Jan Kociniak, Wojciech Przybyszewski

Problem 2

(A) Let us take any f satisfying assumptions and denote the maximum of $|f|$ by M. We want to prove

$$
\lim _{n \rightarrow \infty} \int_{0}^{1} f_{n}(x) g(x) d x=\int_{0}^{1} f(x) d x \int_{0}^{1} g(x) d x
$$

for any $g \in L^{2}(0,1)$. We will start with a special case, when g is an indicator, i.e. $g=\mathbb{1}_{(a, b)}$ for some $0 \leq a<b \leq 1$. In that case

$$
\lim _{n \rightarrow \infty} \int_{0}^{1} f_{n}(x) g(x) d x=\lim _{n \rightarrow \infty} \int_{a}^{b} f_{n}(x) d x
$$

Assuming that there are some $a^{\prime}=\frac{k}{n}, b^{\prime}=\frac{l}{n}$ for some integers k, l such that $a \leq a^{\prime} \leq a+\frac{1}{n}$ and $b \leq b^{\prime} \leq b+\frac{1}{n}$, we can estimate:

$$
\begin{gathered}
\left|\int_{a}^{b} f_{n}(x) d x-(b-a) \int_{0}^{1} f(x) d x\right| \leq \\
\leq \int_{a}^{a^{\prime}}\left|f_{n}(x)\right| d x+\left|\int_{a^{\prime}}^{b^{\prime}} f_{n}(x)-f_{n}(x) d x\right|+\int_{b}^{b^{\prime}}\left|f_{n}(x)\right| d x+\frac{2}{n} \int_{0}^{1}|f(x)| d x \leq \frac{4 M}{n}
\end{gathered}
$$

which is because $\left(b^{\prime}-a^{\prime}\right) \int_{0}^{1} f(x) d x=\int_{a^{\prime}}^{b^{\prime}} f_{n}(x) d x$ (and this can be easily seen by the change of variable theorem). As M is constant we get the statement for this special case of g being an interval indicator.

Obviously the statement follows as well for g being a simple function, i.e. a finite sum of intervals' indicators. Now we can proceed to the general case, which is essentially the same as something we did during tutorials. Indeed, let g be a function in $L^{2}(0,1)$ and fix some $\varepsilon>0$. There is a simple function g_{ε} such that $\left\|g-g_{\varepsilon}\right\|_{2} \leq \varepsilon$. For any n we can estimate:

$$
\begin{aligned}
& \left|\int_{0}^{1} f_{n}(x) g(x) d x\right|=\left|\int_{0}^{1} f_{n}(x) g_{\varepsilon}(x) d x\right|+\left|\int_{0}^{1} f_{n}(x)\left(g-g_{\varepsilon}\right)(x) d x\right| \leq \\
& \leq\left|\int_{0}^{1} f_{n}(x) g_{\varepsilon}(x) d x\right|+\left\|g-g_{\varepsilon}\right\|_{2}\left\|f_{n}\right\|_{2} \leq\left|\int_{0}^{1} f_{n}(x) g_{\varepsilon}(x) d x\right|+\varepsilon M
\end{aligned}
$$

where we used Hölder inequality between the first and the second line. To finish the proof, we can apply limsup to both sides, thus obtaining:

$$
\limsup _{n \rightarrow \infty}\left|\int_{0}^{1} f_{n}(x) g(x) d x\right| \leq \varepsilon M
$$

As ε can be arbitrarily small, the statement follows.
(B) Using (A) we obtain that:
$\sin (2 \pi n x) \rightharpoonup \int_{0}^{1} \sin (2 \pi x) d x=\left.\frac{-\cos (2 \pi x)}{2 \pi}\right|_{0} ^{1}=\frac{-1}{2 \pi}(\cos (2 \pi)-\cos (0))=0$,

$$
\begin{aligned}
& \text { and: } \\
& \qquad \sin ^{2}(2 \pi n x) \rightharpoonup \int_{0}^{1} \sin ^{2}(2 \pi x) d x=\int_{0}^{1} \frac{1-\cos (4 \pi x)}{2} d x= \\
& =\frac{1}{2}-\frac{1}{2} \int_{0}^{1} \cos (4 \pi x) d x=\frac{1}{2}-\left.\frac{\sin (4 \pi x)}{8 \pi}\right|_{0} ^{1}=\frac{1}{2}-\frac{1}{8 \pi}(\sin (4 \pi)-\sin (0))=\frac{1}{2} .
\end{aligned}
$$

