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1. For cases (a) and (b) we have one and the same counterexample to show
that these are not normed spaces, which also means they are not Banach
spaces. We take f(x) = 1, which is clearly not equal to 0, but if we calculate
the respective norms, they turn out to be 0 which is a direct contradiction
with the de�nition of a norm. Now we are going to look at case (c). Here we
also want to show that this is not a normed space and we are going to achieve
that by calculating the norm of the function f(x) =

√
x. Firstly we need to

show that f ∈ C 1
2 [0, 1]. This will be the case, because for 1 ≥ x > y ≥ 0 we

have

|
√
x−√y|√
|x− y|

=

√
x−√y
√
x− y

=
x− y√

x− y(
√
x+
√
y)

=

√
x− y√
x+
√
y
≤ 1

Last inequality follows from the fact that
√
x− y ≤

√
x and

√
x+
√
y ≥
√
x.

Thus we have proven that f has to have a �nite | · | 1
2
norm, which makes it a

member of C
1
2 [0, 1], but |f |LIP =∞, which implies that this is not a normed

space. This counterexample also works for the space given in (e), since the
"norm" of

√
x in that space will also be in�nite, because of the |f |LIP term.

Moving on to (d), we will show that this space is in fact a Banach space.
Firstly we check the usual properties of a norm:

� ||f ||∞ + |f | 1
2
= 0 ⇐⇒ f = 0 follows from the fact that || · ||∞ is a

norm.

� ||λf ||∞ + |λf | 1
2
= |λ|(||f ||∞ + |f | 1

2
) follows from the fact that || · ||∞

and | · | are norms

� It su�ces to check that | · | 1
2
holds the triangle inequality. We check it

directly using the triangle inequality for | · |:

|f(x) + g(x)− f(y)− g(y)|√
|x− y|

≤ |f(x)− f(y)|√
|x− y|

+
|g(x)− g(y)|√
|x− y|
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Now, if we take the supremum on both sides the inequality still holds
and the right hand side becomes the sum of supremums, because terms
summed are ≥ 0, so we get the triangle inequality for our function | · | 1

2
.

Thus our space (C
1
2 [0, 1], || · ||∞ + | · | 1

2
) is a normed space. Now to show

this is a Banach space we, as usual, take a Cauchy sequence (fn) ⊂ C
1
2 [0, 1].

From the de�nition of a Cauchy sequence we can quickly deduce that for all
ε > 0 we have

� ∃Nε ∀n, k > Nε ||fn − fk||∞ < ε

� ∃Mε ∀m, l > Mε |fm − fl| 1
2
< ε

The fact that (fn) is a Cauchy sequence in C0[0, 1] gives us a candidate for

the limit in our space (C
1
2 [0, 1], || · ||∞ + | · | 1

2
) and it will be its limit in

(C0[0, 1], || · ||∞), we will call it f . We have to show that:

(a) f ∈ C 1
2 [0, 1]

(b) ||fn − f ||∞ + |fn − f | 1
2
→ 0, here obviously it su�ces to say that

|fn − f | 1
2
→ 0, since we know that ||fn − f ||∞ → 0 by construction.

To show (a) we to are going to look at a expression:

|fn(x)− fn(y)| ≤ |f | 1
2

√
|x− y| (1)

This follows from the de�nition of |·| 1
2
and the fact that for all n, fn ∈ C

1
2 [0, 1]

makes the |fn| 1
2
�nite for all n. We can look at a sequence (|fn| 1

2
) as a

sequence in R, where it will also be Cauchy. That means there exists a limit
of this sequence in (R, | · |), we are going to call it a. Now if we let n → ∞
in (1) we will see that

|f(x)− f(y)| ≤ a
√
|x− y| ⇐⇒ |f(x)− f(y)|√

x− y
≤ a ⇐⇒ |f | 1

2
≤ a <∞

Thus f ∈ C 1
2 [0, 1]. We will now prove the last part - that |f − fn| 1

2
→ 0:

|f − fn| 1
2
= sup

x 6=y

|f(x)− fn(x)− (f(y)− fn(y))|√
|x− y|

=

= sup
x 6=y

lim inf
k→∞

|fk(x)− fn(x)− (fk(y)− fn(y))|√
|x− y|

≤

≤ lim inf
k→∞

sup
x 6=y

|fk(x)− fn(x)− (fk(y)− fn(y))|√
|x− y|

= lim inf
k→∞

|fn − fk| 1
2
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If we let n→∞, then RHS→ 0 from the fact that (fn) is a Cauchy sequence
in our space. Thus we have proven that |f − fn| → 0 completing the proof

that (C
1
2 [0, 1], || · ||∞ + | · | 1

2
) is a Banach space.

2. We will start o� by proving that (lp, || · ||p) is a Banach space using the
a theorem, which was proven during lectures - that for any (X,F , µ), with µ
being σ - �nite, the space Lp(X,F , µ) is a Banach space for all p ∈ [1,∞]. If
we set X := N, F := P(N) and µ :=

∑∞
n=1 δn, where δn is a Dirac measure

(δn(A) = 1 if n ∈ A and 0 otherwise). µ is a σ - �nite, because we can take
Kn = {n}, then X =

⋃∞
n=1, with µ(Kn) = 1 <∞, which means that µ is in

fact σ - �nite. Therefore Lp(N,P(N), µ) is a Banach measure. Is this space
the same as (lp, || · ||p)? To see that, let f ∈ Lp(N,P(N), µ), that means that
f : N → R and we know that the value of

∫
N |f |

pdµ =
∑∞

n=1 |f(n)| is �nite,
therefore Lp(N,P(N), µ) = (lp, || · ||p), since every functions from N to R can
be assigned exactly one sequence and vice versa. If p = ∞, then it is clear
that ||f ||L∞ = ||f(n)||∞, because in sets of measure 0 with respect to µ are
empty sets. Therefore

||f ||L∞ = ess sup |f | = sup |f | = ||f(n)||∞

Thus L∞(N,P(N), µ) = (l∞, ||·||∞). Moving on to (b), to prove that ϕ ∈ (l1)∗

we need to check that ϕ satis�es two conditions:

1. ϕ is linear

2. ϕ is bounded

Ad 1.
Let α, β ∈ R and u, v ∈ l1, we have

ϕ(αu+βv) =
∞∑
n=1

1

2n
(αun+βvn) =

∞∑
n=1

1

2n
αun+

∞∑
n=1

1

2n
βvn = αϕ(u)+βϕ(v)

Here we are using the fact that since u, v ∈ l1 we know that the series∑
un and

∑
vn are absolutely convergent and that makes the series of ϕ(u)

absolutely convergent for all u ∈ l1. That means ϕ is well de�ned (since rear-
ranging terms will not change the value of ϕ(u)) and also that the equations
above hold. Ad 2.
This quickly follows from the fact that for all n we have

1

2n
|vn| ≤ |vn|
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Which implies that

|ϕ(v)| =

∣∣∣∣∣
∞∑
n=1

1

2n
vn

∣∣∣∣∣ ≤
∞∑
n=1

1

2n
|vn| ≤ ||v||1

Therefore ϕ is bounded. Thus we have shown that ϕ ∈ (l1)∗. Lastly we will
calculate the operator norm ||ϕ||:

||ϕ|| = sup
||u||1=1

|ϕ(u)|

We can notice that for any u such that ||u||1 = 1:

|ϕ(u)| ≤
∞∑
n=1

1

2n
|un| =

1

2

∞∑
n=1

1

2n−1
|un| ≤

1

2

∞∑
n=1

|un| =
1

2

Which also makes the supremum bounded by 1
2
. Now if we set u = (1, 0, . . . ),

we have ϕ(u) = 1
2
, which means that our upper bound is attainable, this

automatically makes it the supremum of |ϕ|, since it has to be the least
upper bound of |ϕ|. Therefore ||ϕ|| = 1

2
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