AF-6-homework

Functional Analysis, winter 2020 University of Warsaw

First problem

Let us assume that $(L^p(0,1), \|\cdot\|_q)$ is a Banach space. We know that $(L^p(0,1), \|\cdot\|_p)$ is a Banach space and from B1/PS1 we have $\|f\|_q \leq \|f\|_p$ for all $f \in L^p(0,1)$ (the Lebesgue measure of (0,1) equals 1). Hence from B1/PS4 we obtain that exists $C \in \mathbb{R}$ such that $\|f\|_p \leq C\|f\|_q$ for all $f \in L^p(0,1)$.

We will show that such C can not exist. Let us consider a sequence $(f_n) \subset L^p(0,1)$ such that $f_n = \mathbb{1}_{(1/n,1)}x^{-1/p}$. Then for n = 1, 2, ... we have

$$\|f_n\|_p = \left(\int_0^1 \mathbb{1}_{(1/n,1)} x^{-1} \mathrm{d}x\right)^{1/p} \\\|f_n\|_q = \left(\int_0^1 \mathbb{1}_{(1/n,1)} x^{-q/p} \mathrm{d}x\right)^{1/q} \le \left(\int_0^1 x^{-q/p} \mathrm{d}x\right)^{1/q} = \left(\frac{1}{1-q/p}\right)^{1/q} =: a \in \mathbb{R}$$

because q/p < 1. Hence $\left(\int_{1/n}^{1} x^{-1} dx\right)^{1/p} \leq C_1$ (where $C_1 = aC$) what leads to a contradiction, because $\int_{1/n}^{1} x^{-1} dx \to \infty$ in \mathbb{R} for $n \to \infty$.

Second problem

For a Banach space X and an operator $P : X \to X$ such that $\ker(P)$, $\operatorname{im}(P)$ are closed in X and $\forall x \in X \ P(Px) = Px$ let us observe firstly that P limited to $\operatorname{im}(P)$ is the identity operator. Because, by definition of image $\forall b \in \operatorname{im}(P) \ \exists a \in X \ Pb = P(Pa) = Pa = b$ following from the last assumption.

Now we will show that the graph G(P) is closed in $X \times X$. Let us consider an arbitrary sequence $(x_n)_{n \in \mathbb{N}}$ such that $x_n \to x \in X$ and $Px_n \to y \in X$. Then $y \in \operatorname{im}(P)$, since the image is closed, so Py = y. Furthermore, $x_n - Px_n \in \ker(P)$, because $P(x_n - Px_n) = Px_n - Px_n = 0$, thus by closedness of $\ker(P)$ we obtain that x - y also belongs to the kernel. Hence, P(x - y) = 0, i.e. Px = Py = y, which means that G(P) is closed.

Therefore, we can apply Closed Graph TheoremTM, what gives us $P \in \mathcal{L}(X, X)$.

Third problem

Let us observe that $E = \{f \in L^2(-1,1) : \int_{-1}^1 f(t) dt = \int_{-1}^1 f(t) t dt\} = \{f \in L^2(-1,1) : \langle f,1 \rangle = \langle f,t \rangle = 0\}.$ Hence for $K = \operatorname{span}\{1,t\}$ we obtain $E = K^{\perp}$ (i.e. from B1/PS5 E is a closed subspace of $L^2(-1,1)$). Because K is a closed subspace of $L^2(-1,1)$ (it is a finite-dimensional subspace), $L^2(-1,1) = E \oplus K$.

We have $g = P_E g + P_K g$. Because $P_K g \in K$ we have $P_K g = a + bt$ for some $a, b \in \mathbb{R}$. We can calculate a and b from: $g - P_K g = P_E g \in E \iff (P_E g \perp 1) \land (P_E g \perp t)$.

$$g - P_K g \perp 1 \iff 0 = \langle g - P_K g, 1 \rangle = \int_{-1}^{1} (g - P_K g) dt = \int_{-1}^{1} \left(\frac{1}{1 + t^2} - a - bt \right) dt = \frac{\pi}{2} - 2a$$
$$g - P_K g \perp t \iff 0 = \langle g - P_K g, t \rangle = \int_{-1}^{1} (g - P_K g) t dt = \int_{-1}^{1} \left(\frac{t}{1 + t^2} - at - bt^2 \right) dt = -\frac{2}{3}b$$

Hence $a = \frac{\pi}{4}$ and b = 0 and we have

$$P_{E^{\perp}}g = P_{K}g = \frac{\pi}{4}$$

 $P_{E}g = g - P_{K}g = \frac{1}{1+t^{2}} - \frac{\pi}{4}$

Now we can calculate the distance dist(g, E) of g from E.

$$\operatorname{dist}(g, E) = \left(\int_{-1}^{1} |g - P_E g|^2 \mathrm{d}t\right)^{1/2} = \left(\int_{-1}^{1} |P_K g|^2 \mathrm{d}t\right)^{1/2} = \left(\int_{-1}^{1} \left|\frac{\pi}{4}\right|^2 \mathrm{d}t\right)^{1/2} = 2^{-3/2}\pi.$$