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1 Problem 1

1.1 Description

Let H be a Hilbert space. Below are some simple exercises on orthonormal sets

and basis.

(A) Let {en}n∈N be an orthonormal set in Hilbert space H. Consider operator

T : H → c0 defined with

Tx =

(
n

n+ 1
〈x, en〉

)
n∈N

.

Prove that T is well-defined. Is T a bounded linear operator? If yes,

compute its norm.

(B) Let H be an infinite dimensional Hilbert space. Prove that there exists a

sequence {xn}n∈N such that ‖x‖ = 1 and xn ⇀ 0.

(C) Let y ∈ l∞, {xn}n∈N is an orthonormal set in H and un = 1
n

∑n
i=1 eiyi.

Prove that un → 0 strongly in H.

(D) Let {xα}α∈A be an orthonormal basis of H. Use density argument to

prove that xn ⇀ x in H if and only if 〈xn − x, eα〉 → 0 for all α ∈ A and

{xn}n∈N is bounded in H.

1.2 Solution

(A) We already know that for fixed x ∈ H we have 〈x, en〉 → 0, so n
n+1 〈x, en〉 →

0 because | nn+1 | ≤ 1 for all n ∈ N. That means T is well-defined. We’ll
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prove that T is bounded and its norm is 1. Fix x ∈ H such that ‖x‖ = 1.

By Cauchy-Schwarz inequality and orthonormality of {en}n∈N we have

‖Tx‖ = sup
n∈N

∣∣∣∣ n

n+ 1
〈x, en〉

∣∣∣∣
= sup
n∈N

n

n+ 1
|〈x, en〉|

≤ sup
n∈N

n

n+ 1
‖x‖ ‖en‖

= sup
n∈N

n

n+ 1

= 1,

so T is bounded. Now notice that ‖Ten‖ = n
n+1 and ‖en‖ = 1, because

{en}n∈N is an orthogonal set. With the fact that n
n+1 → 1 as n→∞, we

see that the norm of T is indeed equal to 1.

(B) Let {eα}α∈A be an orthonormal basis of H. As H is infinite dimensional,

the basis has infinitely many elements, so we can choose a countable subset

{en}n∈N. We know that 〈x, en〉 → 0 for every x ∈ H, but we also know

that every functional in H∗ is a scalar product with some x ∈ H, so

en ⇀ 0.

(C) Let M = supn∈N |yn|. Obviously M <∞, as y ∈ l∞. Using orthonormal-

ity of {xn}n∈N and linearity of scalar product we estimate

‖un‖2 = 〈un, un〉

=

〈
1

n

n∑
i=1

eiyi,
1

n

n∑
i=1

eiyi

〉

=
1

n2

n∑
i=1

y2i

≤ M2

n
.

Taking n→∞ we obtain ‖un‖ → 0, so un → 0 strongly in H.

(D) (=⇒) Let xn ⇀ x. Weakly converging sequences are bounded, so (xn)n∈N

is bounded. We know that every functional in H∗ is a scalar product with

some x ∈ H, so we have 〈xn, v〉 → 0 for every x ∈ H. Hence 〈xn, en〉 → 0

and we are done.

(⇐=) We’ll again use the fact that every functional in H∗ is a scalar
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product with some x ∈ H. We’ll start with proving that 〈xn − x, v〉 → 0

holds for all v in span({xα}α∈A). Let v =
∑
α∈A cαeα, then

〈xn − x, v〉 =

〈
xn − x,

∑
α∈A

cαeα

〉
=
∑
α∈A

cα 〈xn − x, eα〉 ,

where we used the linearity of scalar product. But as 〈xn − x, eα〉 → 0

and the linear combinations in span({xα}α∈A) are finite,∑
α∈A

cα 〈xn − x, eα〉 → 0

as n → ∞, so 〈xn − x, v〉 → 0. Now let y ∈ H. We know that H =

span({xα}α∈A), so there exists sequence (yn)n∈N ∈ span({xα}α∈A) such

that yn → y strongly in H. Now we can estimate

| 〈xn − x, y〉 | = | 〈xn − x, y〉 − 〈xn − x, yk〉+ 〈xn − x, yk〉 |

≤ | 〈xn − x, y〉 − 〈xn − x, yk〉 |+ | 〈xn − x, yk〉 |

= | 〈xn − x, y − yk〉 |+ | 〈xn − x, yk〉 |

≤ ‖xn − x‖ ‖y − yk‖+ | 〈xn − x, yk〉 |

≤ (‖xn‖+ ‖x‖) ‖y − yk‖+ | 〈xn − x, yk〉 |.

As (xn)n∈N is bounded, there exist M ∈ R such that ‖xn‖+ ‖x‖ ≤M for

all n ∈ N. Hence

| 〈xn − x, y〉 | ≤M ‖y − yk‖+ | 〈xn − x, yk〉 | = M ‖y − yk‖ ,

and by taking n→∞ we get

| 〈xn − x, y〉 | ≤M ‖y − yk‖ .

Now it suffices to take k → ∞ to get | 〈xn − x, y〉 | = 0, which ends the

proof.

2 Problem 2

2.1 Description

Let µ be a Gaussian measure, i.e. a measure with density 1√
2π
e−x

2/2. Let

H = L2(R, µ).

(A) Let X = span(1, x, x2). Prove that X is a linear subspace of H.
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(B) Recall Gram-Schmidt algorithm. Use it to find an orthonormal basis of

X.

(C) Compute the distance of f(x) = |x| from X.

2.2 Solution

Let us denote g(x) = 1√
2π
e−x

2/2 and let N be a random variable with distribu-

tion N (0, 1). We will use the fact that EX1 = EX3 = 0, EX2 = 1, EX4 = 3,

E|X| =
√

2/π and E|X|3 = 2
√

2/π.

(A) Obviously span(1, x, x2) contains 0 and is closed under addition and mul-

tiplication by scalars. Therefore, we only need to show X ⊂ H. Let us

take any v ∈ X. We can write v(x) = a + bx + cx2 for some a, b, c ∈ R.

We have to show
∫
R v(x)2g(x)dx < ∞, but v(x)2 = a0 + . . . + a4x

4 for

some a0, . . . , a4 ∈ R, so
∫
R v(x)2g(x)dx = a0 + . . . + a4EN4 < ∞, as all

the moments of N are finite.

(B) We will find orthogonal basis (e1, e2, e3). First, we have:

‖1‖2H = 〈1, 1〉 =

∫
R
g(x)dx = 1,

so we can denote e1 = 1. Second, we can compute

〈1, x〉 =

∫
R
xg(x)dx = EN = 0,

‖x‖2H =

∫
R
x2g(x)dx = EN2 = 1,

so we can take e2 = x. That was quite easy so far, but things get a little

bit more complicated when it comes to e3. We can compute:

〈1, x2〉 =

∫
R
x2g(x)dx = EN2 = 1

and

〈x, x2〉 =

∫
R
x3g(x)dx = EN3 = 0,

so according to Gram-Schmidt algorithm we should take e3 = (x2 −
1)/
∥∥x2 − 1

∥∥
H

. Clearly:∥∥x2 − 1
∥∥2
H

=

∫
R

(x2 − 1)2g(x)dx =

∫
R

(x4 − 2x2 + 1)g(x)dx =

= EN4 − 2EN2 + 1 = 3− 2 + 1 = 2,

so we take e3 = 1√
2
(x2 − 1).
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(C) As we have an orthonormal basis of X it is easy to find the distance from

f to X. Indeed, we can express f as a sum of its projections on e1, e2, e3

and the part which is orthogonal to X. To compute the norm of the

orthogonal part we can use the Pythagorean theorem. Clearly, this norm

is the distance we need as X is convex and closed. To sum up:

dist(f,X)2 = ‖f‖2H − 〈f, e1〉
2 − 〈f, e2〉2 − 〈f, e3〉2.

Now step by step:

‖f‖2H =

∫
R
|x|2g(x)dx =

∫
R
x2g(x)dx = EN2 = 1,

〈f, 1〉 =

∫
R
|x|g(x)dx = E|N | =

√
2

π
,

〈f, x〉 =

∫
R
|x|xg(x)dx = 0,

(because |x|xg(x) is odd function and its absolute value is bounded by

x2g(x))

〈f, x2〉 =

∫
R
|x|x2g(x)dx =

∫
R
|x|3g(x)dx = E|N |3 = 2

√
2

π
,

and finally:

〈|x|, 1√
2

(x2 − 1)〉 =
1√
2

(〈|x|, x2〉 − 〈|x|, 1〉) =
1√
2

√
2

π
=

1√
π
.

Now we can write:

dist(f,X) =

√
1− 2

π
− 1

π
=

√
1− 3

π
≈ 0.21

and our job is finished.
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