Functional Analysis - HW 3

Jan Kociniak, Wojciech Przybyszewski

November 5, 2020

1 Problem 1

1.1 Description

Let $1 \leq p \leq \infty$. Compute norms of the operators
a. $T: l^{p} \rightarrow l^{p}$ defined with $T\left(\left(a_{n}\right)_{n \geq 1}\right)=\left(a_{n+1}-a_{n}\right)_{n \geq 1}$.
b. $T: L^{p}(0,1) \rightarrow L^{p}(0,1)$ defined with $(T f)(x)=f(\sqrt{x})$.

1.2 Solution

a. Suppose that $p=\infty$. Take $a=\left(a_{1}, a_{2}, \ldots\right) \in l^{\infty}$ such that $\|a\|_{\infty}=1$. Then

$$
\|T(a)\|_{\infty}=\sup _{n \in \mathbb{N}}\left|a_{n+1}-a_{n}\right| \leq 2 \sup _{n \in \mathbb{N}}\left|a_{n}\right|=2\|a\|_{\infty}=2
$$

Additionally, for $a=(1,-1,1,-1, \ldots)$ we have $\|a\|_{\infty}=1$ and $\|T(a)\|_{\infty}=$ 2 , because $T(a)=(-2,2,-2,2, \ldots)$, so we conclude that $\|T\|=2$.

Now consider $1 \leq p<\infty$. Take $a=\left(a_{1}, a_{2}, \ldots\right) \in l^{p}$ such that $\|a\|_{p}=1$. Using Minkowski inequality we obtain

$$
\begin{aligned}
\|T(a)\|_{p} & =\left(\sum_{n=1}^{\infty}\left|a_{n+1}-a_{n}\right|^{p}\right)^{\frac{1}{p}} \\
& \leq\left(\sum_{n=1}^{\infty}\left|a_{n+1}\right|^{p}\right)^{\frac{1}{p}}+\left(\sum_{n=1}^{\infty}\left|a_{n}\right|^{p}\right)^{\frac{1}{p}} \\
& =\left(\|a\|_{p}^{p}-\left|a_{1}\right|\right)^{\frac{1}{p}}+\|a\|_{p} \\
& =\left(1-\left|a_{1}\right|\right)^{\frac{1}{p}}+1 .
\end{aligned}
$$

We know that $\|a\|_{p}=1$, so $0 \leq\left|a_{1}\right| \leq 1$, hence

$$
\|T(a)\|_{p} \leq\left(1-\left|a_{1}\right|\right)^{\frac{1}{p}}+1 \leq 2 .
$$

We'll show that 2 is indeed the norm of T. Consider $a_{\lambda}=\left(t, \lambda t, \lambda^{2} t, \ldots\right)$ where $0>\lambda>-1$ and t is chosen so that $t^{p}+|\lambda|^{p}=1$. We check that

$$
\begin{aligned}
\left\|a_{\lambda}\right\|_{p} & =\left(\sum_{n=0}^{\infty}\left|\lambda^{n} t\right|^{p}\right)^{\frac{1}{p}} \\
& =\left(t^{p} \sum_{n=0}^{\infty}|\lambda|^{n p}\right)^{\frac{1}{p}} \\
& =\left(t^{p} \frac{1}{1-|\lambda|^{p}}\right)^{\frac{1}{p}} \\
& =1
\end{aligned}
$$

Let's compute the norm of $T\left(a_{\lambda}\right)$:

$$
\begin{aligned}
\left\|T\left(a_{\lambda}\right)\right\|_{p} & =\left(\sum_{n=0}^{\infty}\left|\lambda^{n+1} t-\lambda^{n} t\right|^{p}\right)^{\frac{1}{p}} \\
& =\left(\sum_{n=0}^{\infty}\left|\lambda^{n} t(\lambda-1)\right|^{p}\right)^{\frac{1}{p}} \\
& =\left(t^{p}(1-\lambda)^{p} \sum_{n=0}^{\infty}|\lambda|^{n p}\right)^{\frac{1}{p}} \\
& =\left(t^{p}(1-\lambda)^{p} \frac{1}{1-|\lambda|^{p}}\right)^{\frac{1}{p}} \\
& =1-\lambda
\end{aligned}
$$

Hence, $\lim _{\lambda \rightarrow(-1)}\left\|T\left(a_{\lambda}\right)\right\|_{p}=\lim _{\lambda \rightarrow(-1)}(1-\lambda)=2$, so $\|T\|=2$.
b. Suppose $p=\infty$. Let $\varphi:(0,1) \rightarrow(0,1)$ be the map that is bijective and differentiable. Take measurable $S \subset(0,1)$. Using the change of variables formula for $\mathbb{1}_{\varphi(S)}$ we obtain

$$
\mu(\varphi(S))=\int_{S}|\operatorname{det} \mathrm{D} \varphi| \mathrm{d} \mu
$$

which implies

$$
\mu(\varphi(S))=0 \Longleftrightarrow \varphi(S)=0 .
$$

Now let $\phi:(0,1) \rightarrow(0,1)$ be defined as $\phi(x)=x^{2}$. It is indeed bijective and differentiable. Analogously for its inverse $\phi^{-1}(x)=\sqrt{x}$. Let $f \in L^{\infty}$. For $a \in \mathbb{R}$ we have

$$
\mu\left(|f|^{-1}((a, \infty))\right)=0 \Longleftrightarrow \mu\left(\phi\left(|f|^{-1}((a, \infty))\right)\right)=0
$$

but $\mu\left(\left(|f| \circ \phi^{-1}\right)^{-1}((a, \infty))\right)=\mu\left((|T f|)^{-1}((a, \infty))\right)$, which implies that

$$
\|f\|_{\infty}=\operatorname{ess} \sup |f|=\operatorname{ess} \sup |T f|=\|T f\|_{\infty}
$$

That implies that $\|T\|=1$ and we are done.
Now consider $1 \leq p<\infty$. Take $f \in L^{p}(0,1)$ such that $\|f\|_{p}=1$. We see that

$$
\|T f\|_{p}^{p}=\int_{0}^{1}|T f|^{p} \mathrm{~d} \mu
$$

after which we can use the change of variables formula (ϕ satisfies conditions) and compute

$$
\begin{aligned}
\int_{0}^{1}|T f|^{p} \mathrm{~d} \mu & =\int_{0}^{1}\left(|T f|^{p} \circ \phi\right) \cdot|\operatorname{det} \mathrm{D} \phi| \mathrm{d} \mu \\
& =\int_{0}^{1}|f|^{p} \cdot|2 x| \mathrm{d} \mu \\
& \leq\|f\|_{p}^{p} \sup _{x \in(0,1)}|2 x| \\
& =2
\end{aligned}
$$

Hence, $\|T f\|_{p} \leq 2^{\frac{1}{p}}$, so $\|T\| \leq 2^{\frac{1}{p}}$. We'll show that indeed $\|T\|=2^{\frac{1}{p}}$. Let $f_{t}=\left(\frac{1}{1-t}\right)^{\frac{1}{p}} \mathbb{1}_{(t, 1)}$ for $0<t<1$. We check that

$$
\begin{aligned}
\left\|f_{t}\right\|_{p}^{p} & =\int_{0}^{1}\left|\left(\frac{1}{1-t}\right)^{\frac{1}{p}} \mathbb{1}_{(t, 1)}\right|^{p} \mathrm{~d} \mu \\
& =\frac{1}{1-t} \int_{t}^{1} \mathrm{~d} \mu \\
& =1
\end{aligned}
$$

Let's estimate the p-th power of the norm of $T f_{t}$:

$$
\begin{aligned}
\left\|T f_{t}\right\|_{p}^{p} & =\int_{0}^{1}\left|f_{t}\right|^{p} \cdot|2 x| \mathrm{d} \mu \\
& =\int_{0}^{1} \frac{1}{1-t} \mathbb{1}_{(t, 1)} \cdot|2 x| \mathrm{d} \mu \\
& =\int_{t}^{1} \frac{1}{1-t} \cdot|2 x| \mathrm{d} \mu \\
& \geq \int_{t}^{1} \frac{1}{1-t} \mathrm{~d} \mu \cdot \inf _{x \in(t, 1)}|2 x| \\
& =2 t
\end{aligned}
$$

Hence, for every $0<t<1$ the inequalities $(2 t)^{\frac{1}{p}} \leq\left\|T f_{t}\right\|_{p} \leq 2^{\frac{1}{p}}$ hold. That means $\lim _{t \rightarrow 1}\left\|T f_{t}\right\|_{p}$ exists and it is equal to $2^{\frac{1}{p}}$, so $\|T\|=2^{\frac{1}{p}}$.

2 Problem 2

2.1 Description

Let $\left(X,\|\cdot\|_{X}\right)$ be a normed space and $\left(Y,\|\cdot\|_{Y}\right)$ be a Banach space. Suppose that D is a dense linear subset of X and $T:\left(D,\|\cdot\|_{X}\right) \rightarrow\left(Y,\|\cdot\|_{Y}\right)$ is a bounded linear operator. Prove that T has a unique bounded extension

$$
\widetilde{T}:\left(X,\|\cdot\|_{X}\right) \rightarrow\left(Y,\|\cdot\|_{Y}\right)
$$

such that

$$
T x=\widetilde{T} x \text { for } x \in D \text { and }\|T\|_{\mathcal{L}(D, Y)}=\|\widetilde{T}\|_{\mathcal{L}(X, Y)}
$$

2.2 Solution

We will start with proving existence of such operator. As D is dense in X then for every $x \in X$ there exists a sequence $\left(x_{n}\right)_{n \in \mathbb{N}}$ such that $x_{n} \rightarrow x$. Let us denote $y_{n}=T\left(x_{n}\right)$. It is straightforward to prove that $\left(y_{n}\right)$ is a Cauchy sequence in Y. Indeed, x_{n} converges so it is a Cauchy sequence. Moreover $\left\|y_{n}-y_{m}\right\|_{Y}=\left\|T\left(x_{n}-x_{m}\right)\right\|_{Y} \leq\|T\|\left\|x_{n}-x_{m}\right\|_{X}$, so the Cauchy condition follows. As $\left(Y,\|\cdot\|_{Y}\right)$ is Banach, then $y_{n} \rightarrow y \in Y$. We can set $\widetilde{T}(x)=y$.

We need to prove that this definition of \widetilde{T} is sound. Assume that there is $x \in X$ and two different sequences $\left(x_{n}\right)_{n \in \mathbb{N}}$ and $\left(\widehat{x}_{n}\right)_{n \in \mathbb{N}}$ such that both $x_{n} \rightarrow x$ and $\widehat{x}_{n} \rightarrow x$. We need to prove that $\lim T\left(x_{n}\right)=\lim T\left(\widehat{x}_{n}\right)$. We clearly have
that $x_{1}, \widehat{x}_{1}, x_{2}, \widehat{x}_{2}, \ldots$ is a sequence in X that converges to x. Therefore, as in the previous paragraph, the sequence $T\left(x_{1}\right), T\left(\widehat{x}_{1}\right), T\left(x_{2}\right), T\left(\widehat{x}_{2}\right), \ldots$ converges in Y. Therefore every subsequence of it converges to the same element of Y. Therefore we have $\lim T\left(x_{n}\right)=\lim T\left(\widehat{x}_{n}\right)$ and we know that this definition is sound.

Obviously for any $x \in D$ to compute $\widetilde{T}(x)$ we can use the constant sequence $(x)_{n \in N}$ and we get $\widetilde{T}(x)=T(x)$.

The last thing in this part is to prove that \widetilde{T} is bounded. Let us take any $x \in X$ such that $\|x\|_{X}=1$. Again, there is a sequence $\left(x_{n}\right)_{n \in \mathbb{N}}$ of elements of D such that $x_{n} \rightarrow x$. We know that $T\left(x_{n}\right) \rightarrow \widetilde{T}(x)$. Hence, by the definition of convergence, we get $\left\|T\left(x_{n}\right)-\widetilde{T}(x)\right\|_{Y} \rightarrow 0$. By the triangle inequality we get $\|\widetilde{T}(x)\|_{Y} \leq\left\|T\left(x_{n}\right)-\widetilde{T}(x)\right\|_{Y}+\left\|T\left(x_{n}\right)\right\|_{Y}$. This gives us $\|\widetilde{T}\| \leq\|T\|$. Obviously $\|\widetilde{T}\| \geq\|T\|$ (as \widetilde{T} is an extension of T), so $\|\widetilde{T}\|=\|T\|$ as we wanted.

No we can prove the second part, namely the uniqueness of \widetilde{T}. This is much easier. Indeed, if there is any other extension \widehat{T} then it is continuous, so for any $x \in X$ and a sequence $\left(x_{n}\right)_{n \in \mathbb{N}}$ such that $x_{n} \in D$ and $x_{n} \rightarrow x$ we have $\widehat{T}\left(x_{n}\right) \rightarrow \widehat{T}(x)$. As $\widehat{T}\left(x_{n}\right)=T\left(x_{n}\right)$ then we have $T\left(x_{n}\right) \rightarrow \widehat{T}(x)$. But $T\left(x_{n}\right) \rightarrow \widetilde{T}(x)$ by definition of \widetilde{T} so $\widetilde{T}(x)=\widehat{T}(x)$ for any $x \in X$.

