Functional Analysis - HW 3

Jan Kociniak, Wojciech Przybyszewski

November 5, 2020

1 Problem 1

1.1 Description

Let $1 \leq p \leq \infty$. Compute norms of the operators

- a. $T: l^p \to l^p$ defined with $T((a_n)_{n\geq 1}) = (a_{n+1} a_n)_{n\geq 1}$.
- b. $T: L^p(0,1) \to L^p(0,1)$ defined with $(Tf)(x) = f(\sqrt{x})$.

1.2 Solution

a. Suppose that $p = \infty$. Take $a = (a_1, a_2, ...) \in l^{\infty}$ such that $||a||_{\infty} = 1$. Then

$$||T(a)||_{\infty} = \sup_{n \in \mathbb{N}} |a_{n+1} - a_n| \le 2 \sup_{n \in \mathbb{N}} |a_n| = 2 ||a||_{\infty} = 2.$$

Additionally, for a = (1, -1, 1, -1, ...) we have $||a||_{\infty} = 1$ and $||T(a)||_{\infty} = 2$, because T(a) = (-2, 2, -2, 2, ...), so we conclude that ||T|| = 2.

Now consider $1 \le p < \infty$. Take $a = (a_1, a_2, ...) \in l^p$ such that $||a||_p = 1$. Using Minkowski inequality we obtain

$$\begin{aligned} \|T(a)\|_{p} &= \left(\sum_{n=1}^{\infty} |a_{n+1} - a_{n}|^{p}\right)^{\frac{1}{p}} \\ &\leq \left(\sum_{n=1}^{\infty} |a_{n+1}|^{p}\right)^{\frac{1}{p}} + \left(\sum_{n=1}^{\infty} |a_{n}|^{p}\right)^{\frac{1}{p}} \\ &= (\|a\|_{p}^{p} - |a_{1}|)^{\frac{1}{p}} + \|a\|_{p} \\ &= (1 - |a_{1}|)^{\frac{1}{p}} + 1. \end{aligned}$$

We know that $||a||_p = 1$, so $0 \le |a_1| \le 1$, hence

$$||T(a)||_p \le (1 - |a_1|)^{\frac{1}{p}} + 1 \le 2.$$

We'll show that 2 is indeed the norm of T. Consider $a_{\lambda} = (t, \lambda t, \lambda^2 t, ...)$ where $0 > \lambda > -1$ and t is chosen so that $t^p + |\lambda|^p = 1$. We check that

$$\|a_{\lambda}\|_{p} = \left(\sum_{n=0}^{\infty} |\lambda^{n}t|^{p}\right)^{\frac{1}{p}}$$
$$= \left(t^{p} \sum_{n=0}^{\infty} |\lambda|^{np}\right)^{\frac{1}{p}}$$
$$= \left(t^{p} \frac{1}{1 - |\lambda|^{p}}\right)^{\frac{1}{p}}$$
$$= 1.$$

Let's compute the norm of $T(a_{\lambda})$:

$$\begin{aligned} \|T(a_{\lambda})\|_{p} &= \left(\sum_{n=0}^{\infty} |\lambda^{n+1}t - \lambda^{n}t|^{p}\right)^{\frac{1}{p}} \\ &= \left(\sum_{n=0}^{\infty} |\lambda^{n}t(\lambda-1)|^{p}\right)^{\frac{1}{p}} \\ &= \left(t^{p}(1-\lambda)^{p}\sum_{n=0}^{\infty} |\lambda|^{np}\right)^{\frac{1}{p}} \\ &= \left(t^{p}(1-\lambda)^{p}\frac{1}{1-|\lambda|^{p}}\right)^{\frac{1}{p}} \\ &= 1-\lambda. \end{aligned}$$

Hence, $\lim_{\lambda \to (-1)} \|T(a_{\lambda})\|_{p} = \lim_{\lambda \to (-1)} (1 - \lambda) = 2$, so $\|T\| = 2$.

b. Suppose $p = \infty$. Let $\varphi : (0,1) \to (0,1)$ be the map that is bijective and differentiable. Take measurable $S \subset (0,1)$. Using the change of variables formula for $\mathbb{1}_{\varphi(S)}$ we obtain

$$\mu(\varphi(S)) = \int_{S} |\det \mathbf{D}\varphi| \,\mathrm{d}\mu,$$

which implies

$$\mu(\varphi(S)) = 0 \Longleftrightarrow \varphi(S) = 0.$$

Now let $\phi : (0,1) \to (0,1)$ be defined as $\phi(x) = x^2$. It is indeed bijective and differentiable. Analogously for its inverse $\phi^{-1}(x) = \sqrt{x}$. Let $f \in L^{\infty}$. For $a \in \mathbb{R}$ we have

$$\mu(|f|^{-1}((a,\infty)))=0 \Longleftrightarrow \mu(\phi(|f|^{-1}((a,\infty))))=0,$$

but $\mu((|f| \circ \phi^{-1})^{-1}((a, \infty))) = \mu((|Tf|)^{-1}((a, \infty)))$, which implies that

 $\|f\|_{\infty} = \operatorname{ess\,sup} |f| = \operatorname{ess\,sup} |Tf| = \|Tf\|_{\infty}.$

That implies that ||T|| = 1 and we are done.

Now consider $1 \le p < \infty$. Take $f \in L^p(0,1)$ such that $||f||_p = 1$. We see that

$$||Tf||_p^p = \int_0^1 |Tf|^p \,\mathrm{d}\mu$$

after which we can use the change of variables formula (ϕ satisfies conditions) and compute

$$\begin{split} \int_{0}^{1} |Tf|^{p} d\mu &= \int_{0}^{1} (|Tf|^{p} \circ \phi) \cdot |\det \mathbf{D}\phi| d\mu \\ &= \int_{0}^{1} |f|^{p} \cdot |2x| d\mu \\ &\leq ||f||_{p}^{p} \sup_{x \in (0,1)} |2x| \\ &= 2. \end{split}$$

Hence, $||Tf||_p \leq 2^{\frac{1}{p}}$, so $||T|| \leq 2^{\frac{1}{p}}$. We'll show that indeed $||T|| = 2^{\frac{1}{p}}$. Let $f_t = \left(\frac{1}{1-t}\right)^{\frac{1}{p}} \mathbb{1}_{(t,1)}$ for 0 < t < 1. We check that

$$\|f_t\|_p^p = \int_0^1 \left| \left(\frac{1}{1-t}\right)^{\frac{1}{p}} \mathbb{1}_{(t,1)} \right|^p d\mu$$
$$= \frac{1}{1-t} \int_t^1 d\mu$$
$$= 1.$$

Let's estimate the *p*-th power of the norm of Tf_t :

$$\begin{aligned} \|Tf_t\|_p^p &= \int_0^1 |f_t|^p \cdot |2x| \, \mathrm{d}\mu \\ &= \int_0^1 \frac{1}{1-t} \mathbb{1}_{(t,1)} \cdot |2x| \, \mathrm{d}\mu \\ &= \int_t^1 \frac{1}{1-t} \cdot |2x| \, \mathrm{d}\mu \\ &\ge \int_t^1 \frac{1}{1-t} \, \mathrm{d}\mu \cdot \inf_{x \in (t,1)} |2x| \, \mathrm{d}\mu \\ &= 2t. \end{aligned}$$

Hence, for every 0 < t < 1 the inequalities $(2t)^{\frac{1}{p}} \leq ||Tf_t||_p \leq 2^{\frac{1}{p}}$ hold. That means $\lim_{t\to 1} ||Tf_t||_p$ exists and it is equal to $2^{\frac{1}{p}}$, so $||T|| = 2^{\frac{1}{p}}$.

2 Problem 2

2.1 Description

Let $(X, \|\cdot\|_X)$ be a normed space and $(Y, \|\cdot\|_Y)$ be a Banach space. Suppose that D is a dense linear subset of X and $T : (D, \|\cdot\|_X) \to (Y, \|\cdot\|_Y)$ is a bounded linear operator. Prove that T has a unique bounded extension

$$\widetilde{T}: (X, \|\cdot\|_X) \to (Y, \|\cdot\|_Y)$$

such that

$$Tx = \widetilde{T}x \text{ for } x \in D \text{ and } ||T||_{\mathcal{L}(D,Y)} = \left\|\widetilde{T}\right\|_{\mathcal{L}(X,Y)}$$

2.2 Solution

We will start with proving existence of such operator. As D is dense in X then for every $x \in X$ there exists a sequence $(x_n)_{n \in \mathbb{N}}$ such that $x_n \to x$. Let us denote $y_n = T(x_n)$. It is straightforward to prove that (y_n) is a Cauchy sequence in Y. Indeed, x_n converges so it is a Cauchy sequence. Moreover $\|y_n - y_m\|_Y = \|T(x_n - x_m)\|_Y \leq \|T\| \|x_n - x_m\|_X$, so the Cauchy condition follows. As $(Y, \|\cdot\|_Y)$ is Banach, then $y_n \to y \in Y$. We can set $\tilde{T}(x) = y$.

We need to prove that this definition of \widetilde{T} is sound. Assume that there is $x \in X$ and two different sequences $(x_n)_{n \in \mathbb{N}}$ and $(\widehat{x}_n)_{n \in \mathbb{N}}$ such that both $x_n \to x$ and $\widehat{x}_n \to x$. We need to prove that $\lim T(x_n) = \lim T(\widehat{x}_n)$. We clearly have

that $x_1, \hat{x}_1, x_2, \hat{x}_2, \ldots$ is a sequence in X that converges to x. Therefore, as in the previous paragraph, the sequence $T(x_1), T(\hat{x}_1), T(x_2), T(\hat{x}_2), \ldots$ converges in Y. Therefore every subsequence of it converges to the same element of Y. Therefore we have $\lim T(x_n) = \lim T(\hat{x}_n)$ and we know that this definition is sound.

Obviously for any $x \in D$ to compute $\widetilde{T}(x)$ we can use the constant sequence $(x)_{n \in N}$ and we get $\widetilde{T}(x) = T(x)$.

The last thing in this part is to prove that \widetilde{T} is bounded. Let us take any $x \in X$ such that $||x||_X = 1$. Again, there is a sequence $(x_n)_{n \in \mathbb{N}}$ of elements of D such that $x_n \to x$. We know that $T(x_n) \to \widetilde{T}(x)$. Hence, by the definition of convergence, we get $||T(x_n) - \widetilde{T}(x)||_Y \to 0$. By the triangle inequality we get $||\widetilde{T}(x)||_Y \leq ||T(x_n) - \widetilde{T}(x)||_Y + ||T(x_n)||_Y$. This gives us $||\widetilde{T}|| \leq ||T||$. Obviously $||\widetilde{T}|| \geq ||T||$ (as \widetilde{T} is an extension of T), so $||\widetilde{T}|| = ||T||$ as we wanted.

No we can prove the second part, namely the uniqueness of \widetilde{T} . This is much easier. Indeed, if there is any other extension \widehat{T} then it is continuous, so for any $x \in X$ and a sequence $(x_n)_{n \in \mathbb{N}}$ such that $x_n \in D$ and $x_n \to x$ we have $\widehat{T}(x_n) \to \widehat{T}(x)$. As $\widehat{T}(x_n) = T(x_n)$ then we have $T(x_n) \to \widehat{T}(x)$. But $T(x_n) \to \widetilde{T}(x)$ by definition of \widetilde{T} so $\widetilde{T}(x) = \widehat{T}(x)$ for any $x \in X$.