable functions. Assume that
T is sublinear i.e. there is a constant c > 0 such that

|T (f + g)| ≤ c |Tf |+ c |Tg|, |T (λf)| = |λ| |Tf | for all λ ∈ R.

Moreover, assume that T is a bounded operator as a map from Lp to Lp and from Lq to Lq, i.e.
there are constants Cp, Cq such that

‖Tf‖p ≤ Cp ‖f‖p, ‖Tf‖q ≤ Cq ‖f‖q.

Prove that T is a bounded operator from Lr to Lr for all r ∈ (p, q), i.e. for all r ∈ (p, q), there is a
constant Cr such that

‖Tf‖r ≤ Cr ‖f‖r.

Here are some loosely written hints:

(A) If f ∈ Lp and 1 ≤ p0 < p < p1 ≤ ∞ one can �nd f0 ∈ Lp0 and f1 ∈ Lp1 such that f = f0 + f1.

(B) If ϕ : [0,∞)→ R is an increasing and di�erentiable function with ϕ(0) = 0 then∫
X
ϕ(|f |(x)) dµ(x) =

∫ ∞
0

ϕ′(t)µ(|f | > t) dt.

In particular, consider ϕ(t) = tp.
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3 Laplace (Poisson) equation by a simple version of Lax-Milgram
Lemma.

Announced: 1/12/2020, Deadline: 28/01/2021.

In the following we apply Lax-Milgram Lemma (known from the tutorials) to study the most famous
PDE

−∆u = f in Ω ⊂ Rn

u = 0 on ∂Ω,
(1)

where f ∈ L2(Ω) is given, ∆ = ∂2
x1 + ... + ∂2

xn , Ω is a smooth bounded domain (say, a ball) and
u : Ω→ R is the desired function.

In the modern language, this equation is understood as follows. Let H1
0 (Ω) := C∞c (Ω) where the

closure is taken with respect to the W 1,2(Ω) norm. This space represents functions in W 1,2(Ω) that
vanish at the boundary ∂Ω. Then, we say that u ∈ H1

0 (Ω) is a weak solution to (1) provided that
for all ϕ ∈ C∞c (Ω) we have ∫

Ω
∇u · ∇ϕ =

∫
Ω
f ϕ.

Follow the steps below to prove that there exists the unique weak solution to (1) and this weak
solution concept makes sense.

(A) Prove that if u is a strong solution to (1) (u ∈ C2(Ω) and it satis�es (1) pointwisely) then u
is also a weak solution.

(B) Prove Poincare inequality: there is a constant C such that for all u ∈ H1
0 (Ω) we have

‖u‖2 ≤ C ‖∇u‖2.

Deduce that ‖∇u‖2 de�nes an equivalent norm on H1
0 (Ω). (See FAQ below for some simpli�-

cations.)

(C) Prove that weak solutions can be equivalently de�ned for test functions ϕ ∈ H1
0 (Ω).

(D) De�ne appropriate symmetric bilinear form on H1
0 (Ω) and apply symmetric Lax-Milgram

Lemma.

Motivation for weak solutions: Of course, one would like to solve (1) in the strong sense, i.e.
to �nd C2 function u such that (1) holds. However, this is in general very hard. Therefore, the
process is divided for two steps:

• �nd weak solutions (this is easier than �nding directly strong solutions),

• upgrade weak solution to the strong one (this is also easier because we have something already
in hand).

The second part is called regularity theory as we want to �nd regularity of u (say, at least C2). In
last years, regularity theory became a new �eld on its own. For instance, a deep result, due to Nash,
de Giorgi and Moser, asserts that if f ∈ L∞ (so this is very weak assumption!!!), the unique weak
solution is in Cα(Ω) for some α ∈ (0, 1). This solves XIXth Hilbert's Problem.
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FAQ to Problem 3.

1. The partial weak derivative of u ∈W 1,2(Ω) is de�ned as a function uxi ∈ L2(Ω) such that∫
Ω
uϕxi = −

∫
Ω
uxi ϕ for all ϕ ∈ C∞c (Ω).

2. Scalar dot in
∫

Ω∇u · ∇ϕ means scalar product of two vectors:∫
Ω
∇u · ∇ϕ =

∫
Ω

[
ux1 vx1 + ux2 vx2 + ...+ uxn vxn

]
.

Then, weak gradient of u is simply ∇u = (ux1 , ..., uxn).

3. If you struggle to prove Poincare inequality in the whole generality, prove it only in 1 dimension
and Ω = (0, 1). You can also attack the case of arbitrary dimension and Ω = (0, 1)d which is
still easier than the case with arbitrary Ω.

4. What does ‖∇u‖2 in Poincare inequality mean? The meaning of ‖u‖2 is clear: this is simply
L2 norm of u. For ‖∇u‖2, we need to generalize L2 norms for vector-valued functions. One
possibility (which is convenient in this problem) is to de�ne

‖∇u‖2 :=

[∫
Ω
u2
x1 + ...+ u2

xn

]1/2

.

Then, norm on W 1,2(Ω) can be de�ned as

‖u‖H1 =
[
‖u‖22 + ‖∇u‖2

]1/2
=

[∫
Ω
u2 + u2

x1 + ...+ u2
xn

]1/2

.

5. To prove that weak solutions can be equivalently de�ned for test functions ϕ ∈ H1
0 (Ω) means

you have to prove: u is a weak solution if and only if for all ϕ ∈ H1
0 (Ω) we have∫

Ω
∇u · ∇ϕ =

∫
Ω
f ϕ.
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4 Stationary Fokker-Planck equation and general Lax-Milgram Lemma.

Announced: 1/12/2020, Deadline: 28/01/2021.

Now, the plan is to generalize Lax-Milgram Lemma to study equations like

−∆u+

n∑
i=1

bi uxi + γ u = f in Ω ⊂ Rn

u = 0 on ∂Ω,

(2)

where f ∈ L2(Ω) and bi ∈ L∞(Ω) are given, ∆ = ∂2
x1 + ... + ∂2

xn , Ω is a smooth bounded domain
(say, a ball), γ ∈ R and u : Ω→ R is the desired function. Again, we say that u ∈ H1

0 (Ω) is a weak
solution to (2) provided that for all ϕ ∈ C∞c (Ω) we have∫

Ω
∇u · ∇ϕ+

∫
Ω
bi uxi ϕ+ γ

∫
Ω
uϕ =

∫
Ω
f ϕ.

(A) (Lax-Milgram) Let (H, ‖ · ‖) be a Hilbert space. Suppose that a : H ×H → R is a bilinear
continuous form that is coercive, i.e. there is a constant C > 0 such that a(u, u) ≥ C‖u‖2H .
Moreover, let l ∈ H∗. Prove that there exists uniquely determined u ∈ H such that

a(u, v) = l(v)

holds for all v ∈ H. Hint: De�ne appropriate map A : H → H∗ and try to prove that A has
closed image. Using orthogonal complements prove that A is surjective.

(B) Prove that there exists γ0 such that for all γ ≥ γ0, (2) has the unique weak solution.

In estimates, it may be helpful to apply ε-Cauchy-Schwartz inequality:

|a b| ≤ ε a2 +
1

4 ε
b2.
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5 Nonlinear equations and Stampacchia's Theorem.

Announced: 1/12/2020, Deadline: 28/01/2021.

The last generalization concerns some weakly nonlinear equations. The particular example we have
in mind is

−∆u+ g(u) = f in Ω ⊂ Rn

u = 0 on ∂Ω,
(3)

where g : R → R is assumed to be Lipschitz continuous and increasing. I follow the formulation
from Problem Set 2 in NPDE I course at UniBonn.

To obtain theory for such equations, we generalize Lax-Milgram Lemma to get:

Stampacchia's Theorem. Let H be a Hilbert space. Let a : H×H → R. Assume that a satis�es

(1) for each u ∈ H, the map v 7→ a(u, v) is continuous and linear (it belongs to H∗),

(2) |a(u1, v)− a(u2, v)| ≤ β ‖u1 − u2‖ ‖v‖,

(3) a(u1, u1 − u2)− a(u2, u1 − u2) ≥ γ ‖u1 − u2‖2

for some constants β and γ. Then for every l ∈ H∗, there exists uniquely determined u such that
a(u, v) = l(v) for all v ∈ H.

We proceed as follows:

(A) Prove that if a (nonlinear!) map A : H → H satis�es

(1) ‖A(u1)−A(u2)‖ ≤ β ‖u1 − u2‖,
(2) 〈A(u1)−A(u2), u1 − u2〉 ≥ γ ‖u1 − u2‖2,

then for every f ∈ H there is a unique uf ∈ H such that A(uf ) = f . Hint: apply Banach
Fixed Point Theorem to the map R(u) = u− λA(u) + λ f for appropriate λ.

(B) Prove Stampacchia's Theorem.

(C) De�ne weak solutions to (3). Prove that there exists the unique weak solution to (3).
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