Functional Analysis - HW 11

Jan Kociniak, Wojciech Przybyszewski

January 14, 2021

1 Problem 1

1.1 Description

The following exercise shows that any compact and nonempty $K \subset \mathbb{C}$ is a spectrum of some $T: l^{2} \rightarrow l^{2}$.
(A) Let $y \in l^{\infty}$ be a complex sequence and $T: l^{2} \rightarrow l^{2}$ be defined with $T x=\left(x_{i} y_{i}\right)_{i \in \mathbb{N}}$. Prove that $\sigma(T)=\overline{\left\{y_{i}: i \in \mathbb{N}\right\}}$ where the line above denotes closure of the set.
(B) Let $K \subset \mathbb{C}$ be a nonempty and compact subset. Construct a bounded linear operator $T: l^{2} \rightarrow l^{2}$ such that $\sigma(T)=K$.

1.2 Solution

(A) First of all, let us see that $T-y_{i} I$ has nontrivial kernel for every $i \in \mathbb{N}$. Indeed, in this case we have $T e_{i}=y_{i} e_{i}$ (by e_{i} we denote a sequence with only zeros apart from position i where we put one). Therefore $e_{i} \in \operatorname{ker} T-$ $y_{i} I$ and $y_{i} \in \sigma(T)$. As $\sigma(T)$ is a closed set, then we have $\overline{\left\{y_{i}: i \in \mathbb{N}\right\}} \subseteq$ $\sigma(T)$.

Now let us take $z \in \mathbb{C}$ such that there is an $\varepsilon>0$ for which $B(z, \varepsilon) \cap\left\{y_{i}\right.$: $i \in \mathbb{N}\}=\emptyset$. We will show $T-z I$ is reversible. Indeed, in this case $(T-$ $z I)(x)=\left(\left(y_{i}-z\right) x_{i}\right)_{i \in \mathbb{N}}$, so we can write $(T-z I)^{-1}(x)=\left(x_{i} /\left(y_{i}-z\right)\right)_{i \in \mathbb{N}}$. Obviously this is a proper inversion. Moreover, using our assumption on z, we have $\left|y_{i}-z\right| \geq \varepsilon$, so the bound $\left\|(T-z I)^{-1}\right\| \leq 1 / \varepsilon$ easily follows. Therefore $z \notin \sigma(T)$, as there exists a bounded inverse of $T-z I$. It follows that $\sigma(T) \subseteq \overline{\left\{y_{i}: i \in \mathbb{N}\right\}}$.
As we have both inclusions, we conclude $\sigma(T)=\overline{\left\{y_{i}: i \in \mathbb{N}\right\}}$.
(B) Let us take $\widehat{K}=K \cap\left\{x+i y:(x, y) \in \mathbb{Q}^{2}\right\}$. Obviously $\widehat{\widehat{K}}=K$ and \widehat{K} is at most countable, so we can arbitrary order its elements obtaining a sequence $y=\left(y_{1}, y_{2}, \ldots\right)$. In the case \widehat{K} is finite, we repeat the last element infinitely many times. As K is compact, it is bounded and the same holds for \widehat{K} and $y \in l^{\infty}$. Therefore we can use item (A) and construct an operator T such that $\sigma(T)=\widehat{\widehat{K}}=K$.

2 Problem 2

2.1 Description

For the following operators briefly justify that they are bounded and linear. Find their adjoints.
(A) $K: L^{2}(0,1) \rightarrow L^{2}(0,1)$ defined with $K f(x)=\int_{0}^{x} f(y) \mathrm{d} y$.
(B) $T: L^{2}(\mathbb{R}) \rightarrow L^{2}(\mathbb{R})$ defined with $T f(x)=\operatorname{sgn}(x) f(x+1)$.

2.2 Solution

(A) Using linearity of integral we get

$$
\begin{aligned}
K(f+g)(x) & =\int_{0}^{x}(f+g)(y) \mathrm{d} y \\
& =\int_{0}^{x} f(y)+g(y) \mathrm{d} y \\
& =\int_{0}^{x} f(y) \mathrm{d} y+\int_{0}^{x} g(y) \mathrm{d} y \\
& =K f(x)+K g(x),
\end{aligned}
$$

so the operator is linear. To show that K is bounded we estimate

$$
\begin{aligned}
\|K f\|_{2}^{2} & =\int_{0}^{1}\left(\int_{0}^{x} f(y) \mathrm{d} y\right)^{2} \mathrm{~d} x \\
& =\int_{0}^{1}\left(\int_{0}^{1} \mathbb{1}_{(0, x)}(y) f(y) \mathrm{d} y\right)^{2} \mathrm{~d} x \\
& =\int_{0}^{1}\left|\left\langle f, \mathbb{1}_{(0, x)}\right\rangle\right|^{2} \mathrm{~d} x \\
& \leq \int_{0}^{1}\|f\|_{2}^{2}\left\|\mathbb{1}_{(0, x)}\right\|_{2}^{2} \mathrm{~d} x \\
& =\|f\|_{2}^{2} \int_{0}^{1}\left\|\mathbb{1}_{(0, x)}\right\|_{2}^{2} \mathrm{~d} x \\
& =\|f\|_{2}^{2} \int_{0}^{1}\left\|\mathbb{1}_{(0, x)}\right\|_{2}^{2} \mathrm{~d} x \\
& =\|f\|_{2}^{2} \int_{0}^{1} x \mathrm{~d} x \\
& =\frac{1}{2}\|f\|_{2}^{2}
\end{aligned}
$$

where we used Cauchy-Schwarz inequality. We'll now determine the adjoint of K. Let $g \in L^{2}(0,1)$. We can compute

$$
\begin{aligned}
\langle K f, g\rangle & =\int_{0}^{1}\left(\int_{0}^{x} f(y) \mathrm{d} y\right) \overline{g(x)} \mathrm{d} x \\
& =\int_{0}^{1}\left(\int_{0}^{1} \mathbb{1}_{A}(x, y) f(y) \mathrm{d} y\right) \overline{g(x)} \mathrm{d} x \\
& =\int_{(0,1)^{2}} \mathbb{1}_{A}(x, y) f(y) \overline{g(x)} \mathrm{d} y \mathrm{~d} x \\
& =\int_{(0,1)^{2}} \mathbb{1}_{A}(x, y) f(y) \overline{g(x)} \mathrm{d} x \mathrm{~d} y \\
& =\int_{0}^{1}\left(\int_{0}^{1} \mathbb{1}_{A}(x, y) \overline{g(x)} \mathrm{d} x\right) f(y) \mathrm{d} y \\
& =\int_{0}^{1} f(y)\left(\int_{y}^{1} \overline{g(x)} \mathrm{d} x\right) \mathrm{d} y \\
& =\int_{0}^{1} f(y) \overline{\left(\int_{y}^{1} g(x) \mathrm{d} x\right)} \mathrm{d} y \\
& =\langle f, S g\rangle,
\end{aligned}
$$

where we defined $A=\{(x, y): 0<y<x<1\}$, we used Fubini theorem and the fact that when integrating over subset of \mathbb{R} the integral of
function's complex conjugate is equal to the conjugate of the integral. We conclude that the adjoint operator T^{*} is equal to S, so

$$
T^{*} f(x)=\int_{x}^{1} f(y) \mathrm{d} y .
$$

(B) The operator is linear because

$$
\begin{aligned}
K(f+g)(x) & =\operatorname{sgn}(x)((f+g)(x+1)) \\
& =\operatorname{sgn}(x) f(x+1)+\operatorname{sgn}(x) g(x+1) \\
& =K f(x)+K g(x) .
\end{aligned}
$$

It is also bounded as

$$
\begin{aligned}
\|K f\|_{2}^{2} & =\int_{\mathbb{R}} K f(x)^{2} \mathrm{~d} x \\
& =\int_{\mathbb{R}}(\operatorname{sgn}(x) f(x+1))^{2} \mathrm{~d} x \\
& =\int_{\mathbb{R}} f(x+1)^{2} \mathrm{~d} x \\
& =\|f\|_{2}^{2}
\end{aligned}
$$

where we used the definition of sign function and the fact that $\{0\}$ is a set of measure 0 . Now we can compute

$$
\begin{aligned}
\langle K f, g\rangle & =\int_{\mathbb{R}} K f(x) \overline{g(x)} \mathrm{d} x \\
& =\int_{\mathbb{R}} \operatorname{sgn}(x) f(x+1) \overline{g(x)} \mathrm{d} x \\
& =\int_{\mathbb{R}} f(t) \operatorname{sgn}(t-1) \overline{g(t-1)} \mathrm{d} t \\
& =\int_{\mathbb{R}} f(t) \overline{\operatorname{sgn}(t-1) g(t-1)} \mathrm{d} t \\
& =\langle f, S g\rangle,
\end{aligned}
$$

so the adjoint K^{*} is equal to S, so

$$
K^{*} f(x)=\operatorname{sgn}(x-1) f(x-1) .
$$

