Solution to Problem 1 (HWY) (with comments)

Kuba Sknecrkowski

Let $I(u)=\int_{0}^{1}|u(x)|^{3 / 2} \cos ^{2}(x) d x, u \in L^{2}(0,1)$.
(A) I is continuous on $L^{2}(0,1)$. We need to prove:

$$
u_{n} \rightarrow u \text { in } L^{2}(0,1) \Rightarrow I\left(u_{n}\right) \rightarrow I(u) \text { in } \mathbb{R}
$$

(t is sufficient to prove $I\left(u_{n}\right)^{2 / 3} \rightarrow I(u)^{2 / 3} \cdot$ Note that $I(u)^{2 / 3}$ defines a norm on $\left.L^{3 / 2}(0,1), \lambda \cos ^{2}\right)$
$\left.\supset L^{2}(0,1)\right)$. Hence, by Δ inequality

$$
\left|I\left(u_{n}\right)^{2 / 3}-I(u)^{2 / 3}\right| \leqslant\left|I\left(u_{n}-u\right)\right|^{2 / 3}
$$

(as $|\|x\|-\|y\|| \leqslant\|x-y\|)$. Then, by Hölder,

$$
\begin{aligned}
& I\left(u_{n}-u\right)=\int\left|u_{n}-u\right|^{3 / 2} \cos ^{2}(x) \leqslant p=\frac{4}{3} \quad q=\text { whatever } \\
& \leqslant\left(\int\left|u_{n}-u\right|^{2}\right)^{3 / 4}\left(\int_{0}^{1} \cos ^{2 q}\right)^{1 / q} \rightarrow 0(n \rightarrow \infty) .
\end{aligned}
$$

COMMENT: Some of you used inequality

$$
\begin{equation*}
\left||a|^{3 / 2}-|b|^{3 / 2}\right| \leqslant|a-b|^{3 / 2} \tag{*}
\end{equation*}
$$

which is wrong (tale $a=2$ and $b=1)$. This inequality should be valid with some constant.
(B) $\quad A:=\left\{(u, \lambda) \in L^{2}(0,1) \times \mathbb{R} ; \quad I(u)<\lambda\right\}$ is open and convex.

Open: Let $A^{c}:=\left\{(u, \lambda) \in L^{2}(0,1) \times \mathbb{R}: I(n) \geqslant \lambda\right\}$. We show that A^{c} is clover. Consider $\left(u_{n}, \lambda_{n}\right) \rightarrow(u, \lambda)$ in $L^{2}(0,1) \times \mathbb{R}$ s.t. $I\left(u_{n}\right) \geq \lambda_{n}$. We need $I(u) \geq \lambda$.
As I is continuous, $I\left(u_{n}\right) \rightarrow I(u)$. We also have $\lambda_{n} \rightarrow \lambda$ in \mathbb{R}. Passing to the limit in $I\left(u_{n}\right) \geq \lambda_{m}$ we obtain $I(u) \geqslant \lambda_{\text {. }}$
Convex: Let $t \in(u, 1)$. Take $\left(u, \lambda_{u}\right),\left(v, \lambda_{v}\right) \in A$. We need $I(t u+(1-t) v)<t \lambda_{u}+(1-t) \lambda_{v}$.

$$
\begin{aligned}
& I(t u+(1-t) v)=\int_{0}^{1}|t u+(1-t) v|^{3 / 2} \cos ^{2}(x) d x \\
& \leq\left.\int_{0}^{1}|t| u|+(1-t)| v\right|^{3 / 2} \cos ^{2}(x) d x \\
& \leq t^{3 / 2} \int_{0}^{1}|u|^{3 / 2} \cos ^{2}(x) d x+(1-t)^{3 / 2} \int_{0}^{1}|v|^{3 / 2} \cos ^{2}(x) d x
\end{aligned}
$$

(convexity of $x \mapsto|x|^{3 / 2}$ for $x \geqslant 0$)

$$
\begin{aligned}
& \leqslant t \int_{0}^{1}|u|^{3 / 2} \cos ^{2}(x) d x+(1-t) \int_{0}^{1}|v|^{3 / 2} \cos ^{2}(x) d x \\
& \quad(\text { as } t \in(0,1)) . \\
& <t \lambda_{u}+(1-t) \lambda_{v} \quad\left(\text { as } I(u)<\lambda_{u}, I(v)<\lambda_{v}\right) .
\end{aligned}
$$

(c) Let $u \in L^{2}(0,1)$. Find $v_{u} \in L^{2}(0,1)$ st. for all $\omega \in L^{2}(0,1)$ we have

$$
I(u+w) \geqslant I(u)+\left\langle v_{u}, w\right\rangle
$$

As suggested, we apply Hahn-Bawach to the set $A \subset L^{2}(0,1) \times \mathbb{R}$ and $B=\{(u, I(u))\}$ (single ton). Both ore nonempty, convex and disjoint. Moreover, A is open. Hence, there is $\varphi \in\left(L^{2}(0,1) \times \mathbb{R}\right)^{*}$ oud $\mu \in \mathbb{R}$ st.

$$
\underset{(\omega, \lambda) \in A}{\forall} \quad \varphi(\omega, \lambda)<\mu \leqslant \varphi(u, I(u)) .
$$

We know that $\varphi(\omega, \lambda)=\tilde{\varphi}(\omega)+a \cdot \lambda$ where $\tilde{\varphi}$ is is $\left(L^{2}(0,1)\right)^{*}$ and $a \in \mathbb{R}$. Moreover, by $R R T$, we con write $\bar{\varphi}(\omega)=\left\langle\omega, v_{u}\right\rangle$ for some $v_{u} \in L^{2}(0,1)$ (it depends on u because we fixed u in this construction)

Hence

$$
\underset{(\omega, \lambda) \in A}{\forall}\left\langle u, v_{u}\right\rangle+a \cdot \lambda\left\langle\mu \leqslant\left\langle u, v_{n}\right\rangle+a \cdot I(u)\right.
$$

Observe that $(u+\omega,(1+\varepsilon) I(u+\omega)) \in A$. Hence,

\[

\]

To conclude, we need to know that $a<0$.
Let $w=0$. Then $a(1+\varepsilon) I(u)<a \cdot I(u) \Rightarrow a<0$ We divide by $a<0$ to get //new v_{u}

$$
(1+\varepsilon) I(u+\omega)\rangle I(u)+\left\langle u, \frac{v_{u}}{a}\right\rangle
$$

As $\varepsilon>0$ is arbitrovy, he send $\varepsilon \rightarrow 0$ and conclude the proof.

COMMENT (what is v_{n}) For a convex function $f: \mathbb{R} \rightarrow \mathbb{R}$ we have

$$
f(y) \geqslant f(x)+f^{\prime}(x)(y-x)
$$

(second term in Touplor's expansion is ≥ 0 due to convexity), RHS as a function of y is the line supporting f at point x.

Similowrly, if $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is convex

$$
f(y) \geqslant f(x)+D f(x) \cdot(y-x)\left(D f \in \mathbb{R}^{n}\right)
$$

Now, the (RHS) as a function of y is the suppo sting hyper plane.

So, in this exercise you've found gradient of $J: L^{2}(0,1) \rightarrow \mathbb{R}$.
Such gradients are then used for optimization, see GRADIENT DESCENT METHOD
https://en.wikipedia.org/wiki/Gradient_descent
(The article is concerned with functions on \mathbb{R}^{n} but similar techniques are developed in Banach spaces).
Last comment concerns generality. One con easily generalize this problem to prove:
THEOREM. Let E be a Banach space, $I: E \rightarrow \mathbb{R}$ le Continuous and convex. Then, for all $u \in E$, there is $\varphi_{u} \in E^{*}$ such that $I(u+w) \geqslant I(u)+\left\langle\omega, v_{u}\right\rangle$.

