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1 Problem 1

1.1 Description

Let 1 ≤ p ≤ ∞. Compute norms of the operators

a. T : lp → lp defined with T ((an)n≥1) = (an+1 − an)n≥1.

b. T : Lp(0, 1)→ Lp(0, 1) defined with (Tf)(x) = f(
√
x).

1.2 Solution

a. Suppose that p = ∞. Take a = (a1, a2, . . . ) ∈ l∞ such that ‖a‖∞ = 1.

Then

‖T (a)‖∞ = sup
n∈N
|an+1 − an| ≤ 2 sup

n∈N
|an| = 2 ‖a‖∞ = 2.

Additionally, for a = (1,−1, 1,−1, . . . ) we have ‖a‖∞ = 1 and ‖T (a)‖∞ =

2, because T (a) = (−2, 2,−2, 2, . . . ), so we conclude that ‖T‖ = 2.

Now consider 1 ≤ p <∞. Take a = (a1, a2, . . . ) ∈ lp such that ‖a‖p = 1.

Using Minkowski inequality we obtain

‖T (a)‖p =

( ∞∑
n=1

|an+1 − an|p
) 1

p

≤

( ∞∑
n=1

|an+1|p
) 1

p

+

( ∞∑
n=1

|an|p
) 1

p

= (‖a‖pp − |a1|)
1
p + ‖a‖p

= (1− |a1|)
1
p + 1.
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We know that ‖a‖p = 1, so 0 ≤ |a1| ≤ 1, hence

‖T (a)‖p ≤ (1− |a1|)
1
p + 1 ≤ 2.

We’ll show that 2 is indeed the norm of T . Consider aλ = (t, λt, λ2t, . . . )

where 0 > λ > −1 and t is chosen so that tp + |λ|p = 1. We check that

‖aλ‖p =

( ∞∑
n=0

|λnt|p
) 1

p

=

(
tp
∞∑
n=0

|λ|np
) 1

p

=

(
tp

1

1− |λ|p

) 1
p

= 1.

Let’s compute the norm of T (aλ):

‖T (aλ)‖p =

( ∞∑
n=0

|λn+1t− λnt|p
) 1

p

=

( ∞∑
n=0

|λnt(λ− 1)|p
) 1

p

=

(
tp(1− λ)p

∞∑
n=0

|λ|np
) 1

p

=

(
tp(1− λ)p

1

1− |λ|p

) 1
p

= 1− λ.

Hence, limλ→(−1) ‖T (aλ)‖p = limλ→(−1)(1− λ) = 2, so ‖T‖ = 2.

b. Suppose p = ∞. Let ϕ : (0, 1) → (0, 1) be the map that is bijective and

differentiable. Take measurable S ⊂ (0, 1). Using the change of variables

formula for 1ϕ(S) we obtain

µ(ϕ(S)) =

∫
S

|det Dϕ|dµ,

which implies

µ(ϕ(S)) = 0⇐⇒ ϕ(S) = 0.
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Now let φ : (0, 1) → (0, 1) be defined as φ(x) = x2. It is indeed bijective

and differentiable. Analogously for its inverse φ−1(x) =
√
x. Let f ∈ L∞.

For a ∈ R we have

µ(|f |−1((a,∞))) = 0⇐⇒ µ(φ(|f |−1((a,∞)))) = 0,

but µ((|f | ◦ φ−1)−1((a,∞))) = µ((|Tf |)−1((a,∞))), which implies that

‖f‖∞ = ess sup |f | = ess sup |Tf | = ‖Tf‖∞ .

That implies that ‖T‖ = 1 and we are done.

Now consider 1 ≤ p < ∞. Take f ∈ Lp(0, 1) such that ‖f‖p = 1. We see

that

‖Tf‖pp =

∫ 1

0

|Tf |p dµ,

after which we can use the change of variables formula (φ satisfies condi-

tions) and compute∫ 1

0

|Tf |p dµ =

∫ 1

0

(|Tf |p ◦ φ) · | det Dφ|dµ

=

∫ 1

0

|f |p · |2x|dµ

≤ ‖f‖pp sup
x∈(0,1)

|2x|

= 2.

Hence, ‖Tf‖p ≤ 2
1
p , so ‖T‖ ≤ 2

1
p . We’ll show that indeed ‖T‖ = 2

1
p . Let

ft =
(

1
1−t

) 1
p

1(t,1) for 0 < t < 1. We check that

‖ft‖pp =

∫ 1

0

∣∣∣∣∣
(

1

1− t

) 1
p

1(t,1)

∣∣∣∣∣
p

dµ

=
1

1− t

∫ 1

t

dµ

= 1.
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Let’s estimate the p-th power of the norm of Tft:

‖Tft‖pp =

∫ 1

0

|ft|p · |2x|dµ

=

∫ 1

0

1

1− t
1(t,1) · |2x|dµ

=

∫ 1

t

1

1− t
· |2x|dµ

≥
∫ 1

t

1

1− t
dµ · inf

x∈(t,1)
|2x|

= 2t.

Hence, for every 0 < t < 1 the inequalities (2t)
1
p ≤ ‖Tft‖p ≤ 2

1
p hold.

That means limt→1 ‖Tft‖p exists and it is equal to 2
1
p , so ‖T‖ = 2

1
p .

2 Problem 2

2.1 Description

Let (X, ‖·‖X) be a normed space and (Y, ‖·‖Y ) be a Banach space. Suppose

that D is a dense linear subset of X and T : (D, ‖·‖X)→ (Y, ‖·‖Y ) is a bounded

linear operator. Prove that T has a unique bounded extension

T̃ : (X, ‖·‖X)→ (Y, ‖·‖Y )

such that

Tx = T̃ x for x ∈ D and ‖T‖L(D,Y ) =
∥∥∥T̃∥∥∥

L(X,Y )
.

2.2 Solution

We will start with proving existence of such operator. As D is dense in X

then for every x ∈ X there exists a sequence (xn)n∈N such that xn → x. Let

us denote yn = T (xn). It is straightforward to prove that (yn) is a Cauchy

sequence in Y . Indeed, xn converges so it is a Cauchy sequence. Moreover

‖yn − ym‖Y = ‖T (xn − xm)‖Y ≤ ‖T‖ ‖xn − xm‖X , so the Cauchy condition

follows. As (Y, ‖·‖Y ) is Banach, then yn → y ∈ Y . We can set T̃ (x) = y.

We need to prove that this definition of T̃ is sound. Assume that there is

x ∈ X and two different sequences (xn)n∈N and (x̂n)n∈N such that both xn → x

and x̂n → x. We need to prove that limT (xn) = limT (x̂n). We clearly have
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that x1, x̂1, x2, x̂2, . . . is a sequence in X that converges to x. Therefore, as in

the previous paragraph, the sequence T (x1), T (x̂1), T (x2), T (x̂2), . . . converges

in Y . Therefore every subsequence of it converges to the same element of Y .

Therefore we have limT (xn) = limT (x̂n) and we know that this definition is

sound.

Obviously for any x ∈ D to compute T̃ (x) we can use the constant sequence

(x)n∈N and we get T̃ (x) = T (x).

The last thing in this part is to prove that T̃ is bounded. Let us take any

x ∈ X such that ‖x‖X = 1. Again, there is a sequence (xn)n∈N of elements of

D such that xn → x. We know that T (xn)→ T̃ (x). Hence, by the definition of

convergence, we get
∥∥∥T (xn)− T̃ (x)

∥∥∥
Y
→ 0. By the triangle inequality we get∥∥∥T̃ (x)

∥∥∥
Y
≤
∥∥∥T (xn)− T̃ (x)

∥∥∥
Y

+ ‖T (xn)‖Y . This gives us
∥∥∥T̃∥∥∥ ≤ ‖T‖. Obvi-

ously
∥∥∥T̃∥∥∥ ≥ ‖T‖ (as T̃ is an extension of T ), so

∥∥∥T̃∥∥∥ = ‖T‖ as we wanted.

No we can prove the second part, namely the uniqueness of T̃ . This is

much easier. Indeed, if there is any other extension T̂ then it is continuous,

so for any x ∈ X and a sequence (xn)n∈N such that xn ∈ D and xn → x we

have T̂ (xn) → T̂ (x). As T̂ (xn) = T (xn) then we have T (xn) → T̂ (x). But

T (xn)→ T̃ (x) by definition of T̃ so T̃ (x) = T̂ (x) for any x ∈ X.
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