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Problem 2

(A) Let us take any f satisfying assumptions and denote the maximum of | f]|
by M. We want to prove
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for any g € L?(0,1). We will start with a special case, when g¢ is an

indicator, i.e. g = 1(4) for some 0 < a < b < 1. In that case
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lim 1 fn( Yg(x)dr = lim [ f,(x)dx

Assuming that there are some o’ = %7 b = % for some integers k,[ such
that a <a' <a+ % and b< bV <b+ %, we can estimate:
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which is because ( fo x)dx = fa, fn(x)dz (and this can be easily

seen by the change of variable theorem). As M is constant we get the

statement for this special case of g being an interval indicator.

Obviously the statement follows as well for g being a simple function, i.e.
a finite sum of intervals’ indicators. Now we can proceed to the general
case, which is essentially the same as something we did during tutorials.
Indeed, let g be a function in L?(0,1) and fix some ¢ > 0. There is a
simple function g. such that ||g — g.||, < e. For any n we can estimate:
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where we used Holder inequality between the first and the second line. To
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finish the proof, we can apply lim sup to both sides, thus obtaining:
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As ¢ can be arbitrarily small, the statement follows.
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(B) Using (A) we obtain that:
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