Functional Analysis - HW 4

Jan Kociniak, Wojciech Przybyszewski

November 18, 2020

1 Problem 1

1.1 Description

Let $(X, \|\cdot\|_X)$ be a Banach space. Consider a linear operator $T: X \to X^*$ such that for all $x \in X$:

$$(Tx)(x) \ge 0.$$

Prove that T is a bounded linear operator, i.e. $T \in \mathcal{L}(X, X^*)$.

1.2 Solution

We will prove that the graph of T is closed, which implies its boundedness (by the closed graph theorem). Let us take any $x \in X$ and a sequence $(x_n)_{n \in \mathbb{N}}$ such that $x_n \to x$ and $Tx_n \to E \in X^*$. We need to prove Tx = E. Let us take any $z \in X$ and denote $C_z := (Tz)(z) \ge 0$. Let us also fix a constant $\varepsilon > 0$. We have:

$$(T(x - x_n + \varepsilon z))(x - x_n + \varepsilon z) \ge 0,$$

which is equivalent to:

$$(Tx)(x-x_n) - (Tx_n)(x-x_n) + \varepsilon T(z)(x-x_n) + \varepsilon (T(x-x_n))(z) + \varepsilon^2 (Tz)(z) \ge 0.$$

The equation above is justified as both T and Tx for any $x \in X$ are linear. We can further transform this inequality to:

$$(Tx)(x - x_n) - (Tx_n - E)(x - x_n) - E(x - x_n) +$$
$$+\varepsilon T(z)(x - x_n) + \varepsilon (T(x - x_n))(z) + \varepsilon^2 C_z \ge 0.$$

Now, knowing that $Tx_n \to E$ and $x_n \to x$, we can take $n \to \infty$ and obtain

$$\varepsilon(T(x)(z) - E(z)) + \varepsilon^2 C_z \ge 0 \iff T(x)(z) - E(z) + \varepsilon C_z \ge 0.$$

After taking $\varepsilon \to 0$ we get

$$T(x)(z) - E(z) \ge 0.$$

But this inequality holds for every $z \in X$, so we also have

$$0 \le T(x)(-z) - E(-z) = -T(x)(z) + E(z) \Longleftrightarrow T(x)(z) - E(z) \le 0,$$

thus T(x)(z) = E(z) for every $z \in X$ and we are done.

2 Problem 2

2.1 Description

We write c_0 for the space of sequences $x = (x_1, x_2, ...)$ such that $\lim_{n \to \infty} x_n = 0$ (i. e. sequences converging to 0). Space c_0 is equipped with the usual supremum norm $||x||_{\infty} = \sup_{n \in \mathbb{N}} |x_n|$.

- Prove that $c_0 \subset l^{\infty}$.
- Prove that $(c_0, \|\cdot\|_{\infty})$ is a Banach space.
- Let $z = (z_1, z_2, ...)$ be a sequence of real numbers such that whenever $y = (y_1, y_2, ...) \in c_0$, we have that $\sum_{n \ge 1} z_n y_n$ is convergent in \mathbb{R} . Prove that $\sum_{n \ge 1} |z_n|$ is convergent.

Hint: for $y \in c_0$, consider $\varphi_k \in (c_0)^*$ defined with $\varphi_k(y) = \sum_{n=1}^k z_n y_n$.

2.2 Solution

First of all, every convergent sequence is bounded, so $c_0 \,\subset l^\infty$. We know that $(l^\infty, \|\cdot\|_\infty)$ is a Banach space, so to prove that $(c_0, \|\cdot\|_\infty)$ is a Banach space we only need to prove that c_0 is closed. Let $(x_n)_{n\in\mathbb{N}}$ be the sequence of sequences from c_0 such that $\lim_{n\to\infty} x_n = x \in l^\infty$. We will denote $x_n = (x_{n1}, x_{n2}, \ldots)$ and $x = (x_1, x_2, \ldots)$. Suppose that $x \notin c_0$, then there exists $\varepsilon > 0$ such that for some index sequence $(i_n)_{n\in\mathbb{N}}$ such that $\lim_{n\to\infty} i_n = \infty$ we have $|x_{i_n}| > \varepsilon$ for all $n \in \mathbb{N}$. Now fix $\delta < \varepsilon$. There exists n_δ such that $||x - x_{n_\delta}||_\infty < \delta$. For every $k \in \mathbb{N}$ we can estimate

$$|x_{n_{\delta}i_k}| \ge |x_{i_k}| - |x_{i_k} - x_{n_{\delta}i_k}| \ge \varepsilon - \delta,$$

which contradicts the fact that $x_{n_{\delta}} \in c_0$. Hence, $x \in c_0$, so c_0 is a closed subset of l^{∞} , so c_0 is a Banach space.

We'll proceed to the proof of the final statement. As written in the hint, we consider $\varphi_k \in (c_0)^*$ defined with $\varphi_k(y) = \sum_{n=1}^k z_n y_n$. For $y \in c_0$ we know that $\sum_{n\geq 1} z_n y_n$ is convergent in \mathbb{R} , so the sequence of partial sums is bounded. Therefore, for all $y \in c_0$ we have $\sup_{k\in\mathbb{N}} |\varphi_k(y)| < \infty$. Using Banach-Steinhaus theorem we obtain $\sup_{k\in\mathbb{N}} ||\varphi_k|| < \infty$, which means that for every $k \in \mathbb{N}$ and $y \in c_0$ such that $||y||_{\infty} = 1$ we have $|\phi_k(y)| < C$ for some constant C > 0. By taking $y_k = (\operatorname{sgn}(z_1), \operatorname{sgn}(z_2), \ldots, \operatorname{sgn}(z_k), 0, 0, \ldots)$ we get

$$C > |\phi_k(y_k)| = |\sum_{n=1}^k z_n y_n| = \sum_{n=1}^k |z_n|$$

for every $k \in \mathbb{N}$, so $\sum_{n \ge 1} |z_n|$ is convergent.