
Functional Analysis - HW 4

Jan Kociniak, Wojciech Przybyszewski

November 18, 2020

1 Problem 1

1.1 Description

Let (X, ‖·‖X) be a Banach space. Consider a linear operator T : X → X∗ such

that for all x ∈ X:

(Tx)(x) ≥ 0.

Prove that T is a bounded linear operator, i.e. T ∈ L(X,X∗).

1.2 Solution

We will prove that the graph of T is closed, which implies its boundedness (by

the closed graph theorem). Let us take any x ∈ X and a sequence (xn)n∈N such

that xn → x and Txn → E ∈ X∗. We need to prove Tx = E. Let us take any

z ∈ X and denote Cz := (Tz)(z) ≥ 0. Let us also fix a constant ε > 0. We

have:

(T (x− xn + εz))(x− xn + εz) ≥ 0,

which is equivalent to:

(Tx)(x−xn)−(Txn)(x−xn)+εT (z)(x−xn)+ε(T (x−xn))(z)+ε2(Tz)(z) ≥ 0.

The equation above is justified as both T and Tx for any x ∈ X are linear. We

can further transform this inequality to:

(Tx)(x− xn)− (Txn − E)(x− xn)− E(x− xn)+

+εT (z)(x− xn) + ε(T (x− xn))(z) + ε2Cz ≥ 0.

Now, knowing that Txn → E and xn → x, we can take n→∞ and obtain

ε(T (x)(z)− E(z)) + ε2Cz ≥ 0⇐⇒ T (x)(z)− E(z) + εCz ≥ 0.
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After taking ε→ 0 we get

T (x)(z)− E(z) ≥ 0.

But this inequality holds for every z ∈ X, so we also have

0 ≤ T (x)(−z)− E(−z) = −T (x)(z) + E(z)⇐⇒ T (x)(z)− E(z) ≤ 0,

thus T (x)(z) = E(z) for every z ∈ X and we are done.

2 Problem 2

2.1 Description

We write c0 for the space of sequences x = (x1, x2, . . . ) such that limn→∞ xn = 0

(i. e. sequences converging to 0). Space c0 is equipped with the usual supremum

norm ‖x‖∞ = supn∈N |xn|.

• Prove that c0 ⊂ l∞.

• Prove that (c0, ‖·‖∞) is a Banach space.

• Let z = (z1, z2, . . . ) be a sequence of real numbers such that whenever

y = (y1, y2, . . . ) ∈ c0, we have that
∑
n≥1 znyn is convergent in R. Prove

that
∑
n≥1 |zn| is convergent.

Hint: for y ∈ c0, consider ϕk ∈ (c0)∗ defined with ϕk(y) =
∑k
n=1 znyn.

2.2 Solution

First of all, every convergent sequence is bounded, so c0 ⊂ l∞. We know that

(l∞, ‖·‖∞) is a Banach space, so to prove that (c0, ‖·‖∞) is a Banach space we

only need to prove that c0 is closed. Let (xn)n∈N be the sequence of sequences

from c0 such that limn→∞ xn = x ∈ l∞. We will denote xn = (xn1, xn2, . . . )

and x = (x1, x2, . . . ). Suppose that x 6∈ c0, then there exists ε > 0 such that for

some index sequence (in)n∈N such that limn→∞ in = ∞ we have |xin | > ε for

all n ∈ N. Now fix δ < ε. There exists nδ such that ‖x− xnδ‖∞ < δ. For every

k ∈ N we can estimate

|xnδik | ≥ |xik | − |xik − xnδik | ≥ ε− δ,

which contradicts the fact that xnδ ∈ c0. Hence, x ∈ c0, so c0 is a closed subset

of l∞, so c0 is a Banach space.
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We’ll proceed to the proof of the final statement. As written in the hint,

we consider ϕk ∈ (c0)∗ defined with ϕk(y) =
∑k
n=1 znyn. For y ∈ c0 we know

that
∑
n≥1 znyn is convergent in R, so the sequence of partial sums is bounded.

Therefore, for all y ∈ c0 we have supk∈N |ϕk(y)| <∞. Using Banach-Steinhaus

theorem we obtain supk∈N ‖ϕk‖ < ∞, which means that for every k ∈ N and

y ∈ c0 such that ‖y‖∞ = 1 we have |φk(y)| < C for some constant C > 0. By

taking yk = (sgn(z1), sgn(z2), . . . , sgn(zk), 0, 0, . . . ) we get

C > |φk(yk)| = |
k∑

n=1

znyn| =
k∑

n=1

|zn|

for every k ∈ N, so
∑
n≥1 |zn| is convergent.
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