Solution to Problem 1 (HW9) (with comments)

Kuba Skneczkowski

 $let I(u) = \int |u(x)|^{3/2} \cos^2(x) dx, u \in L^2(91).$ (A) I is continuous on L'(0,1). We need to prove : $u_n \rightarrow u$ in $L^2(q_1) \Longrightarrow I(u_n) \longrightarrow I(u)$ in \mathbb{R} It is sufficient to prove $I(u_n)^{2/3} \rightarrow I(u)^{2/3}$. Note that $I(u)^{2/3}$ defines a norm on $L^{3/2}((0,1), \lambda \cos^2)$ $\supset L^{2}(0,1))$. Hence, by \land inequality $| I(u_{m})^{2/3} - I(u)^{2/3} | \leq | I(u_{m} - u) |^{2/3}$ $(\alpha s \mid ||x|| - ||y|| \leq ||x-y||$. Then, by Hölder, $I(u_n - u) = \int |u_n - u|^{3/2} \cos^2(x) \leq p = \frac{4}{3} q = uhatever$ $\leq \left(\int |u_n - u|^2\right)^{3/4} \left(\int \cos^2 q\right) \xrightarrow{\eta_q} O(n \rightarrow r).$ COMMENT: Some of you used inequality $||\alpha|^{3/2} - |b|^{3/2} \leq |\alpha - b|^{3/2}$ (*) which is wrong (take a = 2 and b=1). This inequality should be valid with some constant.

(B) $A_i = \sum (u, \lambda) \in L^2(0, 1) \times |R| : I(u) < \lambda \neq is$ open and convex.

Open: Let $A^{C} := \{(u, \Lambda) \in L^{2}(0, 1) \times | \mathbb{R} : \mathbb{I}(u) \ge \lambda \}$. We Show that A^{c} is cloved. Consider $(u_{n}, \lambda_{n}) \rightarrow (u, \lambda)$ in $L^{2}(0,1) \times IR$ s.t. $I(u_{n}) \geq \lambda_{n}$. We need $I(u) \geq \lambda$. As I is continuous, $I(u_{\gamma}) \rightarrow I(u)$. We also have $\lambda_n \rightarrow \lambda$ in IR. Passing to the limit in $I(u_n) \ge \lambda_n$ Le obtain $I(u) \ge \lambda_{-}$ Convex: let $t \leftarrow (v, 1)$. Take $(u, \lambda_u), (v, \lambda_v) \in A$. Ue need $I(tu + (n-t)v) < t\lambda_u + (n-t)\lambda_v$. $I(tu+(1-t)v) = \int [tu+(1-t)v]^{3/2} \cos^2(x) dx$ $\leq \int_{0}^{1} |t| |u| + (1-t) |v| \int_{0}^{3/2} (x) dx$ $\leq t^{3/2} \int_{0}^{1} |u|^{3/2} \cos^{3}(x) dx + (n+1)^{3/2} \int_{0}^{1} |v|^{3/2} \cos^{3}(x) dx$ (wonvexity of x+> |x|^{3/2} for x ≥ 0)

 $\leq t \int_{0}^{1} |u|^{3/2} \cos^{2}(x) dx + (1-t) \int_{0}^{1} |u|^{3/2} \cos^{2}(x) dx$ (as $t \in (0, 1)$).

 $< t \lambda_{u} + (n-t) \lambda_{v}$ (as $I(u) < \lambda_{u}$, $I(v) < \lambda_{v}$).

(() Let $u \in L^2(0,1)$. Find $v_u \in L^2(0,1)$ s.t. for all $w \in L^2(0,1)$ we have

 $I(u+\omega) \ge I(u) + \langle v_u, \omega \rangle$

As suggested, we apply Hahn-Banach to the set $A \subset L^{*}(D,1) \times |\mathbb{R}$ and $B = \frac{1}{2}(u, \mathbb{I}(u))$ (singleton). Both one nonempty, convex and disjoint. Noveover, A is open. Hence, there is (c((2(art) x R)) ow) µ EIR s.t.

ℓ(ω, λ) <μ < ℓ(4, I(u)). \forall

(ω,λ) GA

We know that $\ell(\omega, \lambda) = \ell(\omega) + a \cdot \lambda$ where ℓ is is (L2(0,1)) and a E IR. Moveover, by RRT, ue con write $\overline{Y}(\omega) = \langle \omega, v_u \rangle$ for some $v_u \in L^2(0,1)$ (it depends on a because we fixed a in this construction)

Hence

 $(\omega, \lambda) \in A$ $\langle u, v_u \rangle + a \cdot \lambda \langle \mu \langle u, v_u \rangle + a \cdot I(u)$

Observe that $(u+\omega, (1+\varepsilon) J(u+\omega)) \in A$. Hence,

 $\langle utw, v_u \rangle + a (AtE) I(utw) < \mu \leq$

 $\langle u, v_u \rangle + a \cdot J(u)$

To conclude, we need to know that or <0.

Let w=0. Then $\alpha(A+\epsilon) I(u) < \alpha I(u) => \alpha < 0$

We divide by a < 0 to get // new vu

(A+E) $I(u+w) \ge I(u) + \langle u, \frac{v_u}{\alpha} \rangle$. As $E \ge 0$ is orbitroug, he send E = 70 and conclude the proof.

COMMENT (what is Vn) For a convex function f: R-> R ve have

 $f(y) \ge f(x) + f'(x)(y-x)$ (second term in Taylor's expansion is ≥ 0 due to convexity), RHS as a function of y is the line supporting f at point x. Similarly, if f: |R"-> |R is convex

 $f(y) \ge f(x) + Df(x) \cdot (y-x) (Df \in \mathbb{R}^n).$

Now, the (RHS) as a function of y is the suppovting hyperplane.

So, in this exercise you've found gradient of J: $L^2(0,1) \rightarrow |\mathbb{R}$. Such gradients are then used for optimization, see GRADIENT DESCENT METHOD

https://en.wikipedia.org/wiki/Gradient_descent

(The article is concerned with functions on IR" but similar techniques are developed in Banach pares), Lost comment concerns generality. One can easily generalize this problem to prove; THEOREM. Let E be a Barrach space, I:E-IR Le Continuous and convex. Then, for all USE, there is $\mathcal{P} \in \mathcal{E}^*$ such that $\mathcal{I}(u+w) \geq \mathcal{I}(u) + \langle w, v_n \rangle$.