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COMMENT : Some of you used inequality
11 a 13k - 1613121 s la - 61312 At

which is wrong ( take a = 2 and 6=1)
.
This

inequalityshould be valid with some constant
.



(B) A : = { (u,d) c- Icon) x IR : Itu ) 413 is

open and convex
.

Open : let AC : = f@rDeL4o.hx IR : Itu ) Id 3. We
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(c) Let ne L' la e)
.

Find hello,1) set . for
all we 540.1) we have

I Cut w) Z Itu) t d Vu , w > .

As suggested , we apply Hahn - Banach to the

set Ac Man x IR and D= { Lu , Itu) ) ) ( single-
ton ) . Both owe nonempty , convex and disjoint .
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and a EIR . Moreover
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write Tcu) = Lw , Vu> for some vertical ) (it

depends on u because we fixed u in this construction) .



Hence

Enea Lui Vu > t a'd GM Balu , Vu > t a- Itu)

Observe that ( ut w , Ute) Ilutw)) c- A
.

Hence ,
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To conclude
,
we need to know that a so .

Let w=0 . Then a ht E) Itu) La - Icu) ⇒ as0

We divide by a so to get a new va
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As E > O is arbitrary , he send E-20 and conclude

the proof .

COMMENT (what is Vu) For a convex function
fi IR-31K we have

fly) Z ft) t f
'
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( second term in Taylor 's expansion is 7- 0 due to
'

convexity) . RHS as a function of y is the line

supporting f at point x .



https://en.wikipedia.org/wiki/Gradient_descent

Similarly , if fi IR
"
-s IR is convex

fly) Z fCx) t Df Cx) . ly-x) ( Df EIR
"

) .
Now ,

the ( RHS) as a function of y is the

supportinghyperplane .

So
,
in this exercise you've found gradient of

J : 1491) → IR .

Such gradients are then used for optimization , see
GRADIENT DESCENTMETHOD

(The article is concerned with functions on IR
"
but

similar techniques one developed in Banach spaces ) .

Last comment concerns generality .

One can easily
generalize this problem to prove :

THEOREM . Let E be a Banach space , I if
→ IR be

continuous and convex . Then , for all uEE , there is

Yu E E
't

such that I Cutw) Z Itu) t Lw ,Vu) .




